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A SOBOLEV SPACE AND A DARBOUX PROBLEM

M. B. SURYANAKAYANA

This paper deals with a class of functions which are
defined in an ^-dimensional rectangle and which possess
there, only the generalized partial derivatives of mixed type.
It is shown that (i) this class contains as a proper subset
the usual Sobolev class of order n, the dimension of the
domain and (ii) this class can be imbedded in the space of
continuous functions. In addition to the compactness of the
imbedding operator, the closedness of certain nonlinear
partial integro differential operators is also studied. Finally,
a system of partial integro differential equations with
Darboux type boundary data in a rectangle, is shown to have
solutions in this class. The results of this paper are used
in certain existence theorems of optimal control theory.

1* Introduction* In recent studies on existence theorems for
optimization problems involving Darboux type side conditions, it was
found useful and necessary to introduce a special class of func-
tions, (see for example [11] and [7]). This special class which we
shall denote as W$(G), G c En, consists of all functions z(t), t£G,
with z 6 LP(G), and such that z has all (and only) the mixed partial
generalized derivatives Daz of orders upto and including n (the
number of independent variables) with Daz e LP(G); thus, derivatives
of z taken more than once with respect to any of the variables
t19 •••, tn9 may not even exist. In the case of n = 2, for example,
with independent variables x and y, this would mean that for
z 6 Wp(G)f the generalized partials zx, zy and zxy exist and belong
to LP(G) while the pure partials zxx and zyy need not even exist.
This class is thus analogous to the classical C*(G) where only the
derivatives zx9 zy and zxy exist and are continuous.

Clearly, Wp*(G) contains WP(G)9 the usual Sobolev class of func-
tions for which all the generalized partial derivatives of order upto
and including n exist and belong to LP(G). We shall show in no. 2
below that there exist functions in W*(G) which are not in WP(G).
One of the purposes of this paper is to analyze this special class of
functions W$(G) for G = [α, a + h] c En, n^l and in particular to
show that it can be imbedded in C(G), the space of continuous
functions, for all p, 1 ^ p ^ oo. In particular, it follows that
W;(G) c C(G) even for p = 1. We shall also study criteria for the
compactness of the imbedding operator. In the same context, the
closedness of some nonlinear integro differential operators is in-
vestigated, a result used in the closure theorems relevant to the
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existence theory of optimal control problems (see [11]).
The last section of this paper is devoted to establish an existence

and uniqueness theorem in the special class mentioned above, for
solutions of a system of partial integro differential equations with
Darboux type boundary data in a rectangle in E*. This theorem is
derived as a consequence of the existence theorems for multi-
dimensional integral equations of Volterra type given by the author1

in [9]. Since the Darboux problem considered here involves a control
function also, the existence of solutions for each measurable control
under the specified hypothesis), therefore proves the controllability
of the system. These results are used in [11].

Examples are provided through out the paper to illustrate the
statements,

2* Notations* Let En, n^l denote the ̂ -dimensional Euclidean
space. Let

G = [a, a + h]

= {teE*\t = (tlf •••, tn), at^tt^ίai + hif i = 1, •••, n} .

Let C(G) denote the space of continuous functions on G, as usual
with the supremum norm and let LP(G) be the space of all measur-
able functions whose p-th powers are integrable over (?, for 1 ̂  p < °o.
Let I/oo(G) be the space of all essentially bounded functions measur-
able on G.

Let Γ, denote the operator defined on Xm, m ̂  1 (with X = C(G)9

LP(G) or I/oo(G)) as follows:

Ttz(t) = Γ z(t'if s)ds , zeXm .

Here t\ = (tlf , tt-lf ti+ι, ••-,«,) so that t = (tit t\). We define TtTj
as composition so that T\z = T&TΓ1*), r ^ 1 and T\z = z for zeXm.
Let JD^ denote as usual the generalized derivative of z with respect
to tif i = 1, , n.

A mutiindex a — (αw , αΛ) is an w-vector with arbitrary non-
negative integers <xif i — 1, , n. As usual \a\ = at+ + an

and a\ = aγ\ •• αΛf. Let J denote the set of all multiindices a
with \a\ <n and ai = 0 or 1 for i = 1, , Ή. Let J = J\J {(1, , 1)}.
In the sequel, unless specified otherwise, multiindices (denoted by
greek letters) are from J. Also a = 1 shall mean a< = 1 for all i
while I α I = 1 means at = 1 for one and only one i. For a, β e /,
the inner product «£««& is denoted by a β and α' denotes 1 — a;
that is αί = 1 — α<, i = 1, , n. By α ^ β we shall mean α* <̂  /S<
for each i while a < β means a S β and a Φ β. Thus, for example,
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(1, 0, 1) < (1, 1, 1).
Given β e J, there are just as many πeJ, π-β = 0 with \π\ even,

as there are with | TΓ | odd (the total number being 2n~lβl). So,
Σ{—1)|7Γ| = —1 where the summation is taken over all πeJ— {0}
with π β = 0. The following lemma is now an immediate consequence
of this.

