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A SOBOLEV SPACE AND A DARBOUX PROBLEM

M. B. SURYANARAYANA

This paper deals with a class of functions which are
defined in an 7n-dimensional rectangle and which possess
there, only the generalized partial derivatives of mixed type.
It is shown that (i) this class contains as a proper subset
the usual Sobolev class of order 7, the dimension of the
domain and (ii) this class can be imbedded in the space of
continuous functions. In addition to the compactness of the
imbedding operator, the closedness of certain nonlinear
partial integro differential operators is also studied. Finally,
a system of partial integro differential equations with
Darboux type boundary data in a rectangle, is shown to have
solutions in this class. The results of this paper are used
in certain existence theorems of optimal control theory.

1. Introduction. In recent studies on existence theorems for
optimization problems involving Darboux type side conditions, it was
found useful and necessary to introduce a special class of funec-
tions, (see for example [11] and [7]). This special class which we
shall denote as W}(G), G E", consists of all functions z(¢), t¢ @G,
with ze L,(G), and such that z has all (and only) the mixed partial
generalized derivatives D,z of orders upto and including = (the
number of independent variables) with D,z € L,(G); thus, derivatives
of 2z taken more than once with respect to any of the variables
t, +++, t,, may not even exist. In the case of » = 2, for example,
with independent variables x and y, this would mean that for
ze€ W¥(G), the generalized partials z,, z, and z,, exist and belong
to L,(G) while the pure partials z,, and z,, need not even exist.
This class is thus analogous to the classical C*(G) where only the
derivatives z,, 2z, and z,, exist and are continuous.

Clearly, W3(G) contains W»(G), the usual Sobolev class of func-
tions for which all the generalized partial derivatives of order upto
and including n exist and belong to L,(G). We shall show in no. 2
below that there exist functions in W}(G) which are not in W*(G).
One of the purposes of this paper is to analyze this special class of
functions W3}(G) for G = [a, @ + k] C E*, n = 1 and in particular to
show that it can be imbedded in C(G), the space of continuous
functions, for all », 1 < p < . In particular, it follows that
W4&) < C(G) even for p = 1. We shall also study criteria for the
compactness of the imbedding operator. In the same context, the
closedness of gome nonlinear integro differential operators is in-
vestigated, a result used in the closure theorems relevant to the
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existence theory of optimal control problems (see [11]).

The last section of this paper is devoted to establish an existence
and uniqueness theorem in the special class mentioned above, for
solutions of a system of partial integro differential equations with
Darboux type boundary data in a rectangle in E". This theorem is
derived as a consequence of the existence theorems for multi-
dimensional integral equations of Volterra type given by the author:
in [9]. Since the Darboux problem considered here involves a control
function also, the existence of solutions for each measurable control
under the specified hypothesis), therefore proves the controllability
of the system. These results are used in [11].

Examples are provided through out the paper to illustrate the
statements.

2. Notations. Let E", n =1 denote the n-dimensional Euclidean
space. Let

G =|a, a + h]
={teb* |t =0, -, t)ya; =t Sa; +hy,1=1, -+, n}.

Let C(G) denote the space of continuous functions on G, as usual
with the supremum norm and let L,(G) be the space of all measur-
able functions whose p-th powers are integrable over G, for 1 < p < .
Let L.(G) be the space of all essentially bounded functions measur-
able on G.

Let T, denote the operator defined on X™, m = 1 (with X = C(G),
L,(G) or L.(G)) as follows:

T.z(t) = Sti 2t;, s)ds, zeX™.

Here t; = (¢, +++, t;y, tipyy =+, t,) s0 that ¢ = (¢, t). We define T,T;
as composition so that T7z = T(T7'2), r =1 and T% = z for ze¢ X™.
Let D,z denote as usual the generalized derivative of z with respect
tot, 1=1, ---, n.

A mutiindex a = (a,, -+, @,) is an n-vector with arbitrary non-
negative integers a,, 1 =1, ---,n. As usual |a|=a, + - + a,
and a! =a,! ---a,!. Let J denote the set of all multiindices «
with |@|<nand @, =0orlfori=1,.--,n. LetJ=JU{(Q, -+, 1)}
In the sequel, unless specified otherwise, multiindices (denoted by
greek letters) are from J. Also @ =1 shall mean @, =1 for all ¢
while |@| = 1 means @, = 1 for one and only one i. For a, BeJ,
the inner product Za,8; is denoted by a-8 and &' denotes 1 — «;
thatisa;=1—a,, t=1,---,n. By @ < B8 we shall mean a, < 8,
for each 7 while @ < 8 means @ < S and « = £. Thus, for example,
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10,1)<(,1,1).

Given B e J, there are just as many xeJ, -8 = 0 with |7| even,
as there are with |7|odd (the total number being 2"~"#), So,
3(—~1)" = —1 where the summation is taken over all zeJ — {0}

with 7.8 = 0. The following lemma is now an immediate consequence
of this.

