PACIFIC JOURNAL OF MATHEMATICS
Vol. 70, No. 2, 1977

ON PRESERVATION OF E-COMPACTNESS

S. MROWKA AND J. H. Tsal

In this paper we study preservation of E-compactness
under taking finite unions (the finite additivity theorems of
E-compactness) and under taking quotient images.

Throughout this paper spaces are assumed to be Hausdorff, and
maps are continuous onto functions. Given a space E, we shall call a
space X E-completely regular (E-compact) provided that X is
homeomorphic to a subspace (respectively, closed subspace) of a product
E™ for some cardinal m.

As far as additivity theorems are concerned, the first author has
shown in [1] that if a space X is normal and if it can be expressed as the
union of a countable collection of closed R -compact spaces (R denotes the
space of all real numbers), then X is R-compact. The assumption that X
is normal in the above theorem is essential. In fact, in [2], [4] the first
author has constructed an example of a completely regular, non-R-
compact space X which can be expressed as the union of two closed
R-compact subspaces. This example shows that finite additivity relative
to closed subspaces fails for R-compactness. It can be shown that the
same example satisfies the above statement with ‘R -compact” replaced
by ‘“N-compact”. (N denotes the space of all nonnegative
integers.) Using the same example it was shown that the image of an
R-compact (N-compatt) space under a perfect map need not be R-
compact (respectively, N-compact). In [4], some positive results in this
direction have been obtained. The purpose of this paper is to generalize
some of the results in [4] to a certain class of E-compact spaces which
contains both the class of R-compact spaces and the class of N-compact
spaces. Many theorems concerning the preservation of E-compactness
can be stated in a more comprehensive form as rules concerning
“E-defect” of spaces (for definition of E-defect, see next
paragraph). In 82 we shall state the additivity theorems of E-
compactness both in words and as rules concerning E -defects of spaces.

The reader is referred to [3] for basic results of E-completely regular
spaces and E-compact spaces. For convenience we review the notations
and terminology. Given two spaces X and E, C(X, E) denotes the set
of all continuous functions from X into E. A class # C C(X,E) is
called an E-non-extendable class for X provided that there is no proper
extension €X of X such that every f € % admits a continuous extension
f*: eX—E. The E-defect of a space X (in symbols, defz X) is the
smallest (finite or infinite) cardinal p such that there exists an E-non-
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extendable class for X of cardinal p. A subspace X, of a space X is said
to be complementatively E-compact in X provided that every closed
subspace of X disjoint from X, is E-compact. X, is said to be
E-embedded in X provided that every continuous function f: X,— E
admits a continuous extension f*: X — E. For two subsets A, B of a
space X, B is said to be E-functionally contained in A (in symbols,
B C;A) provided that there exists a map g: X — E such that

cl(g(X - A)Ncl(g(B)) =D

It should be noted that in §§2 and 3, E is assumed to satisfy a set of
rather complex conditions; a way of avoiding these conditions is indi-
cated in $§4.

2. Additivity theorems of E-compactness. In §§2 and
3 we assume that E is a space with a continuous binary operation 6§ and
two fixed distinct points e, and e, satisfying the following properties:

(a) ebe,= ey, ebe, = e for every e € E.

(B) for every closed subset A of E" (n € N) and for every p € E" —
A, there exists an f € C(E", E) such that f(A)=e, and f(p) = e,.

(y) for every two disjoint closed subsets A, B of E, there exists a
g € C(E,E) such that g(A)= e, and g(B)=e,.

We first observe the following results.

2.1. IfE satisfies (B), then it is regular and if it satisfies (), then it is
normal.

2.2. Let E be a space satisfying (B). Then X is E-completely
regular iff for every closed subset F of X and every point x € X — F, there
exists an f € C(X, E) such that f(X)=e,, f(F)= e,.

23. Let E be a space satisfying (B) and (y). Then X is E-
completely regular iff for every closed subset F of X and every point
x € X — F, there exist two disjoint neighborhoods U and V of x and F,
respectively, and a map g € C(X, E) such that g(U)=e,;, g(V)= e,.

2.4. Let E be a space satisfying (y). Then for two subsets A and B
of X, B C; A iff there exists a map g € C(X, E) such that g(X — A) = e,
and g(B)=e,.