LEMMA 1. Given any real valued function f(β) on J and aeJ
we have

ΣΣ Σ (-irι

ί=l Q<π^ β 0
βj | | 0^β<

πeJ βej

REMARK. The above formula is that of the cardinality of union
of a collection of sets.

Illustration. If a = (1, 0,1, 0) then 0 <; β < a is satisfied by
A = (0, 0, 0, 0), A = (1, 0, 0, 0) and β3 = (0, 0,1, 0). Also, 0 < π ^ a
is satisfied by πγ = (1, 0, 0, 0), π2 = (0, 0,1, 0) and ττ3(l, 0,1, 0). In
this case, π̂  A = π^β3 — 0; τr2 A = 7Γ2 A — 0 and ττ3 A = 0 so that
the right hand side of the equation in the lemma is

/(A) + /(A) + /(A) + /(A) - /(A) = Σ/(A) = Σ Λβ).

In the sequel, multiindices from J (that is with at = 0 or 1 for
all i) appear as subscripts in three different ways: (1) As sub-
scripts of the set G or a point in G, they mean projection into the
corresponding coordinates. Thus ta means the |α|-vector obtained
omitting those ί, in (tlf , tn) for which ai = 0. Also

Ga - {tae E^: aa ^ ta ^ aa + ha} .

If α = 0, that is at — 0 for all i then Gα is the empty set. (2) As
subscripts of an operator (T or D) we mean the composition T?1 Tl*
of those Ti for which at Φ 0. If a = 0 then Γα = To and Dα = D{

are understood as identity operators; Thus Toz — Doz = z. In either
of the two cases (1) and (2), a prime ' on the top shall indicate the
complementary index. Thus Ta = 2V = 2\-«. For n = 3, and
α = (1, 0,1) for example, Ta = T ^ while T'a = T2. (3) As subscripts
of functions, no further meaning is attached. Thus, Ra(t) is just
the ath function on G.

For 1 ^ & ̂  w if k is the subscript of an operator (Γ or D) then
it is same as having a subscript α: with at — 1 for 1 ^ i ^ fc and
α, = 0 for i > k. Thus, Dnz = Dαz with a = (1, , 1).

For 1 ^ p ^ oo, let TΓp(G) denote as usual (see Sobolev [8] or
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Morrey [5]) the set of all zeLp(G) with DazeLp(G) for all a with
\a\ <; n; (a may not be in J) We define the space WP(G) as the set
of all z € LP(G) for which Daz e LP(G) for aeJ. The norm on W$(G)
is defined by ||z||* = Σ«ej||jD«s||p where || ||p is the usual I/^-norm.

It may be recalled that WP(G) is normed by Σiαis II A^IL Also,
by definition, WP(G) c W*{G). However, as following example shows,
W*{G) is certainly a larger class than WP(G). Indeed, in the case

n = 2, and G = [0,1] x [0, 1], if z(x, y) = Vc{a)da + [*c(β)dβ where
c(.) is the Cantor function on [0, 1] then z°e W%(G) - W2

P(G) because
zxx does not exist (which follows from the fact that the Cantor
function is not absolutely continuous.)

We define the weak convergence in WP(G) analogous to WP(G).

3* Imbedding theorem* It is well known that Wk

p(G)dC(G)
if kp > n. In particular, if p > 1, then Wn

p(G) c C(G). In this
section, we show that W*{G)aC{G) for all p, l<:p<°o. In
particular then, Wn

p(G) c PF*(G) c Wΐ{G) c C(G), where inclusions are
understood as imbeddings. It is to be noted that in view of this,
WP(G) c C(G) even for p = 1. This result is analogous to Theorem
2.2.7 of Hormander [4], but of course here for bounded rectangles.

THEOREM 1. Let G = [a,a + h]a En. Then for each z e Wΐ{G),
there exists a z e G(G) such that z = z a.e. in G.

Proof. Since z e Wΐ(G), Dnz e LX{G) where Dn denotes Da with
a = 1. Let w e Lλ(G) be defined by

(3.1) w(t) •= Γ Dnz(s)ds = TnDnz
J α

By Fubini's theorem w e C((τ). Also w has generalized derivatives
Z?tw given by

(3.2) Dtw(t) = A^(*i, *'<) =

It is seen similarly that for a e J, Dαw exists and is given by

Dnz(tai s)ds. Furthermore, Dnz — i?%^. Now, Dn~1z and Dn~xw are

both absolutely continuous and have the same generalized derivative
with respect to tn. Thus, (see [8, p. 21]) there is a function &,+(&)
of t'n alone such that Dn~ι{z - w){t», t'n) = c1>w(*i) for almost all t'n and
almost all t%. Since Ό%~\z — w) is in L^G'n) for almost all ίw, same
is true for clt%{tΊ). Repeating the process (see illustration below), it
is seen that for a Φ 0,
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(3.3) D'a{z - w){t) = Σ \*β c]r],9(aΘ, sβ, Q

where the summation in taken over all multiindices β, 7, δ, θ with
δ + θ = 7, 7 + /9 = a; \δ\ = 1; | 7 | ^ 1; /S ^ 0; θ ^ 0. If /5 = 0, it is
understood that there is no integration and only one (any of | a \ = |71
choices) pair δ, θ is chosen with δ + θ = 7 = ct. If | α | = 1, that is
α* = 1 for one and only one i, then clearly β = 0.