LEMMA 1. Given any real valued function f(B8) on J and @cJ
we have

S ) =35 3 S5 (-D7AE).

REMARK. The above formula is that of the cardinality of union
of a collection of sets.

Ilustration. If @« =(1,0,1,0) then 0 < 8 < a is satisfied by
8, =(0,00,0), 8,=(,0,0,0) and B = (0,0,1,0). Also, 0<7T=Z @
is satisfied by =,=({,0,0,0), 7,=(0,0,1,0) and 71,0,1,0). In
this case, 7,-8, =78, =0; 7,8, = 7,-8, = 0 and 7;-B, = 0 so that
the right hand side of the equation in the lemma is

B + FB) + FB) + F(B) — fB) = 3,/B) = 3, fi8) -

In the sequel, multiindices from J (that is with @, = 0 or 1 for
all 1) appear as subscripts in three different ways: (1) As sub-
seripts of the set G or a point in G, they mean projection into the
corresponding coordinates. Thus ¢, means the |a|-vector obtained
omitting those ¢, in (¢, ---, t,) for which &, = 0. Also

G, ={t, e B, X t, £ Ay + Iy} .

If @« = 0, that is @, = 0 for all 7 then G, is the empty set. (2) As
subseripts of an operator (T or D) we mean the composition 7% + .. T2
of those T, for which a;,#0. If «a =0 then T,= T, and D, = D,
are understood as identity operators; Thus T,z = Dz = z. In either
of the two cases (1) and (2), a prime ' on the top shall indicate the
complementary index. Thus T.,=T,=T,_,. For =38, and
a=(1,0,1) for example, T, = T,T; while T, = T,. (3) As subscripts
of functions, no further meaning is attached. Thus, R, (f) is just
the ath function on G.

For 1 < k < nif k is the subscript of an operator (T or D) then
it is same as having a subscript @ with @, =1 for 1<¢<k and
a,=0 for ¢+ > k. Thus, D*2=D,z with e =(1, ---, 1).

For 1 < p < o, let W%G) denote as usual (see Sobolev [8] or
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Morrey [5]) the set of all ze L,(G) with D,z € L,(G) for all @ with
|| < n; (@ may not be in J) We define the space W}(G) as the set
of all ze L,(G) for which D,z L,(G) for @¢eJ. The norm on W*(G)
is defined by ||z||* = 3.e7 || Do2|l, where ||-||, is the usual L,-norm.

It may be recalled that W2(G) is normed by >}, <. || D.2ll,. Also,
by definition, W2(G) c W*(G). However, as following example shows,
Wi (G) is certainly a larger class than W7%(G). . Indeed, in the case
n=2 and G =[0,1] x [0, 1], if 2(z, y) = S:c(a)da + S:c(ﬂ)dﬁ where
¢(.) is the Cantor function on [0, 1] then z € W}(G@) — W(G) because
Z,, does not exist (which follows from the fact that the Cantor
function is not absolutely continuous.)

We define the weak convergence in W} (G) analogous to Wj3(G).

3. Imbedding theorem. It is well known that W%G)c C(G)
if kp >mn. In particular, if » > 1, then W¥G)cCC(G). In this
section, we show that W}H(G)c C(G) for all p, 1<p=< . In
particular then, W(@)c W}(G) c W}(G) c C(G), where inclusions are
understood as imbeddings. It is to be noted that in view of this,
WxG) < C(G) even for p = 1. This result is analogous to Theorem
2.2.7 of Hormander [4], but of course here for bounded rectangles.

THEOREM 1. Let G = [a, & + k] C E*. Then for each ze W¥(G),
there exists a ze€ G(G) such that z =z a.e. in G.

Proof. Since ze W¥(@G), D"z€ L(G) where D" denotes D, with
a =1 Let weL,(G) be defined by

(3.1) w(t) = S:D“z(s)ds = T"Dz

By Fubini’s theorem weC(G). Also w has generalized derivatives
D,w given by

(3.2) Daw(t) = Daolt, t)) = S Dralt., s)ds .

It is seen similarly that for aeJ, D,w exists and is given by
ty
S , D*z(t,, s)ds. Furthermore, D"z = D"w. Now, D" 'z and D" *w are

bc:th absolutely continuous and have the same generalized derivative
with respect to ¢,. Thus, (see [8, p. 21]) there is a function ¢, ,(¢,)
of ¢, alone such that D" *(z — w)(¢,, t.) = ¢, .(t,) for almost all ¢, and
almost all ¢,. Since D*(z — w) is in L,(G,) for almost all ¢,, same
is true for c,,(t,). Repeating the process (see illustration below), it
is seen that for a = 0,
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t

(3.3) Di(e = w)®) = | cin.oan, 55, 1205,
where the summation in taken over all multiindices 3, 7, 4, § with
o+0=%7+B=a;|6|=1; |7/=1; 8=0; 6=0. If =0, itis
understood that there is no integration and only one (any of |a| = |7|
choices) pair 0, 0 is chosen with 6 + 6 =7 =a. If |a| =1, that is
a, =1 for one and only one %, then clearly 8 = 0.

