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SYMMETRIZABLE-CLOSED SPACES

R. M. STEPHENSON, JR.

Symmetrizable-closed, semimetrizable-closed, minimal
symmetrizable, and minimal semimetrizable spaces are charac-
terized. G. M. Reed's theorem that every Moore-closed space is
separable is extended to: Every Baire, semimetrizable-closed
space is separable. Several examples are given.

If P is a topological property, a Hausdorff P-space will be called
P-closed provided that it is a closed subset of every Hausdorff P-space in
which it can be embedded. A Hausdorff P-space (X, SΓ) will be called
minimal P if there exists no Hausdorff P-topology on X strictly weaker
than S\

In [3] J. W. Green characterized and studied Moore-closed and
minimal Moore spaces. In this paper we obtain some analogous results
for semimetrizable spaces and symmetrizable spaces.

A symmetric for a topological space X is a mapping d:Xx
X^[0,oo) such that

(1) For all x,yEX, d(x, y) = d(y, x), and d(x, y) = 0 if and only if

(2) A set V C X is open if and only if for each x E V there exists
nEN such that V contains the set B(n, x) = {y G X | d ( x , y)< 1/rc}.

A space X which admits a symmetric is said to be symmetrizable,
and if, in addition, each J5(n, x) is a neighborhood of x, then X is said to
be semimetrizable and d is called a semimetric for X. Equivalently, X is
semimetrizable via d provided that for x E X, A CX, and d(x, A) =
inf{d(;c, a)\a E A}, the condition xEA if and only if d(jc,A) = 0 is
satisfied.

A number of the techniques used here are not new; for example, see
[2]. The terminology used is standard. One perhaps not too familiar
concept is that of θ -adherence. A point p of a topological space is said
to be a θ-adherent point (or be in the θ-adherence) of a filter base SF
provided that for every set F E 3F and neighborhood V of p, one has

F n v-έ 0.
Our first two theorems are characterization theorems.

THEOREM 1. Let (X, SΓ) be a symmetrizable Hausdorff space. The
following are equivalent.

(i) The space (X, 2Γ) is minimal symmetrizable.
(ii) Every countable filter base on (X, SΓ) which has a unique

θ~ adherent point is convergent.
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Proof, (ii) implies (i). Suppose that (X, if) is symmetrizable and
Hausdorff and Sf C SΓ. Let d be a symmetric for (X, θ>). For each point
p E X the filter base

%={{*: d(x,p)<l/n}: n E JV}

has a unique θ-adherent point in (X, 5̂ ), namely p, and so $p also has at
most one θ -adherent point in (X, SΓ). By (ii) and the relation p E Π %,
it follows that each Sδp must converge to p in (X, SΓ). Thus for every
Γ G J a n d p G T there exists n E JV such that ΓD{JC: d(x,p)< 1/n},
that is, TG5^. Therefore, J~ C5? and (X, 5") is minimal symmetrizable.

(i) implies (ii). Assume that there exist a point q E X and filter
base Ŝ  = {Fn: n E JV} on X such that:

(a) for each n E JV, FnD Fn+1;
(b) q is the unique 0-adherent point of 3* in (X, 2Γ)\
(c) ^ fails to be convergent; and
(d) Fι = X.
We will prove that (X, SΓ) cannot be minimal symmetrizable.
Let Ψ = {VE SΓ: if q E V then V contains some member of <?}.

Then 7 is a topology on X with Ύ CSΓ, and because ^ has no
θ -adherent point other than q, the space (X, V) is Hausdorff. By (c),

Now consider any symmetric d for (X, SΓ). Define d * : X x
X-»[0,°o) by the rule

d(x,y) iί

= j 0 if x = q = y
min{d(x, y), 1/n} if y = g and x E Fn\F,,+1.

Clearly, d* is a symmetric for the space (X, V), and so (X, if) cannot be
minimal symmetrizable.

THEOREM 2. Let X be a symmetrizable Hausdorff space. The
following are equivalent.

(i) X is symmetrizable -closed.
(ii) Every countable filter base on X has a θ-adherent point.

Proof, (ii) implies (i). Suppose that there exists a symmetrizable
Hausdorff space Y such that X is a subspace of Y but X ^ X. Because
X is a closed subset of Y, X is symmetrizable (e.g., see [5, p. 93])._ Let d
be a symmetric for X. Since X fails to be a closed subset of X, there
must exist a point p E X\X with 0 = inf {d(p, x): x E X}. Thus for each
nG'JV,
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Fn={xEX:d(p,x)<l/n}

is nonempty, and so 2F = {Fn: n E N} is a countable filter base on
X. Obviously 3F has no 0-adherent point in X.