If α = 1, that is α* = 1 for all i, then D«(2 — w) = j? — w and

thus (3.3) yields

c , , , ,^ , sβ)dsβ

*β

where summation is taken as above with a = 1. I t follows that z(t)
is equal to a continuous function a.e. in G.

Illustration. Let n = 3, (£x, £2, ί3) = (a;, 2/, %) and α = (0,1,1);
then a' = (1, 0, 0). Let us consider the set of multiindices β, 7, <?, ̂
to be used in formula (3.3) for this α. Since 13 \ = 1 and d ^ 7 ^ a, 7
can be either 7X = (0, 0,1), 72 = (0,1, 0) or 73 = (0,1,1) while δ has
to be δ, = (0, 0,1) for 7X, δ2 = (0,1, 0) for 72, δs = (0,1, 0) for 73 or
δ4 = (0, 0,1) also for 73. Then βx = 72 for y19 β2 = 7, for 72 and
β3 = (0, 0, 0) for 73. In the last case, that is with 73, θ can take
only one value: either θ = (0, 0,1) with 73, <53 or θ = (0,1, 0) with
73, δ4. Thus (3.3) yields

S y Cu

cuδί(x, s)ds + \ cuδi(x, t)dt + c2>h(aB, x)
a2 Jα 3

or a similar equation with the last term on the right hand side

S x Cy Cu

\ 1 zxyu. I t is seen that we

arrive at (3.5) by observing that since zxyu = w,^, we have on
integrating out u, zxy — wxy + c1>h{x, y) which becomes

(3.6) zx = wx + Γ cltδι(x, s)ds + c(α;, u) .
Jα 2

Similarly, starting from zxyu = ^3.̂ ^ and integrating #, we get
ί̂βu = Ww + CLjjίa?, ^) which becomes

(3.7) zx = wx + Γ clfll(a?,

Equation (3.6) and (3.7) (as well as (3.3) and (3.4)) are valid for
y = α2 and tt = α3 (as boundary values). Substitution and comparison
yields (3.5).
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R E M A R K S .

1. T h e r e ex i s t s e t s Ht c [aίf at 4- hz] w i t h meas (H%) = 0,
ΐ = 1, 2, * ,n such that formulae (3.3) and (3.4) are valid for
te[G — (J?=i (G< x H^]. It is to be noted that this is stronger than
saying that the equations are valid a.e. in G. However, the equa-
tions are valid for (aπj t'π) for almost all, t'zeG'π, 1 ^ \π\ ^ n.

2. The function (D'az)(t) — (D'az)(t~, t'τ) is equal to a continuous
function in tπ for 0 < TΓ ίg a.

3. Formula (3.3) can be written more explicity as follows:

(3.8) D&-w)(t)= Σ
βej p

If TΓ G J (and a Φ 0 as before)

(3.9) D'a(z - w)(aS9 t'r) = Σ

where summation is taken over all β with β eJ, 0 ^ /3 < a and
τr β = 0; and where σ — a — β — <5 + (TΓ n oε!) and (0 = a' — (π Π ccf)
with (α')ϊ = 1 ~ ai for all i and (TΓ n α')< == 1 ^ TΓ, - αj = 1 and
(TΓ n OLr)i — 0 otherwise. In particular, if TΓ Π α' = 0 then the
integrands in (3.8) and (3.9) are the same, so that using Lemma 1,
no. 2 yields

(juo) m - m) = Σ | - J ^ " ;}

)(a"Q

because D'a w(aπ, t'Γ) = 0 for TΓ Π α' = 0. The summations in (3.10)
are taken over all ΐ, TΓ with 1 <̂  i g | α | and TΓ G J, |ττ| = i, τr α' = 0.

( rt \

Let us recall that w •= \ Dnz(s)ds.) In particular, if a — 1 (that is
(Xi — 1 for all ί) then
(3.11) (z - w)(t) = Σ Σ ( - l ) ' " 1 ^ , t'r)

If TΓ = α' then p — 0 and (3.9) reduces to

(3.12) 2?;(s - w)(a'a, ta) - Σ \[β c^βU^-β-^ sβ)dsβ

where 1 stands for (1? , 1) and the summation is over β e J with
0 ^ β < a and \δ\ = 1, δeJ. On the other hand from (3.9) with
a = 1 we get,

(3.13) (z — w)(αΓ, ί i) = \ clrl δ(aΘ, sβ)dsβ

where the summation is over all β e J with 0 <Ξ β < 1 and τr /3 = 0 and
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where 7 = 1-/3 while Θ = 1 - β - δ. (In all these, 1 as before
stands for (1, •••, 1).) Once again using Lemma 1, no. 2 we get

(3.14) z(t) = w(t) + Σ i-iy-'D'aZia'*, ta) .

where the summation is taken over all i, a with 1 <L i < n and
I a I = i, aeJ.