If =1, that is @, =1 for all 4, then D (z — w) =2 — w and
thus (3.8) yields

t
(3.4) (0 = w®) + | @ sds;

op
where summation is taken as above with @ = 1. It follows that z(¢)
is equal to a continuous function a.e. in G.

Llustration. Let n =38, (t,t,t) = (x, %, u) and a = (0,1, 1);
then a’ = (1, 0, 0). Let us consider the set of multiindices B, 7, 4, 8
to be used in formula (3.3) for this @. Since |[|=1and é<7=Z a, ¥
can be either 7, =(0,0,1), ¥,=(0,1,0) or 7, = (0,1, 1) while § has
to be 4, = (0, 0, 1) for 7, 46, = (0,1, 0) for 7, &; = (0,1, 0) for 7, or
0,=(0,0,1) also for 7;. Then B, =", for v, B,=17 for 7, and
Bs = (0,0, 0) for 7v,. In the last case, that is with v, 6 can take
only one value: either 4 = (0, 0,1) with v, d; or 6 = (0,1, 0) with
7, 0, Thus (3.3) yields

@5 E—wh.=| @ ods + | au@ 0dt + oufe, 2
ag ag

or a similar equation with the last term on the right hand side
z v u

replaced by c¢,;(a, ). Here, w = S S S Z.yue 1t is seen that we
a) Jay Jag

arrive at (3.5) by observing that since Zoyu = Wyyy, W€ have on

integrating out u, z,, = w,, + ¢,,(, y) which becomes

(3.6) Z, = W, + Sy ¢, s)ds + &(x, ) .
a2

Similarly, starting from =z,,, = w,,, and integrating y, we get
2y = Wy + €1,5(2, w) Which becomes

3.7) 2= w, + | e Ot + &, 1)
a3
Equation (3.6) and (3.7) (as well as (3.3) and (3.4)) are valid for

Y = a, and 4 = a, (as boundary values). Substitution and comparison
yields (3.5).
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REMARKS.

1. There exist sets H,C|a;, a; + 1] with meas (H,) =0,
1=1,2, ++--,% such that formulae (3.3) and (3.4) are valid for
te[G — Ur. (G; x H)]. Itis to be noted that this is stronger than
saying that the equations are valid a.e. in G. However, the equa-
tions are valid for (a., t.) for almost all, tLe G, 1 < 7| = n.

2. The function (D.2)(t) = (D.z)(t-, t-) is equal to a continuous
funection in ¢, for 0 < 7 < a.

3. Formula (3.3) can be written more explicity as follows:

(3.8) Dz — w)it) = > S ? Crap,i{@ampsy S5, t3)dS5 .
0 ‘1[3

sf<a
Bed
If zeJ (and @ # 0 as before)
t
(3.9) D;(Z - w)(ar:y tf—) = Z § ? C{a*ﬁl,é(aor Spy t(’)ds.ﬂ
J ﬂp‘
where summation is taken over all 8 with BeJ, 0 <8 < a and
78 =0; and where c =a—F -0+ (zNa’) and p=a — (N &)
with (&), =1— ¢, for all ¢ and (zxNna'), =1 if 7,=a; =1 and
(zNna'),=0 otherwise. In particular, if wNa =0 then the
integrands in (3.8) and (3.9) are the same, so that using Lemma 1,
no. 2 yields
Di(z — w)(t) = 3, (—1)"'Du(z — w)(a, tz)
= >, (—=1)"'D.2(a, t7)
because D, w(a., t.) =0 for tNa’"=0. The summations in (3.10)
are taken over all ¢, # with 1 < ¢ < |a] andwed, |zl =1, z-a’ = 0.
t
(Let us recall that w = S D”z(s)ds.) In particular, if o =1 (that is
a, =1 for all 7) then

(3.10)

(3.11) (= wt) =X 5 (1% 1)
T er
If 7 =« then p =0 and (3.9) reduces to
(3.12) Diz = w)@oy t) = 3| 010 l@cpos 5ds;
g

where 1 stands for (1, ---, 1) and the summation is over S e¢J with
0B <a and |d]=1, deJ. On the other hand from (3.9) with
a =1 we get,

(3.19) (2 — was, ) = |” e, 39ds,
a8

where the summation is over all BeJ with0<48 <1 and 7#-8 = 0 and
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where Yy =1— 8 while 6=1—8—06. (In all these, 1 as before
stands for (1, ---,1).) Once again using Lemma 1, no. 2 we get

(3.14) 2(t) = wt) + 3 (—1)' " Diz(au, t.) -

where the summation is taken over all 4, @ with 1 <7< n and
la| =1, aed.