2.5. Let E be a space satisfying («), (B) and (y). If A, B are two
closed subsets of X with B C; A, then for each f € C(A, E), there is an
f'€ C(A,E) such that f' admits a continuous extension f*€ C(X,E)
such that f*|B = f|B.
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Proof. 2.1-2.4 are straightforward. We now prove 2.5. By 2.4,
there exists a map g € C(X, E) such that g(X—A)=¢, and g(B)=
e,. Letf€ C(A,E)begiven. We define f': A — E as follows f'(x) =
f(x)0g(x) for every x € A. Clearly f'€ C(A,E). Then f* can be
defined by letting f*(x) = f'(x)for x € A and f*(x)=e,forx € X — A.

From now on all spaces will be assumed to be E-completely
regular. We first prove two lemmas which are needed for the proof of
our main theorems.

2.6. Lemma. An E-compact, E-embedded subspace X, of an
E-completely regular space X is closed in BeX.

Proof. Since X, is E-compact, BX,= X,. Hence it suffices to
show that clg.x X, = BeXo. First, cls.x X, is obviously E-compact. Also,
since X, is E-embedded in X, it is also E-embedded in BgX, so it is
E-embedded in cl;.xX,. Thus by 4.14 (a), (b) of [3], clgxXo = BeXo.

2.7. LemmA. If a space X contains a complementatively E-
compact subspace X, which is closed in BeX, then X is E-compact.

Proof. Assume that X is not E-compact. Choose a point p, in
BeX — X and let eX = X U{p,}. Then €X is a proper extension of X
and X is E-embedded in eX. Clearly, p, € X, and X, is closed in
eX. By 2.3, there exist a map g € C(eX, E) and two disjoint neighbor-
hoods U and V in €X of p, and X, respectively, such that g(U) = e, and
g(V)=e, We claim that X — V is not E-compact. First note that
pEclx(X—V). Now given fe€ C(X— V,E), we define a map
h: X — E as follows: h(x) = f(x)6g(x) for x € X — V and h(x) = e, for
x € V. One easily verifies that h € C(X, E) and consequently h admits
a continuous extension h*€ C(eX,E). Now for any x € U N X, we
have h*(x) = h(x) = f(x)0g(x)= f(x)6e, = f(x), i.e., f agrees with h * on
a deleted neighborhood of p, hence f can be extended
likewise. Therefore, X — V' is not E-compact and this contradicts the
fact that X, is complementatively E-compact.

We are now ready to prove the main theorems. In the following for
a space X and a subspace X, of X we shall use D(X,) and FC(X,) to
denote the class of all closed subsets of X which are disjoint from X, and
which are E-functionally contained in X, respectively.

2.8. THEOREM. If X contains a compact and complementatively
E-compact subspace X,, then X is E-compact.
More precisely, we have the following formula for E-defect of X:
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(a) defz X =3{card(FC(A))-defr A: A € Dy(X,)}
where D(X,) is a cofinal subset of D (X).

Proof. The first part follows immediately from 2.7. We now prove
formula (a). For each A € D(X,), let #, be an E-nonextendable class
for A with card %, =def:A. Let B be an arbitrary set of
FC(A). Then by 2.5, for each f € %,, there are two maps fr€ C(A, E),
fs€ C(X,E) such that f5|B =f|B. Let %5 be the class of such
5 Then card %, =defcA for each BEFC(A). Let Fi=
U{%@u5: BEFC(A)}. Then card F%i=3{card ¥ ,p: BE FC(A)}=
card FC(A)-defgA. Finally, let F= U{F%4: A € Dy(X,)}. Then

card = D {card F%: A € D(X,)}
=> {card FC(A)-defr A: A € Do(X,)}.
It is easy to show that & is an E-nonextendable class for X.

2.9. THeorem. If X,,---, X, are E-compact, E-embedded sub-
spaces of X such that U, X, is complementatively E-compact, then X is
E-compact.

More precisely, we have the following formula for the E -defect of X

(b) defe X =27 ,def: X +Z{card FC(A)-defz A:

A € Dy(UL, X))}
where Dy(Ur., X;) is a cofinal subset of D (U, X;).

Proof. The first part follows from 2.6 and 2.7. We now prove
formula (b). Foreachi=1,--- n, let % be an E-nonextendable class
for X; with card # = defz X.. Since X; is E-embedded in X, for each
f € &, we choose an extension f* € C(X, E) of f and denote by #* the
class of all such extensions. Clearly, card #%=def:X, for i=
1,---,n. Let F=U,_ %% Then card % =3 ,def:X,. For each
A eD(Ur, X), let %, be an E-nonextendable class for A with
card #, = defg A. Let B be an arbitrary set of FC(A). Then for each
fE€ &4, by 2.5, there exist two maps fz€ C(A, E), f3 € C(X, E) with
f5|B =f|B. Let %5 be the class of all such f%. Then card 5 =
defz A for each B€ FC(A). Let %= U{Fus: BE€ FC(A)}. Then
card % = Z{card ¥ 5: B € FC(A)} = card FC(A)-def:A. Finally,
let ;= U{F% A € D(UL,X,)}. Then

card F; = D, {card F%: A € Dy(U™, X))}

= > {card FC(A)-defe A: A € Dy(U™, X))}
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It is easy to see that the class ¥ = &, U &, is an E-nonextendable class
for X.