(i) implies (ii). Assume that there exists a filter base ^ =
{Gn: n 6 JV} on X such that Gλ = X, each Gn D Gn+l9 and $ has no
0-adherent point in X. Choose a new point qf£ X, let £ = X U {q}, and
call a subset V of E open if and only if (a) V Π X is open in X and (b) if
q E V then for some n6ΛΓ, VDG n . Then £ is a Hausdorff space in
which X is embedded as a proper dense subspace. E is also symmetriz-
able, for if d is any symmetric for X, then the function d*: E x
£ -> [0, oo) determined by the rule

d*(x,y)=d*(y,x)=\

d(x,y) ifx,yEX

0 if x = q = y

IIn if x E Gn\Gn+1 and y = <jr,

is easily seen to be a symmetric for E.
For many properties P, P-minimality is a sufficient condition for

P-closedness. For P = symmetrizable, the same is true.

COROLLARY 3. Every minimal symmetrizable Hausdorff space
(X,2Γ) is symmetrizable-closed.

Proof. If d is a symmetric for (X,SΓ) and & is a descending
sequence of nonempty sets having no θ -adherent point in (X, SΓ\ with
l E f , then for any point q E X, the function d* defined in the proof of
Theorem 1 is a symmetric for a strictly weaker symmetrizable Hausdorff
space (X, V).

COROLLARY 4. Every regular, symmetrizable-closed space is com-
pact.

Proof. In a regular space θ-adherence and adherence are equiva-
lent concepts, so by Theorem 2, every regular symmetrizable-closed space
is countably compact. By a result of Nedev [7] every countably compact
symmetrizable Hausdorff space is compact.

For various properties P, topologists have often been interested in
the question as to whether or not there exists a non-compact P-space in
which every closed subset is P-closed. If P = Hausdorff or completely
Hausdorff, the answer is known to be no, but if P = regular, the question
is open. For P = symmetrizable, the following result holds.
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COROLLARY 5. Let X be a symmetrizable Hausdorff space in which
every closed subset is symmetrizable -closed. Then X is compact.

Proof. Obviously no infinite discrete space can be symmetrizable-
closed, so every infinite closed subset of X must have a limit point, that
is, X must be countably compact.

Let us now give some examples of these concepts.

EXAMPLE 6. In [1] N. Bourbaki pointed out that a certain space X
due to Urysohn is a minimal Hausdorff space that fails to be
compact. We will describe this space and show that it is also semimet-
rizable, in order to show that there exist noncompact, Hausdorff minimal
symmetrizable spaces.

Let

X = JV U {n ± Urn: n, m G JV, m > 2} U {± TΓ}.

Define d: X x X-»[0,oo) by the rule

d(x,y)=d(y,x) =

0

\x-y

if x = y

if

1/n

if x G JV and y G {± TΓ}, or
if x = n + 1/m and y = - TΓ, or
if x = n — 1/m and y = TΓ, or
if x = TΓ and y = - TΓ, where
m,nE:N and m >2;

if x = n + 1/m and y = TΓ, or
if x = n - 1/m and y = - TΓ,

where m,nEN and m > 2.

Call a subset V of X open if and only if for each point v E V there exists
e > 0 with {x: φ , ϋ ) < e } C V . Then d is a semimetric for the space X,
and X is homeomorphic with the space in [1] (X is also described in [2, p.
101]).

EXAMPLE 7. If X is as in Example 6, then its subspace

Y = JV U {n + 1/m: n, m G JV, m > 2} U {TΓ}

is well known to be Hausdorff-closed but not minimal Hausdorff. Since
Y is a subspace of X, it is also semimetrizable. If Y' denotes the space
which has the same points as those of Y but which is topologized so that
it is the one-point compactification of the space Y\{π}, then Y' is
metrizable, and so one sees that Y is not minimal semimetrizable. Thus
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Y is an example of a Hausdorff semimetrizable, symmetrizable-closed
space that is not minimal semimetrizable.

For P = semimetrizable, the results one can obtain concerning the
concepts P-closed and P-minimal are much more similar to those in
[3]. Since the proofs are not too different from some of the ones above
and in [3] and [9], the details are omitted. First two definitions are
needed.

A topological space is called feebly compact if every countable open
filter base has an adherent point. A space is called semiregular if it has a
base consisting of regular open sets, i.e., sets having the form V = (V)°.

THEOREM 8. Let X be a semimetrizable Hausdorff space. The
following are equivalent.

(i) X is semimetrizable -closed.
(ii) X is feebly compact.

THEOREM 9. Let X be a semimetrizable Hausdorff space. The
following are equivalent.

(i) X is minimal semimetrizable.
(ii) Every countable open filter base on X with a unique adherent

point is convergent.
(iii) X is semiregular and semimetrizable -closed.