4, Compactness of the imbedding operator. In this section,
we shall obtain some results analogous to the following well known
fact (see [5], p. 75) in the usual Sobolev spaces regarding weak
convergence:

(P) If {z,} is a sequence of functions in W*@G), p > 1 converging
weakly to some z e W2(G) then z,— 2z uniformly in G and D,z, — D,z
strongly in L,(G) for all multiindices & with 0 < |a@| < n (need not
be in J). The same conclusion holds for p = 1 provided in addition
the set {D.z.lla|=n,k=1,2, ---} is equiabsolutely integrable.

It is to be noted that the above statement is not valid in W3(G)
as the following examples show:

ExaMPLE 1. Let
G=[z,n0=c=10=y=1].
For k=1,2, ---and =0, ---, k — 1, let
L. = (2, ) e G|(i/k) = & = (20 + 1)/2k]
and
L, =z, ) e G|(20 + 1)/2k < © < (1 + 1)/k]

and let z.(x, y) be defined on G by z.(x, ) = y(x — i/k) in I, and
=y(—2x+ @+ V/k)in I}, =0, ---,(k — 1). Then 2, is continuous
and belongs to W}(G), p = 1; the derivatives z,, Z¢,, 21sy are given by
Bho = U5 Ziy = © — k3 2oy = +1 00 Ly; 24, = — Y5 2y = —% + (4 + L)/k;
2oy = —Llin I, 1=0, ---, (k — 1). Clearly, z, — 0 weakly in W}(G),
p=1 and z,,—0 weakly in L,J(G), while z,, and 2z, converge
uniformly to 0. But z,, has norm (p + 1)™"* for each k£ and as such
does not converge to 0 strongly in L,(G). It is to be noted that
2, ¢ WXQ) since the generalized derivative z,,, does not exist.

ExampPLE 2. Let
G=[x9y)|—-rT=e=nm -1y =n7].

Let z.(x, y) = (sin kx + sin ky)/k. Then z,, = cos kx: z,, = cos ky and
Zioy =0; k=1,2, ..., Clearly, z,e W} &) and z,,, — 0 weakly. But
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2w — 0, 2, — 0 weakly and not strongly. However, z,— 0 uniformly
in G. It is to be observed that z,, and z,, do not converge point-
wise.

More generally, if I is any interval on the real line, if {p,(x)}
is an orthogonormal sequence in LJI) and if G=1Xx I, then
2z, ¥) = o.(y) + p.ly) will be in W}(G) and converge to 0 uniformly
as well as weakly in WJ(G); but the derivatives z,, and z,, do not
converge strongly.

Now, the following theorem valid in W}(G), » > 1 is analogous
to statement (P):

THEOREM 2. Let
G=la,a+h]l={tlt=_(t, -, t), e, =t, =a;,+h,t=1, -, 0}.

If {z,} s a sequence in WH(GF), p > 1 weakly convergent to an ele-
ment z w1 WIG), and if za, t.)— 2(a, t) uniformly in G for
=1, -+, n then z,(t) — 2(t) uniformly in G.

REMARK. Here G; = {ti|t; = (L, -+, t,oy, by + o+, ) €], @ + RI]}
as in no. 2.

Proof. Weak convergence of 2z, to z in W3}(G) implies in
particular, weak convergence of the highest order derivatives D"z,
to D"z in L,(G), p>1. This implies in turn the pointwise con-
vergence of w,(t) = StD“z,c(s)ds to w(t) = SaD”z(s)ds. In view of the
formula (3.11) and the hypothesis, this yiefds that z,(t) — 2(¢) a.e. in
G. But since weak convergence of D"z, to D"z in L(G), p>1
implies boundedness of the norms of {D"z,, k=12, .-}, if follows
that the sequence {w,(¢t)} is equicontinuous and equibounded. It
follows that the sequence z, is uniformly convergent to z. Indeed,
if z,(t,) — 2(t,) for some fixed t,€ @, then

[2:(t) — 2(t)| = [2u(8) — 2a(Bo)| + [2u(80) — 2(8a) | + [2(2:) — 2(¢)] .

Also, since {w,(t)} are equicontinuous and z.(a,, t;) is uniformly con-
vergent, it follows that {z,, 2, k=1, 2, ---} is equicontinuous. This
fact along with the above inequalities yields uniform convergence of
2, to z in a neighborhood of ¢. But since G is bounded (and closed),
the same conclusion is valid through G. Thus, z,—z in C(G).

REMARKS. 1. Above theorem is valid for p» = 1 provided D"z,
k=1,2 --- is assumed to be equiabsolutely integrable. The proof
remains the same.