4* Compactness of the imbedding operator* In this section,
we shall obtain some results analogous to the following well known
fact (see [5], p. 75) in the usual Sobolev spaces regarding weak
convergence:

(P) If {zk} is a sequence of functions in W%(G), p > 1 converging
weakly to some z e WP(G) then zk—+z uniformly in G and Dazk —• Daz
strongly in LP(G) for all multiindices a with 0 ^ | a | < n (need not
be in / ) . The same conclusion holds for p = 1 provided in addition
the set {Dazk\ \a\ = n, k — 1, 2, •} is equiabsolutely integrable.

It is to be noted that the above statement is not valid in W*(G)
as the following examples show:

EXAMPLE 1. Let

For k = 1, 2, and i = 0, , k - 1, let

lit = l(x, v)eG\{ijk) ^ x ^ (2i

and

Γtk - [(», y) € GI (2ΐ + l)/2fc ^ x ^ (i +

and let zk(x, y) be defined on G by 2fc(#, y) = (̂cc — i/fc) in I ί fc and
= l/( — x + (i + 1)/^) in Γίk, i = 0, , (fc — 1). Then 2fc is continuous
and belongs to W*(G)f p ^ 1; the derivatives zkx, zky, zkxy are given by
zkχ = v\ zky = x- i/k; zkxy = + 1 in Iik; zkx = -2/; sfclί = — a? + (i +
^ ^ - - 1 in Γik, i = 0, ••-,(&» 1). Clearly, ^ — 0 weakly in T
p ^ 1 and ^̂ ..̂  —> 0 weakly in LP(G), while 2^ and 2A converge
uniformly to 0. But zkx has norm (p + 1)-1/J) for each k and as such
does not converge to 0 strongly in LP(G). I t is to be noted that
zk £ Wl(G) since the generalized derivative zkxx does not exist.

EXAMPLE 2. Let

Let sΛ(ίc, y) = (sin to + sin &#)/&. Then 2fca; — cos kx: zky = cos ky and
3*** = 0; Jfc = 1, 2, . Clearly, zk e Wt(G) and zfcccl/ —> 0 weakly. But
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Zkx —* 0, zky —> 0 weakly and not strongly. However, zk —* 0 uniformly
in G. It is to be observed that zkx and zky do not converge point-
wise.

More generally, if I is any interval on the real line, if {φk(x)}
is an orthogonormal sequence in L2(I) and if G — I x I, then
Zk(%, v) = <Pk(v) + <Pk(y) will be in W*(G) and converge to 0 uniformly
as well as weakly in W}(G)', but the derivatives zkx and zky do not
converge strongly.

Now, the following theorem valid in W$(G), p > 1 is analogous
to statement (P):

THEOREM 2. Let

G = [α, α + fe] = {t 11 = fo, , ί j , α< ̂  ίt ^ α, + Λ,, ί = 1, , w} .

•if {%k} ^ a sequence in W%(G), p > 1 weakly convergent to an ele-
ment z in Wp(G), and if zk(at, t[) —> z{aίf t[) uniformly in G[ for
i — 1, , n then zk(t)—+z(t) uniformly in G.

REMARK. Here G[ = {t\\t\ = (t19 , t^, ti+L, - , tn) e [a'i9 a\ + K)}
as in no. 2.

Proof. Weak convergence of zk to z in W$(G) implies in
particular, weak convergence of the highest order derivatives Dnzk

to Dnz in LP(G), p > 1. This implies in turn the pointwise con-
Dnzk(s)ds to w(t) — \ Dnz(s)ds. In view of the

a ja

formula (3.11) and the hypothesis, this yields that zk(t) —• z(t) a.e. in
G. But since weak convergence of Όnzk to Dnz in LP(G), p > 1
implies boundedness of the norms of {Dnzky k = 1, 2, •}, if follows
that the sequence {wk(t)} is equicontinuous and equibounded. I t
follows that the sequence zk is uniformly convergent to z. Indeed,
if zk(t0) —»z(t0) for some fixed t0 e G, then

|^( ί ) - ί5(t)| £ \zk(t) ~ ^(*o)l + |s*(ί0) - 2(ίo)l + l«(«o) - Z(t)\ .

Also, since {wk(t)} are equicontinuous and «;.(«<, t[) is uniformly con-
vergent, it follows that {zkJ z, k = 1, 2, •} is equicontinuous. This
fact along with the above inequalities yields uniform convergence of
zk to z in a neighborhood of t0. But since G is bounded (and closed),
the same conclusion is valid through G. Thus, zk-+z in C{G).

REMARKS. 1. Above theorem is valid for p = 1 provided Dnzk,
k — 1, 2, is assumed to be equiabsolutely integrable. The proof
remains the same.