The following corollaries follow from 2.7, 2.8 and 2.9.

2.10. CoroLLARY. IfX = X,U X, where X, is E-compact and X,
is closed in BeX, then X is E-compact.

2.11. CoroLrrLARY. IfX = X, U X, where X, is E-compact and X,
is compact, then X is E-compact.

2.12. CoroLLARY. If X is the union of finitely many E-compact
subspaces, each of which is E-embedded in X, except at most one, then X is
E-compact.

2.13. REMARK. Unlike 2.9, considering more than one subspace
in 2.7 and 2.8 will not generalize the theorems. In fact, if X, -, X, are
subspaces of X which are closed in Bz X (compact) such that U], X, is
complementatively E-compact, then we could simply let X, = ur, X,
which is closed in B:X (respectively, compact) and is complementatively
E-compact.

2.14. RemMArk. We shall now show that formulas (a) and (b) of 2.8
and 2.9 are the best estimations for the E-defects of X.

For each ordinal «, let S(a)={A: A <a} and let ) be the
first  uncountable ordinal. Let X =(RXxS(Q))U{p,} where
po & R X S(£2). Topologize X as follows: every open set in R X S({}) is
open in X: a base of neighborhoods of p, consists of sets of the form
(R x B)U{p,} where B C S(2) and S({2) — B is countable. It follows
from 2.8 that X is R-compact and defz X = N,. Also, it is easy to show
that def X = N,. In order to show that formula (a) in 2.8 is the best
estimation for defg X, we must show that defx X#N,. Assume the
contrary, i.e., assume that def, X =N,. Let % be an R-nonextendable
class for X with card # = N,. For an arbitrary rational number r and for
each f € &%, there is an ordinal a; € S(2) such that f is constant on
{r} x(S(QY) - S(ay)). Obviously, the set {a;: f € F} has an upper bound,
say a,, in S() and every f € & is constant on {r} X (S(Q) - S(«,)). Itis
also clear that the set {a,: r € P}, where P denotes the set of all rational
numbers, has an upper bound, say «, in S() and every f € ¥ is constant
on Px(S())—S(«a)). Since P is dense in R, every f€ % is then
constant on R X (S(Q2) — S(a)). Now choose a point p, € X — X such
that p, € clgx(R X{a}). Then X U{p,}is a proper extension of X with
the property that every f € ¥ admits a continuous extension f*: X U
{p.}— R. This contradicts the fact that & is an R-nonextendable class
for X.
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2.15. Remark. Recall that for E =R and E = N we have the
following countable theorem for E-compactness: If X = U7, X, where
X, is E-compact, E-embedded in X for each i, then X is E-compact. We
shall now show that, however, for the infinite additivity theorems of
E-compactness, it is impossible to find formulas for the E-defects
analogous for formulas (a) and (b) of 2.8 and 2.9.

Let X =U;_,[0,n]" where m is an infinite cardinal. Then X,
being o-comapct, is R-compact. We shall prove our claim by showing
that defg X = m. "

Case 1. m =N,. If defg X < m, then by Theorem 5.9 of [3] X is
Lindelof and locally compact which is a contradiction (since X is not
locally compact).

Case 2. m>N, If defgX=p<m. Let ¥ be an R-
nonextendable class for X with card & = p. It is well known that for
each f € %, there exists a countable subset Z; CE such that if x,, x,€ X
and x,|E; = x,| B, then f(x,)=f(x,). Let Es= U{E;: f€ %}. Then
card 55 < m. Hence there exists {,€EE—Eg Let Xo={x € X: 7, (x)=0
for every ¢# &}. Then every f € # is constant on X,. Now choose a
point p; in BX — X such that p, € clgxX,. Then every f € ¥ admits a
continuous extension f*:X U{p;}— R. Hence % is not an R-
nonextendable class for X which is a contradiction.