2. In view of the remarks in no. 3, the above hypothesis of
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uniform convergence of z,(a,, t;) can be replaced by weak convergence
of D,z.(a, t.) to D.z(a,, t,) in L,(G,) for a,0 =< |a|<n and p > 1.
For p =1, we assume in addition that

(Dza, t)k=1,2,--;0= |a] <n,acd}

is equiabsolutely integrable.

3. The above hypothesis on the boundary values of z, and D,z,
are all automatically satisfied in many applications. For example,
in a Darboux problem, the boundary values are prescribed apriori
so that z,(a, t)) = »,(t)) and the required convergence is obviously
satisfied.

4. The hypothesis of uniform convergence of z,{a, t,) can be
replaced by that of 2,(¢,, t!) where 7 is a fixed element of G.

5. Integro-differential operators. Weak convergence in W}i(G)
as usual implies weak convergence in L, (G) of each of the deriva-
tives D,z,, @ € J, to D,z. However, weak convergence in W*(G) does
not imply the following condition on weak convergence on “lines of
boundary”:

(B) The sequence z,€ W*(G) is said to converge in (B) to z if
for each aeJ (that is a; = 1 for some ¢), Dz, — z2){a, S4 trsz) CON
vergences weakly in L,(G,) to zero, for almost all ¢, in G,,. with
wed, 1< |nl£n—|a|, m-a=0; [In particular, DJ(z, — z)a,, t.)
(with s = 0) should converge weakly to zero].

ExamMpLE. Let G =1[0,1] x [0,1] = {(z, ¥)|0 =z, y <1}. Let
zi{z, y) be defined on G as Example 1, no. 4. Then, the deriatives
of 2z, are given by =z, =19 2., =2 — (i/k); 2, = +1 for
(k) £ 2 £ (21 + 1))2k; 24, = —¥; #ey = —2 + (¢ + V)/k; 2, = —1 for
Ci+D2k= 2= (¢ + Dk for =0, -+, (k—1).

In this case z,,(1, y) = —y and this certainly does not converge
weakly to zero in [0,1]. Thus, z, does not coverge to zero in (B).
However, z,— 0 weakly in W}(G).

REMARK. Condition (B) is certainly satisfied if there is a fixed
function @(t), t €0G with z,(t) = @(¢t) for all & and teoG.

The condition (B) is used in the following theorem which in turn
is used in establishing closure properties of certain operators. We
recall from no. 2 that for each @eJ — {0} (@, =0 or 1 for all 7,
a, + 0 for some 1) t, denotes the |a|-vector obtained by omitting
those coordinates ¢ in (¢, ---,t) for which «,=0. Let
G. = {tel @0 = te = @o + ha}.

THEOREM 3. Let 2, 2e Wi(GF), L=< p < oo, k=1,2, -+, and let
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2y — 2z weakly in W}G) as k— . Let condition (B) hold. Let
R.(t) be a given element of L(G) with acJ and 1/p + 1/g = 1 (with
the usual convention that ¢ = « if p = 1 and vice versa). Let there
exist functions K (t,) € L,(G.) such that | Rt t.)| < KJt.) for almost
all t,eG,. Then the sequences T, R,D.z, = Sta Ro(thy $2)Da2i(tey Sa)ds,
belong to L,(G) and converge in measure to TaR:Daz, aed. If p>1,
then this convergence is also wn L, norm, 1 < r < p.

Proof. (i) For ze W}G) and aed, D,z<€ L,(G) and

SG | T.R.D.z?dt = SGQ RaDaz>pdt

< (1 1o ) - (17 1D, 51 )it
= | (1 o) (17 1Datsn w1 it
=

[ (5 ) ([ s )

a

< ho(|| Kully+ (| Dz 1) -

If p=1, ¢ = c, RoeL., say |R.] £ M, then
g | T.R.Doz| < MS | T.D.z| < Mha| Dzl .
G G

This proves that T.R.D.z € L,(G).
(ii) If z,—=z weakly in W}(@) then T.R.D.2,— T.R.D,z a.e. in
G. Indeed, using (3.10) with z replaced by z, — 2z, we get

ta
g Ru(80y £2) Dl — 2)(4 £1)

a, |

< S Ruls, t;)(S’T D2y — 2)(5a s;)ds;>dsa
+ |1 Rulse £03(- 1) Dules — 2@, 50 b )ds2)

where the summation in the last term is taken over 4, w with
1<i<n—|a|; and wed, |7|=1, 7-a = 0.

The first term tends to zero a.e. in G since D*(z, — z)—0
weakly in L,G). The second term tends to zero due to condition
(B).

(iii) Since G is of finite measure and T.R.D.z,— T.R.D.z a.e.
in G, it follows that convergence is also in measure.