2. In view of the remarks in no. 3, the above hypothesis of
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uniform convergence of zk(ai9 t[) can be replaced by weak convergence
of Dazk(aa, t'a) t o Daz(aa, t'a) in Lp{G'a) f o r a, 0 ^ \a\ < n a n d p > 1.
For p = 1, we assume in addition that

{Dazk{aa9 t'a) I k = 1, 2, 0 ^ | a \ < n, a e J}

is equiabsolutely integrable.
3. The above hypothesis on the boundary values of zk and Dazk

are all automatically satisfied in many applications. For example,
in a Darboux problem, the boundary values are prescribed apriori
so that zk{aι9 t[) = φι{t[) and the required convergence is obviously
satisfied.

4. The hypothesis of uniform convergence of zk{aτ9 t[) can be
replaced by that of zk{ti9 t[) where t is a fixed element of G.

5* Integro-difϊerential operators* Weak convergence in W*{G)
as usual implies weak convergence in LP(G) of each of the deriva-
tives Dazk, aeJ, to Daz. However, weak convergence in W$(G) does
not imply the following condition on weak convergence on "lines of
boundary":

(B) The sequence zk e W*{G) is said to converge in (B) to z if
for each a e J (that is aH Φ 1 for some i), Da(zk — z)(aπ, sa, tf

a+π) con
vergences weakly in Lp(Ga) to zero, for almost all t'a+π in G'a+rL with
TΓGJ, l^k\π\^n — \a\, π-a = 0; [In particular, Da(zk — z)(aπ, t'π)
(with s = 0) should converge weakly to zero].

EXAMPLE. Let G = [0, 1] x [0, 1] =•- {(x, y)\0 ^ x, y £ 1}. Let

zk(x, y) be defined on G as Example 1, no. 4. Then, the deriatives
of zk are given by zkx = y; zky = x — (i/k); zkxy = 4 - 1 for
{ilk) ^x^(2i H- l)/2&; zkx = -y; zky = -x + {i + l)/k; zkxy = - 1 for
{2ί + l)/2k ^ x ^ (i + l)/k; for i = 0, , {k - 1).

In this case zkx{l, y) •= —y and this certainly does not converge
weakly to zero in [0, 1]. Thus, zk does not coverge to zero in (B).
However, zk —> 0 weakly in W*{G).

REMARK. Gondition (B) is certainly satisfied if there is a fixed
function φ{t), tedG with zk{t) = φ{t) for all k and t e dG.

The condition (B) is used in the following theorem which in turn
is used in establishing closure properties of certain operators. We
recall from no. 2 that for each a e J — {0} {a% = 0 or 1 for all ί,
(X iΦO for some i) ta denotes the |<x|-vector obtained by omitting
those coordinates t% in {t19 , tv) for which ai = 0. Let
Ga = {ta\aa ^ta^aa + ha).

THEOREM 3. Let zk9 z e W*{G)9 1 ^ p ^ <», k = 1,2, •••
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zk—>z weakly in W$(G) as k~+°o. Let condition (B) hold. Let
Ra(t) be a given element of Lq(G) with a eJ and 1/p + 1/q = 1 (with
the usual convention that q = oo if p = 1 and vice versa). Let there
exist functions Ka(ta) e Lq(Ga) such that | Ra(t'a, ta) | ^ Ka(ta) for almost

S ta

Ra{t'a, Sa)DaZk(t'a, Sa)dSa

belong to LP(G) and converge in measure to TaRaDaz, aeJ. If p > 1,
then this convergence is also in Lr norm, 1 ^ r < p.

Proof. ( i ) For ^ W%(G) and aeJ, Daz e LP(G) and

TaRaDaz\pdt = j ^ J ' " RaDazJdt

\ (\ \κa(8a)\
aa Jaa

If p = 1, q = co, RaeLoo say \Ra\ <= Ma then

( I TaRaDaz\ ^ Ma\ j TaDaz\ ^ MΛaWDnzW .
JG JG

This proves that TaRaDaz e LV(G).
(ii) If zk-+z weakly in W*(G) then TaRaDazk->TaRaD2z a.e. in

G. Indeed, using (3.10) with z replaced by zk — z, we get

α(S^, t'a)Da(Zk -

" Ra(8, t'a)(\a

t Dn(zk - z)(sa, s'a)ds'a)dsa

aa \Jaa /

ta Ra{sa, QΣ(-iγ^Da(zk - z)(aπ, sa, t'a+π)dsa)

where the summation in the last term is taken over i, π with
1 <: i ^ n — \a\) and πeJ, \π\ — i, π-a = 0.

The first term tends to zero a.e. in G since Dn(zk — z) —> 0
weakly in LP(G). The second term tends to zero due to condition
(B).

(iii) Since G is of finite measure and TaRaDazk —> TaRaDaz a.e.
in G, it follows that convergence is also in measure.

