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BMO FUNCTIONS AND THE 3-EQUATION

N. T H . VAROPOULOS

The d-equation associated with the Corona problem for
several complex variables is examined and the relation of
that equation with BMO functions on the boundary is brought
to light. A new characterisation, closely related with the
H1 duality, for BMO functions is obtained.

()• Introduction* This paper came out of an unsuccessful attempt
to prove the Corona theorem for ^-dimensions.

If we try to generalise L. Carleson's 1-dimensional proof (with
the modifications introduced by L. Hormander) (cf. [1], [2], [9]), we
come up against the following problem:

Solve the d-equation

du — μ

in, say, the complex w-ball where μ is an arbitrary 3-closed differ-
ential form that satisfies an appropriate Carleson condition and where
we require the solution u to have L°° boundary values (also in an
appropriate sense, cf. [9]).

We shall show in Part 3 of this paper that it is not always
possible to solve the above equation, and that the best we can
obtain in general for the boundary values of the solution is a BMO
condition.

However along the way a number of positive results will be
obtained. In Part 1 we obtain a new characterisation of BMO
functions which is closely related with the BMO, H1 duality. This
characterisation, grosso motto, runs as follows: / 6 Lι{Rn) is a. BMO
function in R% if and only if it is the boundary value of some function
F defined in the upper half space JB++1 such that

is a Carleson measure. Exact statements will be given later. The
extension F of / in the upper half space is not, in general, the
harmonic extension and it is not easy to describe it explicitly.

In Part 2 the above results are generalised to the complex ball
and to general strictly pseudoconvex domains. This generalisation
is tedious but essentially routine.

In Part 3 the real "raison d'etre" of this characterisation appears
and it is used to study the 3-equation and the Corona problem. It
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should be remarked however that for the proof of Theorem 3.1.2,
which is directly related to the Corona problem, the rather lengthy
and tedious Theorem 2.1.1 is not essentially (cf. the remark that
follows the proof of Theorem 3.1.2). All that one needs is the much
easier Theorem 1.1.1.

Part 1 uses entirely real variable methods. Part 2 uses some
of the geometry of pseudo-convex domains. Part 3 finally uses genuine
several complex variables methods and in particular the Henkin
Integral formulas.

Finally a few words about the style.
As it happens this paper is far too long. To avoid making it

longer still I have resorted to a few standard "tricks." Often theorems
that are started in full generality are only proved under some special
restrictive condition. This is especially applicable to strictly pseudo-
convex domains where all the explicit calculations are carried out
only for the complex ball and often only in C2. But hopefull the
reader who possesses some technique will be able to see without too
much difficulty how the proofs can be made to work in full generality.

Part 1Φ The real variable theory*

1*1* Statement of the results* In this paper we shall adopt
the notations of [15].

Let us recall that BMO (Rn) (or simply BMO) is the space of
measurable functions / on Rn that satisfy the following condition,

sup - M j / - / 7 | ( Z ί B < + oo

where 1 runs through all possible cubes of Rn with sides parallel to
the axes, | J | denotes the volume of / and fx = I/I"11 fdx, the average
of / over /. The key reference for BMO is [6]. Let us also recall
that a measure μ on J?++1 (the interior of i?++1) is said to satisfy the
Carleson condition, or simply to be a Carleson measure, if:

< +

where / is as before, \μ\ is the absolute value of μ and

I ^ {(x, y)eR^; xeI, y e(0, h)}

where h is the length of the side of / (cf. [3], [1], [15]).

The main result in this paragraph is summarised in the following
theorem.



BMO FUNCTIONS AND THE d-EQUATION 223

THEOREM 1.1.1. Let f e BMO (Rn) and let us suppose that f has
compact support. Then there exists an infinitely differentiate
function Fe C°°(l?++1) that satisfies the following conditions.

( i ) lim^o F(x, y) - f{x) e L~(Rn).
(ii) The measure

\FF\dxdy^(± **L + ψ- )dxdy
\*=i OX, OV /

satisfies the Carleson condition.
(iii) There exists some g(x) e Lι{Rn) such that

sup I F(x, y) I ̂  g(x) .
y>o

(iv)

The above theorem has a number of converses that can be sum-
marised in the following theorems:

THEOREM 1.1.2. Let F(x, y) e C1(Rl+1) be a once continuously
differentiate function such that \VF\dxdy is a Carleson measure
and such that the limit

lim F(x, y) - f(x)
y->o

exists for almost all x e R%. Then the following assertions hold.
( i ) if n - 1 then f e BMO (R).
(ii) If n ^ 2 is arbitrary but in addition we suppose that:

\FF\= 0(l/i/) then /eBMO(iΓ).