(iv) Let us observe that (a) for p > =1

SEI T.R.D.z,|" < || T.R.D.z,|"(| meas (E)[)*~"/?
< || KL|"hi/? || Dazy || (| meas (E) [)*~777
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and (b) {||D.z:ll, ¥ =1, 2, -} is bounded due to weak convergence of
D.z,. Thus, {T.R.D.z.} is a sequence in L, converging in measure

to T.R.D.z and such that X | ToReDozi|’, L= r<p, k=1,2, -+ is
E

uniformly absolutely continuous. By using a theorem in L,-con-
vergence (see [6], p. 231, Theorem 32.2, and p. 235, Problem 32.f)
it follows that T.R.D.z, converges to T.R.D.z strongly in L. norm.

REMARK. Under the conditions of the Theorem 3 above, the
operator Az = (2, T.R.D,z) from Wj}(G) in to (L,(G))*", p > 1 takes
weakly convergent sequences in to sequences with strongly convergent
subsequences. In this case, A is compact.

6. Closure properties in W}(G). We have seen that W}(G)cC
C(@) for 1 < p < oo, and thus it is a subspace. However, W}(G) is
not closed in C(G). " Indeed, for n =1, G = [0, 1], let z,(f) be a sequence
of polynomials converging uniformly to the Cantor function z(¢) on G.
Since z(t) is not absolutely continuous, z¢ W}(G) while z,e€ WXG),
k=1,2, ---. This situation prompts us to consider closable and
closed operators on W3(G). First, we shall follow Cesari and Kaiser
[2], and make the following definitions:

DEFINITION 1. Let (X, 7) be a topological space and S € X. Let
A:S— B, B a Banach space. We say that A is a weakly (strongly)
closed operator if z,€ 8, z,— z(in 7), x€ X, and Az, — y ¢ B weakly
(strongly) implies z€ S and Az = y.

DEFINITION 2. Let (X, 7) be a topological space and B a Banach
space. Let SCc X and 4:S— B. We say that A has weak (strong)
convergence property if =z, x€S, z,—x(in 7) implies Az, — Az
weakly (strongly).

ExAMPLES. 1. Obvious from the definition of the norm in W(G),
GcE", n=1, p=1 that for aeJ (that is @, =0 or 1 for all 1)
the operator D, from W}*(G) into L,(G) has the weak (and strong)
convergence properties provided the topology 7 of WX(G) is the
norm topology.

2. X = C(@), the space of contiuous functions on

G=[teE"a, =t < a;,+ h]
with uniform topology z. Let S = W}*(G) and
B =1L,(G) x TI LG

0s|a|<n

and
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Az = (D"z, D,(a., t.)) .

Then A is a weakly (and hence strongly) closed operator from S
into B for p > 1. In fact, Az, — Az weakly implies z, — w uniformly
(see Theorem 2 and Remark 2 of no. 4) where

w = S’Dnz + S (=1 D2, L)

and the summation is over all 4, @« with 1 <7<, |a| =1, acl.
Also, we W}(G). Now z,—z in C(G) and z,— w also in C(G) implies
2z = w and hence proof.

3. Let X=CG), G=[teE"|la;,=t; +h]=]a,a+h], S=
{ze W¥(@)|2(t) =0 for tedG}); B= L,(G), p>1. Then Az = D"z =
o"z/ot, -+ - ot, is a weakly (and hence strongly) closed operator from
S in to B.

4, If X=WiG), »>1, G=[a,a+h]cE* and S=
{ze W}(G)|2(t)=0, tc0G} and 7 is the weak topology; B = L,(G) and
Az = D"z; then A is mot necessarily closed; The lower order deriva-
tives may not converge in the L, norm.

5, Let X =W}G), G=|a,a+h]CE", p>1, v is the weak
topology, S, = {ze X|2(t) = @(t)} for t€oG and let B = L.(G). Let

Az = f<t, z, S * RaDaz> where R,(t.) are functions of ¢, alone and are

a

elements of fq(Ga) and where f = f(t, 6) is a real valued function
defined on G x E**, f is continuous in ¢, Lipschitzian in 6, and
ft,0e L(G). Then A has strong (and hence weak) covergence
properties for 1 < » < p while 4 is weakly closed for » = p. Indeed,
if z,— 2z weakly in W}(G), p > 1 then we have by Theorem 3, no. 5,
that Az, — Az strongly in L., 1 < » < p. This proves the convergence
properties. If = p then Az, need not converge to Az. But if
Az, — w weakly for some w e (L,(G))*" then Az, — w weakly also in
(L(@))™ for 1 < s < p. But Az, — Az strongly (and hence weakly)
in (L(G))*". Thus, Az = w and weak closure of A is proved.