(iv) Let us observe that (a) for p > r ^ 1

I TaRaDazkΓ ^ || TaRaDazk\n\meas (E)\)^)/p
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and (b) { | |Z>A||, k — 1, 2, •} is bounded due to weak convergence of
Dazk. Thus, {TaRaDazk} is a sequence in Lp converging in measure
to TaRoDaZ and such that ( | TaRaDazk | r, 1 ^ r < p, k = 1, 2, is

JE

uniformly absolutely continuous. By using a theorem in Lr-con-
vergence (see [6], p. 231, Theorem 32.2, and p. 235, Problem 32.f)
it follows that TaRaDazk converges to TaRaDaz strongly in Lr norm.

REMARK. Under the conditions of the Theorem 3 above, the
o p e r a t o r A z = (z, T a R a D a z ) f r o m W*(G) i n t o ( L p ( G ) f n , p > l t a k e s
weakly convergent sequences in to sequences with strongly convergent
subsequences. In this case, A is compact.

6* Closure properties in W$(G). We have seen that Wp(G)c:
C(G) for 1 <; p ^ °o, and thus it is a subspace. However, W^(G) is
not closed in C(G).' Indeed, for n = 1, G = [0,1], let zk(t) be a sequence
of polynomials converging uniformly to the Cantor function z(t) on G.
Since z(t) is not absolutely continuous, z £ WP(G) while zk e WP{G),
k = 1, 2, . This situation prompts us to consider closable and
closed operators on WP(G). First, we shall follow Gesari and Kaiser
[2], and make the following definitions:

DEFINITION 1. Let {X, τ) be a topological space and S £ X. Let
A: S—* J5, B a Banach space. We say that A is a weakly (strongly)
closed operator if xneS, xn~+ #(in τ), xeX, and Axn —*yeB weakly
(strongly) implies xeS and Ax — y.

DEFINITION 2. Let (X, τ) be a topological space and B a Banach
space. Let ScX and A:S-+B. We say that A has weak (strong)
convergence property if xn, xeS, xn—*#(in τ) implies Aα^ —>Ax
weakly (strongly).

EXAMPLES. 1. Obvious from the definition of the norm in W*(G)f

GaEn, n^l9 p^l that for aeJ (that is at = 0 or 1 for all ί)
the operator Da from ^ ( G ) into LP(G) has the weak (and strong)
convergence properties provided the topology τ of WP(G) is the
norm topology.

2. X = C(G), the space of contiuous functions on

with uniform topology r. Let S — WP(G) and

5 - LP(G) x ^ Π LP(GL)

and
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Az = {Dnz, Daz{aa, Q) .

Then A is a weakly (and hence strongly) closed operator from S
into B for p > 1. In fact, Azk —* Az weakly implies zk—+w uniformly
(see Theorem 2 and Remark 2 of no. 4) where

and the summation is over all i9 a with 1 ^ i < w, | α: | = i, aej.
Also, w e ΫΓ*(G). Now zk—>z in C(G) and zk~>w also in C(G) implies
2 = w and hence proof.

3. Let X = C(G), G = [t 6.E lα, ^ ί, + Λ«] = [α, α + A], S =
{z e W*(G) I s(t) - 0 for t e dG}] B = L,(G), p > 1. Then Az = JD « =
dnz/dtt 3fcn is a weakly (and hence strongly) closed operator from
S in to β.

4. If X - TΓi(G), p > 1, G = [α, α + Λ] c ^ and S =
{̂  6 PΓ*(G) I s(t) = 0, t 6 dG) and τ is the weak topology; B = X,P(G) and
A^ = Z>% ;̂ then A is ^oέ necessarily closed; The lower order deriva-
tives may not converge in the Lp norm.

5. Let X = Wϊ(G), G = [a,a + h]aEn, p > 1, τ is the weak

topology, Sφ = {z e X\z(t) = 9>(ί)} for ί e dG and let JS = Lr(G). Let

A2; = fit, z, \ a RaDaz) where Ra(ta) are functions of ta alone and are

elements of Lq(Ga) and where / == f(t, Θ) is a real valued function
defined on G x E2n, f is continuous in t, Lipschitzian in 0, and
/(£, 0) 6 Lr(G). Then A has strong (and hence weak) covergence
properties for 1 ^ r < p while A is weakly closed for r — p. Indeed,
if s* —> 2 weakly in TF^(G), p > 1 then we have by Theorem 3, no. 5,
that Azk —• Az strongly in L r, 1 ^ r < p. This proves the convergence
properties. If r = p then Azk need not converge to Az. But if
A2fe —> w weakly for some w e (Lp(G)fn then Azfc —> w weakly also in
(Ls{G)fn for 1 ^ β < p. But A ^ —> Az strongly (and hence weakly)
in (Lβ(G))2\ Thus, Az = w and weak closure of A is proved.

An example of a function / satisfying the requirements above
is f(t, xf y) = e* sin x cos y, 16 G = [0, 1] and (&, ?/) 6 E2.