3. Quotient images of E-compact spaces. We now turn
to the preservation of E-compactness under quotient maps. Given a
map ¢: X—Y and a point y in Y, we shall call card ¢ '(y) the
multiplicity of y (with respect to ¢). A point of Y is called a multiple
point of ¢ provided that its multiplicity is greater than one.

3.1. THEOREM. Given a quotient map ¢:S—>X. If S is an
E-compact space and if the set M of all multiple points of ¢ satisfies one of
the following conditions, then X is E-compact.

(1) M is closed in BeX.

(i) M is compact.

(ili) M can be expressed as the union of finitely many E-compact
E-embedded subspaces of X.

Proof. It is obvious that if M satisfies any of the three conditions
then itisclosedin X. Hence S — ¢ '(M)isopen in S and ¢ restricted to
S —¢7'(M) is a homeomorphism. If F is a closed subset of X disjoint
from M, then F is homeomorphic to ¢ '(F); consequently, F is E-
compact, i.e., M is complementatively E-compact in X. By 2.7,2.8 and
2.9, X is E-compact.
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4. Applicability of the theorems. In §§2 and 3, E was
assumed to satisfy rather complex conditions («), (B) and
(y)- However, sometimes the results can be applied to an E which does
not satisfy these conditions. The procedure is to find another represen-
tative E' of {(E) which satisfies the assumptions of the theorems. As
an example of this procedure we shall show that all theorems of §382 and 3
are true when E is an arbitrary 0-dimensional linearly ordered
space. (Obviously, these theorems are true for E = R and for E =
N.) The statements which lead to this result are as follows:

4.1. Every linearly ordered space which has first and last elements
satisfies (a).

4.2. Every 0-dimensional space satisfies ().
4.3. Every strongly 0-dimensional normal space satisfies (y).

4.4. Every 0-dimensional linearly ordered space is strongly 0-
dimensional.

4.5. Every 0-dimensional linearly ordered space with first and last
element satisfies (), (B) and ().

4.6. Let X, be an E-embedded subspace of X, E'C.,, E™ for some
cardinalm. IfE’isaretractof E™, then X, is also E'-embedded in X.

Proof. Let f€ C(X,, E'). Then f can be considered as a continu-
ous map from X, into E™. Hence f admits a continuous extension
f*: X—E". Thus, rof*, where r is the retraction of E™ onto E’, is a
continuous extension of f over X.

4.7. For every 0-dimensional linearly ordered space E, there exists a
0-dimensional linearly ordered space E' which has first and last elements
and satisfies the following conditions.

(1) EC.E”, E'CE? (hence S(E)= SQ(E")).

(2) E'isaretract of E* (hence any E-embedded subspace X, of X is
also E'-embedded).

Proof. 1f E itself has both first and last element, then by letting
E'= E, we are done. Otherwise we consider two cases.

Case 1. E has exactly one of the first and the last
elements. Without loss of generality, we assume that E has first
element (say a) but has no last element. Let E* be the linearly ordered
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set formed by all elements of E with the reverse order of E. Let
E'=E®E* ie, E'=EUE?* with the order be defined by
letting x <x* for every x EE and x*€ E*. Then E' has first
and last elements. Let b€ E with b#a Clearly, EC,E’ and
E'Cop{(x,a): x € E}U{(x,b): x E E}C,E*. To show that E’ is a re-
tract of E’, we let ¢ be a cut between a and b, and define a map
p: E*—E? as follows: p(x,y)=(x,b) for each x€EE and c¢<
y; p(x,y)=(x,a) for each x EE and y <c. Then the map h7'op is
a retraction from E* onto E' where h is the homeomorphism from E’
into E°.

Case 2. E has neither first nor last element. Choose an arbitrary
point a EE. Let E,={xE€E:x=a}, E;,={xEE:x=a} and E'=
E, @ E,. Then E'is a linearly ordered set with first and last elements
(say a, and a,, respectively). Let b be an element of E with
b# a. Without loss of generality, we assume that a <b. Clearly,
EC,E” and E'C, {(x,a): x€EE,x=a}U{(x,b):xE€EE,a=x}C,E".
To show that E' is a retract of E*, we let ¢ be a cut between a and b,
and define two maps s and t: E*— E’ as follows s(x, y) = (x, b) for each
XEE, c<y;s(x,y)=(x,a)foreachx € E,y <candt(x,y)=(x,y)for
x<a,y=bora<x,y=a;t(x,y)=a,fora=x,y=>b;t(x,y)=a,for
x=a,y=b Then k'osct is a retraction from E* into E' where k is
the homeomorphism from E' into E*.
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