An example of a function f satisfying the requirements above
is f(t, z, y) = e'sinzcosy, t€G = [0, 1] and (x, y) € E-

7. A Darboux problem. In this section, we shall obtain an
existence theorem for solutions of a Darboux problem with integro-
differential system of equations. We shall follow notations in no. 5.
Thus, G=[teE"|t =(, -, t,), &, =t, =a,+h,t=1-.-, 1] and
J denotes {a¢ = («, ---, @)@, = 0 or 1 for all 4, @, # 1 for some %}.
Also J=JU{@d, --+,1)}). For acd — {0}, G = {tu] @ < to < au + ho}
where t, is obtained from (¢, ---, ¢,) by deleting those ¢; for which
a;, = 0. Let @, t,) be a given element of (W} (G.)), L < p < . Let
Pa(0ay) = Pu(@a) for @, @, e J—{0}. Let U be a fixed closed subset of
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E". Let g=g(t ¢, u)=1(g, -+, g,) be defined on G X E’ x U where
0= (2" —1)-3y. Let g take valuesin E*, v =1. Let g be measurable
in ¢, continuous in % and Lipchitzian in {. Thus, there exists a
constant K > 0 such that

g, Gu) —g(t, o) = KL=, 0 eRE .

For acJ — {0} let R.(t), R.t) be v x v matrices with entries in
L(G), 1/p +1/g =1. Further, let there exist functions K.({,) in
L/G,) and K (t.) in L,(G") such that for a € J — {0}, | R (¢)| = K.(t,) for
almost all t, e G, and |R(t)] < K.(t,) for almost all ¢, G,; and for

a=(1,- -+, 1), |Rft)] < K., a constant and R, is an arbitrary L,(G)
function. With this notation, we may state the Darboux problem
as follows: Given u(t) = (u', ---, ™) measurable on G, with values

in U, find 2(t) e (W}(G)) satisfying

D z{t) = g.(t, 2, Az, Az, ult))

(Azi =Dz, aecd — {0}

(Ag), = (T.R.D.#, T.R.D,z"), acd — {0}
=102 =, .-, 2), wt)y=®', -, u"), teG

(7.1)

with boundary data
(7.2) 2, ty) = Pults) , t.€ G, .
In the equations (7.1) above for each 7, (A4,z) an@ (A,z)" are vectors
with components (A4,2),, @ €J — {0} and (A, 2),, @ €J — {0} respectively.
AISO, Aéz = ((Azz)li ] (Azz)y)y 1= 1) 2.

By using a new set of variables and using the equations of

no. 3, the Darboux problem stated above can be written in an
equivalent form with integral equations as follows:

o.(t) = Tg(s, 0(s), u(s)) + 2(—1)"'px(t)

0o.lt) = Tog(tey 85 0(8)u(sp)) + 2(—1)'Dapelts) , aed — {0},
00.a(t) = (TuRu0,,u(3), ToR:0,,.(8)), aed — {0},

05,{t) = (ToRog, ToR0,), @ =(1, -+, 1)

(1.3)

where the summations are taken over all ¢, 7 with 1 £ 7 < || and
ned, |7 =1, mra=0. Also, o= (0,0, 0,), 0, is a vector with
components ogi, 12 =1, ---,v; acd — {0}, and o, is a vector with
components oi, ¢ =1, -,y and aeJ — {0} while ¢, = (d, +-+, ).
The solutions of (7.1, 2) and those of (7.3) correspond as follows:
0,=2. 0,,=Dw, acJ—{0} and 0,,= (T.R.D.z, T.R.D,z) for
aed — {0}

The integral equations (7.3) being of the form studied in [9] by
the author, we obtain the existence and uniqueness of the solutions
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of the integral system and hence of the Darboux problem. More
precisely, we state

THEOREM 4. With the above notation, let w(t) be a measurable
Sunction on G such that s,(t) = g(t, 0, u(t)) e (L(F), 1=p = oo,
Then, there exists corresponding to u, & unique z< (Wi(G)), satisfy-
ing the boundary conditions z(a., t.) = @t and whose generalized
partial derivatives D.z, e dJ, satisfy the equation (7.1) a.e. in G.
Furthermore, there exist constants B,, B, depending only on
(hyy -++, h,), D, k (the Lipschitz constant of g¢), [|K.ll, K.,
aecd — {0}; and ||R.||, K., &« = (1, +--, 1), such that

(74 31Dl = B3 () ?(l| Daall + 27 @ally) + TR 11 Sull,]

@5 101 =27 5 el + BRIk| + (B + | 18.1)]

(7.6) | Da2(t)| = 0u(t) + BB, aed — {0}

where
(W0 B=SIDw@ull b + Khy -+ byl 9all) + | [S46)]ds

and
a&-{-h& , ,
0u(te) = €1*a(| Dupu(ta)l + Klhol|@alta)! + S |Su(te o) | die

(7.8) &
aed — {0}

REMARK 1. Since g is Lipchitzian, we observe that

1D z|l, = g, 2, Az, Az, w)|l,
= llg(t, 0, w)|| + K(llz|] + [| Azl + || Asz]]) .