7. A Darboux problem* In this section, we shall obtain an
existence theorem for solutions of a Darboux problem with integro-
differential system of equations. We shall follow notations in no. 5.
Thus, G = [teE*\t = (tl9 , ί j , at ^ tt ^ at + hi9 i = 1, , Λ] and
J denotes {α = (alf , α w ) |α 4 = 0 or 1 for all i, α έ ̂  1 for some %}.
Also J = J U {(1, •••, 1)}. For aeJ - {0}, Gα = {έα|αα ^ta<^aa + K)
where tμ is obtained from (tlf •••,*») by deleting those t t for which
at — 0. Let φα(ία) be a given element of (Wp(Ga)y, 1 ̂  p ^ °°. Let
φa$fla^ = <Pa2{o>a) for «„ α2 e J — {0}. Let [/"be a fixed closed subset of
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Em. Let g = g{t, ζ, u) — (gίf , gv) be defined on G x Eθ x U where
θ = (2% - l) 3v. Let g take values in E\ v^l. Let # be measurable
in t, continuous in u and Lipchitzian in ζ. Thus, there exists a
constant K > 0 such that

, ζ, w) - flf(t, ζ', w)| ̂  # | ζ - ζ' |, ζ, C e ^ .

For α e J - {0} let Ra(t), R'a(t) he v x v matrices with entries in
Lq{G), 1/p + 1/q = 1. Further, let there exist functions Ka(ta) in
Lg(Ga) and K'a(t'a) in Lq(G'a) such that for a e J - {0}, | Ra(t) \ ^ Ka{ta) for
almost all ^ e G'a and | JK«(ί) | ^ Xi(^) for almost all ta e Ga; and for
a = (1, , 1), |i?α(£)| ^ J5Γ«, a constant and i?^ is an arbitrary Lq(G)
function. With this notation, we may state the Darboux problem
as follows: Given u(t) = (u\ •••, um) measurable on G, with values
in U, find z(t)e(W*(G)Y satisfying

D%zί{t) = gt(t, z, Aλz, A2z, u{t))

(A& = Daz
x , a e J - {0}

(Azya - (TaRaDaz\ TaKD'aZ*) , α ' G J - { 0 }

i = 1 , , v , z(t) = (z\ . . . , ή , % ( t ) = ( u \ > - , u ™ ) , t e G

with boundary data

(7.2) z(a'n, ta) = φa(ta) , taeGa .

In the equations (7.1) above for each i, (A^y and (A2£y are vectors
with components (A^)«, aeJ— {0} and (A22)i, « e J ~ {0} respectively.
Also, A<z = ((A^)1, - - , (A^)"), i = 1, 2.

By using a new set of variables and using the equations of
no. 3, the Darboux problem stated above can be written in an
equivalent form with integral equations as follows:

σγ{t) = Γ flfo σ(8), u(s)) + Σ{-iγ-'φπ,{Q

σUt) = T'ag{ta, sβ, σ(sβ)u(8β)) + Σ(-iγ-'D&κ,{t*) , « e J - {0} ,

α3>α(ί) = (TaRjrM, TaR'aσ2,a,(s)) , α e J - {0} ,

(73>α(ί) - (Γαi?αflf, W ^ ) , A! = (1, , 1)

where the summations are taken over all i, TΓ with 1 <; i ^ | a'\ and
π e J , I TΓ j — i, ΊZ OL — 0. Also, 6r — (σ19 σ2, σs), σ2 is a vector with
components crj,α, i — 1, •• ,^; aeJ— {0}, and σ3 is a vector with
components <7g>α, i = 1, , v and aeJ— {0} while σt — (σ\, , σϊ).
The solutions of (7.1, 2) and those of (7.3) correspond as follows:
σι — z: σ2fa — Daz, aeJ— {0} and σZtΛ = (TaRaDaz, TaR'aD'az) for
α e J - {0}.

The integral equations (7.3) being of the form studied in [9] by
the author, we obtain the existence and uniqueness of the solutions
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of the integral system and hence of the Darboux problem. More
precisely, we state

THEOREM 4. With the above notation, let u(t) be a measurable
function on G such that su(t) = g(t, 0, u(t)) e (LP(G))\ 1 ^ p ^ °o.
Then, there exists corresponding to u> a unique ze(W*(G))9 satisfy-
ing the boundary conditions z{aa, ta) = φa(ta) and whose generalized
partial derivatives Daz, aeJ, satisfy the equation (7.1) a.e. in G.
Furthermore, there exist constants Bly B2 depending only on
(hlf''-,hn), p, k (the Lipschitz constant of g), | | ίΓα | | , | |iCH,
aeJ—{0}; and \\R'a\\, Ka, a = (1, « ,1), such that

(7.4)

(7.5)

(7.6)

where

(7.7)

and

\DaZ\\, S

z{t)\ S

{haT%\\Dacpa\\ + 2"\\φa\\9) + \h\ \\ Su\\p]

IDaz(t)I ^ θ&a) + BB2, aeJ-{0}

\Su(s)\ds

a{ta)\ + K\K\\φa{ta)\ + \ya \Su(ta, t a)\dfa

a e J - {0}

REMARK 1. Since g is Lipchitzian, we observe that

Il-D"2|li. = \\g{t, z, Az, A2z, u)\\p

^ \\g(t, 0, u)\\ + K(\\z\\ + | |A l Z | | + | | ^ l l )

Thus, the inequality (7.4) can be written as

(7.9) \Dafi\\, ̂

where || ||* denotes the norm in Wp(G); and where BΆ is a constant
depending only on h, K, p and the functions Ra, R'a.