It should be remarked here, once and for all, that the condition
\FF\ = 0(1/?/), both in Theorem 1.1.1 and Theorem 1.1.2 is purely
technical and not very important in our context.

Let us denote by D = {z e C; \ z | <; 1} the complex disc.

THEOREM 1.1.3. Let F e Cι{D) be a once continuously differentiate
function in t) (the interior of the complex disc) and let us denote

Fr(eiθ) = F(reiQ\ eiθ e 3D = T 0 ̂  r < 1 .

Let us suppose that \VF\dxdy is a Carleson measure in D and that

in the weak distribution topology σ{&Ϋ, C°°).
Then we have:
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for all analytic polynomials P(z) — Σί=o <*»nZn where C is some con-
stant that is independent of P.

The notion of a Carleson measure in Ό is analogous to that of

<P, S) indicates the scalar product ί sometimes abusively denoted

as {Il2π)^πP{eίθ)dS{θ)j between 3? and C°°, and

denotes the L\T) norm of P. Let Se<9"{Rn) be a temperate dis-
tribution. We say that S is of analytic type if

s u p p S c f o ^ O ϊ = 1,2, ...,^}

we have then:

THEOREM 1.1.4. Let FeC^Rl*1) be a once continuously differen-
tiable function in R++1 and let us suppose that \ VF\ dx dy is a Carleson
measure. Let us suppose that the continuous functions Fy{%) =
F(x,y) converge to a distribution Se&'(Rn) with compact support
when y —> 0 (the convergence takes place in the weak distribution
topology). Then we have

for all infinite differentiate functions φt 6 S^(Rn) of rapid decrease
at infinity and of anylytic type.

In §1.2 we shall give a direct and elementary proof of Theorem
1.1.1. In §1.3 we shall give an alternative approach to Theorem 1.1.1,
less elementary but which has the advantage that it generalises to
strictly pseudoconvex domains. In 1.4 we shall prove the converses
and examine the relation they bear with the Stein and Fefferman
BMO H1 duality.

1*2* Proof of Theorem l l l* We start with the slightly weaker

PROPOSITION 1.2.1. Let f e BMO (Rn) have compact support. Then
there exists F e LZjJtT1) and g e Lι(Rn) such that:

(a) lim^o F{x, y) - f(x) e L~(Rn).
(b) \F(x,y)\£g(x). V{x,y)eRl+i
(c) \FF\, taken in the sense of distribution theory, is a Carleson
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measure in Rl+1

REMARK. In (a) and (b) what we mean of course is that there
exists a representative of F in the class LTOC for which (a) and (b)
hold.

For simplicity's sake, we shall give the proof of Proposition 1.2.1
for n = 1, but the proof readily generalises to arbitrary dimension.

The proof of Proposition 1.2.1 depends on the following two
lemmas.

LEMMA 1.2.1. Let f e BMO (R) and let us suppose that supp / c
[0,1] and that the average of f in [0,1] is 0. Then there exists a
family Ω of distinct closed diadic subintervals of [0,1] and a cor-
responding family {aω eC; ωeΩ} of complex numbers such that

(1.2.1) \aω\^C VωeΩ

(1.2.2) X Ift>I ^ G\I\ for all intervals I
ωdl

(1.2.3) f{%) - Σ aJ-M e L"(R)
Ω

where χE denotes in general the characteristic function of the set E,
and C is a constant that depends only on the BMO norm of /.

LEMMA 1.2.2. Let f be as in Lemma 1.1.1 and let σlf σ2 be two
adjacent diadic intervals of equal length. We have then:

(1.2.4) IΛ.-ΛJ^C

where C is a constant that depends only on the BMO norm of f

and where we denote as before fσ — l/\σ\\ fdx.
Jσ

REMARK. What is of some interest is that the conditions above,
(1.2.1)-(1.2.4) characterise B.M.O. functions. This is a consequence
of the proof below. (It can also be seen directly.)