Thus, the inequality (7.4) can be written as
(7.9) 121" = 32 1 Dazll, = Billl Sull + 2. 11 @all [| Depall]

where [|-]|* denotes the norm in W}(G); and where B, is a constant
depending only on h, K, p and the functions R,, E..

REMARK 2. Let 2/, 2" denote solutions of (7.1, 2) corresponding
to data ¢, @, in (W}(G.)), a<cJ and control functions u’, u” respec-
tively. Letz =2 — 2"; p. = @, — @n; S@) = |g(t, 7', A2, A, v) —
g(t, 2", A2", Az, w")|. With this notation, the above inequalities
(7.4-6) hold with S, replaced by S. In particular, if ¢, = ¢, for
all a the inequality shows the behaviour of z with respect to wu.



A SOBOLEV SPACE AND A DARBOUX PROBLEM 549

Illustration. We shall illustrate the above theorem in the case
n=2. Let G=[a,a+h] X[bb+ k]. Let p(x) and +(y) be ab-
solutely continuous functions for zela,a + h] and ye[b, b + k.
The function ¢(z, v, {, w) is defined on G x E®* x U. Let R(w, ¥),
S(z, v), T(x, y) be given functions in L,(G), 1/p + 1/¢ = 1. Let there
exist functions K,(x) € L,([a, @ + R]), K)(y) € L,([b, b + k]), such that
|S(z, ¥)| < K (x) for almost all y and | T(z, y)| < K,(y) for almost all z.
Then, the above theorem states that if u(x, y) is a measurable func-
tion such that s,(z, ¥) = |g(=, ¥, 0, u(z, ¥))| € L,(G), 1 < p £ =, then
there exists a uique z € W}(G), (corresponding to u), satisfying the
boundary conditions z(a, ¥) = ¥(¥); 2(z, b) = ¢(x) and whose generaliz-
ed derivatives z,, z,, #,, exist and satisfy the equation

z(y z v .
2%, ¥) = g(x, Y, Ry Ry Ry Sa Ssz, SGSZ”’ Sb Tz,, u(zx, y)> a.e. in G.

REMARK. This type of equations have been studied by R. H. J.
Germay [3].

EXAMPLES.

1. LetG=1[0,1] X [0,1]and U =[—1,1]. Let o(z) = (y) = 0;
R(z, ¥) = S(z, y) = T(x, y) = 0; Let g = {, + x tan w so that differential
equation is z,, =2, + xtanu with boundary conditions z(z, 0) =
2(0, y) = 0. By integration, the solution of this equation is seen to
be z(z, y) =e¢7? Syeﬁa tan u(a, B)da dB. In this case, the constants

0 Jo
B, and B, of the above proposition are both equal to e.

2. Let G =[0,1] x [0, 1] as before. Let C(.) denote the Cantor
function on [0, 1] (or any other function whose derivative exists
almost everywhere but which is not absolutely continuous). Let us
consider the equation z,, = 0 a.e. in G with side conditions z(z, 0) =

S”C(a)da for ze[0,1] and 2(0, ) = S”C(ﬁ)d,s for ye[0,1]. It is
0 0
readily seen that the solution of this equation is

Az, 4) = #(z, 0) + 20, 9) = | Cl@yda + | c(erds .

It is to be noted that this equation cannot have any solutions in
Wi(G@), even though C(.) possesses ordinary derivatives (equal to
zero). Indeed, since C(.) is not absolutely continuous, it does not
have a generalized derivative and consequently z, and z, do not
have the corresponding generalized derivatives z,, and z,,. However,
the above solution belongs to W}*(G) and the constants B, and B,
are = 1 in this case.

3. Let G=1[0,1]x[0,1] and U= E*. Let ayb,i=1 +--,17
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be some positive constants and @), .(¥), © = 1, 2 be some absolute-
ly continuous functions. Let us consider the system of equations

(@, ) = [alx‘”z + 4 + apsin (z2,) + @, cos (¥2,)
+ 0. | p(@w.e, via + a | v Ew, e Has
+ @ | | p@w (8@, £)dads |sinulz, 1)
w.,(@,4) = | by + baw + by cos (zw,) + b sin (yw,)
+ b | p@zta, yda + b | v B, £)d8

+ 0.\ | @@ 91dadp]cos vz, v)

with side conditions z(z, 0) = 2(0, ¥) = w(x, 0) = w(0, y) = 0. The
solution exists in W3(G), 1 < p <2, for any measurable function
(u, v); because g(z, y, 0, u, v) = (@,&*sin u, ay *cosv) is in L,(G)
for 1 < p < 2. Also there are constants C,, C,, C, depending only on
a, b, i=1,--,7T and @, 4, © =1, 2 such that |w(z, y)|, |2(z, v),
Hzll*, lwl*=C, (@yeq, |wlz,y)|, 2,9 =0z Cy
lw,(x, ¥)|, [2,(x, ¥)| = by™* + Ci.
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