For semimetrizable spaces, it is easy to show that the concepts
semimetrizable-closed and symmetrizable-closed are distinct. For ex-
ample, let X be any noncompact, regular, semimetrizable-closed space
(such as one of the spaces discussed in [3]). By Corollary 4, X cannot be
symmetrizable-closed.

Not too much is known concerning the density character and
cardinality of semimetrizable-closed and symmetrizable-closed
spaces. G. M. Reed [8] has proved that every Moore-closed space is
separable, but I do not know if an analogous result holds for all
semimetrizable or symmetrizable spaces. (A proof is given in [10] that a
feebly compact symmetrizable space is separable if it has a dense set of
isolated points.) In our final theorem it is shown that Reed's condition
Moore-closed space, or, equivalently, feebly compact Moore space (see
[3]), can be weakened.

We recall that a topological space X is said to be a Baire space
provided that for every countable family <& of dense open subsets of X,
the set Π ̂  is also dense. It is known [6] that every regular, feebly
compact space is a Baire space.

THEOREM 10. Every Baire, feebly compact, semimetrizable space X
is separable.
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Proof. The proof will consist of two parts. We will first prove that
(*) every family of pairwise disjoint nonempty open subsets of X is
countable. Next, using (*), we will construct a countable dense subset
for X.

Let d be a semimetric for X. For JC E X and n E JV, {y E
X: d(x, y)< 1/n} will be denoted by J3(n, x), and the interior of B(n, x)
will be denoted by I(n, x).

Proof of (*): Suppose that there exists an uncountable family V of
pairwise disjoint nonempty open subsets of X. For each VET and
m E JV let

Vm={xeV:B(m,x)CV}-9

and note that since V = U {Vm: m E JV}, it follows from the Baireness of
X that one can select an integer m(V) for which Vm(v) has nonempty
interior. Choose i E JV such that W = {V E T: m (V) = /} is uncounta-
ble, and for each VKE ^ l e t /^ denote the interior of W,. By the feeble
compactness of X, there must exist a point p E X at which / =
{/w: W E ̂ } fails to be locally finite. But consider any set Jw E / with
φ?£ K = Jw Π I(i,p). Because X is a nonempty open subset of Wn

there must exist a point g E W with B(i, g) C W and with q E K. Then
d(p,q)<l/i and so pGB(i, ι j )CΨ. This latter relation, however,
shows that β must be locally finite at p, for given any Jv Eβ with v y W,
we have W Π / v = 0. Thus we have obtained a contradiction, and the
proof of (*) is complete.

For the remainder of the proof, if n E JV let

mn = {I(k, x): x E X, k E JV, and k ̂  n},

and let 3)n be a maximal family of pairwise disjoint members of
3&n. Once the sequence {2)n: n E JV} has been determined, choose, for
each n E JV and D E 2fw one point npD such that D = I(fc, npD) for some
fc E JV with k ̂  n, and let

Then C = U {Cn: n E JV} is a countable subset of X, because by (*), each
3)n is countable. We will conclude the proof by proving that C is also
dense in X.

Because each U 3)n is an open dense subset of X, the set E =
Π { U 3)n: n E JV} is also a dense subset of X.

Now consider an arbitrary point e E E. For each n E JV there
exists a set /(fe, npD) E 2)n which contains e. Thus each d(e, n/?D) < 1/n,
which shows that e EC.
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Therefore, E C C and so X = E = C
While not every Baire semimetrizable-closed space is regular (e.g.,

Example 6), R. W. Heath has informed the author that he can prove
every regular, semimetrizable-closed space is a Moore space — to verify
Heath's result, appeal to the characterizations A and B' in [4] and the
well known fact that in a regular feebly compact space any countable
open filter base with a unique adherent point is convergent.

Since every separable first countable Hausdorfϊ space has cardinality
^ c, it follows from Theorem 10 that every Baire semimetrizable-closed
space has cardinality ^ c. We will conclude by showing that if the
conditions "Hausdorff, semimetrizable, and Baire" are deleted, then the
bound c may be exceeded.

EXAMPLE 11. Let m be an arbitrary infinite cardinal number, let
Mm be a maximal family of countably infinite subsets of m such that the
intersection of any two members is finite. Denote by {pM: M E Mm) a
set of distinct point not in m, and let Xm = m U{pM: M EJίm}. For
each MGMm let gM:M^>N be one-to-one. Define d: Xm x
Xm -* [0, oo) by the rule

1 if x, y E m and x ^ y

1 if x = pM and y £ {pM} U M
d(x,y)= d(y,x)= \

l/gM(y) ιi x = pM and y E M; and

0 if x = y.

Topologize Xm by declaring a set V to be open if and only if for each
point v E V there exists e > 0 with {x GXm: 4(x,υ)<e}C V. Then the
space Xm is a feebly compact symmetrizable space of cardinality ^ m.
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