Lemma 1.2.1, which, to my knowledge, has been proved for the
first time by J. Garnett (unpublished 1974) depends on a Galderon-
Zygmund argument, (stopping time) and holds also in the context
of diadic martingales. The proof will be omitted. Lemma 1.2.2 is
a trivial application of the BMO condition on the interval σι U o2.

Proof of Proposition 1.2.1. Let / = [a, a + h] be an arbitrary
interval and let us denote by

7 = {(Xf y); a ^ x <: a + h , 0 ^ y £ h) c R%
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the square in the upper half plane with I as base.
Let now / be as in Proposition 1.2.1 with n — 1 and supp / c

[0,1]. Let Ω and {aω; ωeΩ} be as in Lemma 1.2.1 and let us define

F(χ9 y) - Σ <*ωχz(x, y) v(x, y) e R\

which is a function defined in the upper half space with support in
unit square which is easily seen (by condition (1.2.2)) to belong to
Li~cCB+). We shall prove that F satisfies the conditions of Proposition
1.2.1.

Indeed if we define

we have trivially:

(1.2.5) I F(x, y) \ ̂  g(x) V(x, y) e R\

(1.2.6) lim F(x, y) = Σ ««%« p-p xeR.

Now condition (1.2.2) implies easily that g e Lλ(R) and from the above
we see that conditions (a) and (b) of Proposition 1.2.1 are satisfied.

Let us now denote:

μ=W V = K
dx dy

in the sense of distribution theory.
It is an easy matter to see that μ and v are bounded Radon

measures in R\. Indeed let I = [α, a + h] be an arbitrary interval
of JR, then dχτ/dx (in the distribution sense) is the Lebesgue linear
measure concentrated on the two vertical segments {x = α, a <̂  y ̂  h]
and {x = a + h, 0 ̂  y ̂  h} (with sign ± 1 in fact) and dχr/dx is the
Lebesgue linear measure on the horizontal segment {a <; x ̂ a+h, y — h}
(with sign —1). From this and conditions (1.2.1) and (1.2.2) it follows
that the two series

Σ ^ Σ
ωeΩ OX «>e£ y

converge normally in M(R\) (the space of bounded measures in JB+)
and this proves our assertion

To prove condition (c) we must verify separately the following
inequalities

(1.2.7) \v\(ϊ)^C\I\

(1.2.8) \μ\(ΐ)£C\I\
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for an arbitrary diadic interval IcR with C some constant indepen-
dent of /.

From what has been said just above, the inequality (1.2.7) is an
immediate consequence of conditions (1.2.1) and (1.2.2). The inequality
(1.2.8) is harder however (condition (1.2.4) has to be used here). The
rest of the proof will be devoted to the proof of (1.2.8).

Let

be arbitrary and let us denote:

the two adjacent intervals. Let us denote:

= Σ αJ^i? ωeΩ ω = Γ-̂  , b] for some b > p

^ dx L2 W J

λ2 = Σ α ω ^£ ω G i2 ft) = Γα, p + 1! for some α < •£- .
δα; L 2W J 2n

(The intervals ft) in λx and λ2 contain I, have a common end point with
I and are among the ones that have not already been counted in μQ.)

PI^YJccβ^ ωeΩ ω = Γα, -^Ί for some a < p ~~n

 1

ft) - Γ ^ ^ ί , b\ for some 6 >p2 Σ aJ coeΩ ft) Γ ^ , b\ for some 6 > ^ .

(The intervals ft) in plf p2 have a common end point with I, have
empty intersection with ώ and are among the ones that have not
already been counted in the μi9 i = 1, 2.)

It is quite clear that to prove (1.2.8) it suffices to prove the
following inequalities.

ί(l 2.9) \μt\(ϊ)£C\I\ i = 0, 1, 2

(1.2.10) W + pjφ^ClIl

(1.2.11) W + pt\(ϊ)£G\I\.

(1.2.9) is an immediate consequence of conditions (1.2.1) and (1.2.2).
Let us prove (1.2.10) the proof of (1.2.11) is identical. Let us consider
the measure
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0i= W + PilXΐ

Then θ1 can be computed explicitly. It is equal to the Lebesgue
linear measure on the vertical segment {x = p/2n, 0 <; y <; 2~n} mul-
tiplied by the constant kλ = | ϊx — τx | where

= Σ 6 Ω ω

for some 6 >

for some < -Z—

We must prove therefore that

(1.2.12) k, ^ C .