REMARK 2. Let z\ z" denote solutions of (7.1, 2) corresponding
to data φ'a, φ" in (TF*(Gα))

v, ae/and control functions u'f u" respec-
tively. Let z = z' - z"; φa = φ« - ^ ' S(ί) = \g(t, z\ A,z\ A2z', u') -
g(ty z", Axz", A2z", u")\. With this notation, the above inequalities
(7.4-6) hold with Su replaced by S. In particular, if φ'a = φ", for
all a the inequality shows the behaviour of z with respect to u.
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Illustration. We shall illustrate the above theorem in the case
n = 2. Let G = [α, a + A] x [&, & + fc]. Let £>(#) and ψ(y) be ab-
solutely continuous functions for xe[a, a + h] and y e [&, 6 + k].
The function #(c&, y, ζ, u) is defined on G x Eβ x U. Let #(#, ?/),
S(OJ, #), T(xf y) be given functions in Lq(G), 1/p + l/# = 1. Let there
exist functions Kγ{x) e Lq([a, a + h]), K2(y) e Lq([b, b + k]), such that
I S(x, y) I ^ K^x) for almost all 2/ and | T(x, y) | <̂  K2(y) for almost all x.
Then, the above theorem states that if u(x, y) is a measurable func-
tion such that su(x, y) = |#(#, 2/, 0, %(#, 2/))| eLp(G), 1 ^ p <^ 00, then
there exists a uique 2 e W%(G), (corresponding to w), satisfying the
boundary conditions z(a, y) — ψ(y); z(x, b) = φ(x) and whose generaliz-
ed derivatives zx, zy, zxy exist and satisfy the equation

a # e # i n G *

REMARK. This type of equations have been studied by R. H. J.
Germay [3].

EXAMPLES.

1. Let G = [0, 1] x [0, 1] and U = [-1, 1]. Let φ(x) = ψ(y) = 0;
R(x, y) — S(x, y) = Γ(cc, ̂ /) = 0; Let g = ζ2 + a; tan ^ so that differential
equation is sβir = zx + x tan u with boundary conditions z(x, 0) =
2(0, #) = 0. By integration, the solution of this equation is seen to

S x Cy

I eβa tan u(a, β)da dβ. In this case, the constants
0 Jo

B2 and Bz of the above proposition are both equal to e.
2. Let G = [0,1] x [0,1] as before. Let C(.) denote the Cantor

function on [0, 1] (or any other function whose derivative exists
almost everywhere but which is not absolutely continuous). Let us
consider the equation zzy = 0 a.e. in G with side conditions z(x, 0) =
\XC(a)da for xe[0,1] and z(0, y) = \* C(β)dβ for ye[0,1]. It is
Jo Jo

readily seen that the solution of this equation is

φ , y) = z{x, 0) + 2(0,2/) = S*C(a:)<ta + [C(β)dβ .
Jo Jo

It is to be noted that this equation cannot have any solutions in
Wl(G), even though C(.) possesses ordinary derivatives (equal to
zero). Indeed, since C(.) is not absolutely continuous, it does not
have a generalized derivative and consequently zz and zy do not
have the corresponding generalized derivatives zxx and zyy. However,
the above solution belongs to W*(G) and the constants B2 and J53

are = 1 in this case.

3. Let G = [0, 1] x [0, 1] and U - E\ Let at, bίf i - 1, . . . , 7
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be some positive constants and φ^x), ψ£y)9 i = 1, 2 be some absolute-
ly continuous functions. Let us consider the system of equations

2 + a2z + α3 sin (xzy) + α4 cos (yzx)

' C y

<Pι(a)Wχ(a9 v)dcc + a6 \ φi(/3)wy(x9 β)dβ

I φ^cήψ^wia, β)dadβ sin τφ, y)
o Jo J

c, y) = &i2/ i / 2 + ί>2w + δ3 cos (ajw;,) + δ4 sin

+ b51 φ2(a)zx(a, y)da + 66 I' φ2(β)zv(x, β)dβ
Jo Jo

I φ2{a)ψ2{β)z{a9 β)dadβ cos v(a;, y)

with side conditions «(», 0) = s(0, 2/) = w(a;, 0) = w(0, 2/) = 0. The
solution exists in W*(G)9 1 g p < 2, for any measurable function
(u, v); because g(x, y, 0, u, v) = (αLαΓ1/2 sin u, a2y~ιn cos i;) is in LP(G)
for 1 ^ >̂ < 2. Also there are constants C19 C2, C3 depending only on
aι9 bι9 ί = 1, , 7 and cp,, ^ , i = 1, 2 such that | w(α, i/)|, |js(a;, τ/)|,
ll^ll*, Γιw||* ^Cu (x,y)eG, \wx(x9 y)\, \ze(xfy)\ ^ atx~1/2 + C2;
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