Towards that let us denote

s = 2]ι (%ω (ώ is the interior of co) .
Pl2neω

ωeΩ

We have then:

Λ = β + Ϊ! + ylj + Λz

where heL°°(R) is the remainder term in (1.2.3).
therefore that:

We conclude

\mo

and our assertion (1.2.12) follows then from (1.2.2) and (1.2.4).
We almost have a proof of Theorem 1.1.1 now. Indeed the

function F constructed above can be easily smoothed out in R% to
be made C°° and satisfy conditions (i), (ii), and (iii). The only thing
that can give a little trouble is condition (iv). It can be shown that
provided that the smoothing out above is done with care we can
achieve condition (iv) also. We shall not do that however for two
reasons, firstly because condition (iv) is totally unessential and secondly
because we will be able to get condition (iv) for free (so to speak)
in our alternative approach in the next paragraph.

1*3 • Alternative approach to Theorem 1
here an alternative approach to Theorem 1.1.1.

1*1* We shall give
We shall treat the
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compact case D = {z e C; | z | ^ 1} of the complex unit disc. We do
that to avoid unnecessary complications at infinity and also because
this method is designed to generalise to bounded pseudoconvex domains,
and the disc is an (essentially the only) example of a pseudoconvex do-
main in C. The modifications needed to deal with R++1 are rather easy.

The starting point of our approach is the following.

PROPOSITION 1.3.1. Let / e BMO (3D) = BMO(Γ) (i.e., a 2ττ-

periodic BMO function on R), then there exists a Carleson measure

in D such that

(1.3.1) /(C)-( PXζ)dμ{z)eL-{dD).
JZBD

Conversely any function f that satisfies (1.3.1) is a BMO function
on the circle 3D. Here we denote:

WO =
- ζz\2 1 - 2r cos (θ-φ) + r2

where z = reίφ e D and ζ = eiθ e 3D, for the Poisson kernel of the
circle (c is the normalisation constant).

This Proposition is an immediate consequence of the BMO, H1

duality. A direct proof of this proposition (i.e., one that does not
depend on the duality) has also been given by L. Garleson in [4].

Let us define a new function.

Pz(u) = Pz(ζ)χ(r,1)(1o)

Vz = reiφ eί) , u = pζeD , 0 < r, p <1 ζedD ,

where χ(r>1) denotes the characteristic function of the interval (r, 1).
Let now / G B M O ( 3 J D ) be some BMO function on the circle and

let μ be some Carleson measure that satisfies (1.3.1). Let us then
define

F(u) = ί Pz{u)dμ{z) uei)
JzeD

= ( ,Pz{ζ)d\μ\(z) ζed

It is perfectly clear then that FeLZcΦ), that geBM.O(dD), and that:

(1.3.2) \F(u)\£g(ζ) Vu = pζ 0<p<l ζedD.

Also an easy passage to the limit under the integral sign implies that

(1.3.3) UmF(pζ)=\ oPz(ζ)dμ(z)
P-*l JzeD
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for all ζ 6 3D such that g(ζ) < + °o. We shall prove the following

LEMMA 1.3.1.
( i ) dF/dp is a Carleson measure,
(ii) dF/dθ is a Carleson measure,

where of course u — peiθ and the derivatives are taken in the sense

of the distribution theory of D.

It is quite clear that (1.3.2), (1.3.3), and the above lemma provide
us with an alternative proof of Proposition 1.2.1. The proof of
Lemma 1.3.1 will be broken up in a number of separate steps.

Let us fix zeϊ) and let us denote by

v z = : dp

We have then:

LEMMA 1.3.2. vz is for every fixed zet) a measure that satisfies:

( i ) dF/dp = J Jzdμ{z),
eZ)

Proof. vz is of course just the Lebesgue linear measure on the
circle u = | z \ eiθ(0 ^ θ ^ 2π) multiplied by the Poisson kernel PJβ).

From this and the fact that l/2ττ \2πpz(θ)dθ = 1 (ii) follows, (i), on
Jo

the other hand, is immediate by the definition of F.

Let now ζoedD be fixed and let us denote

(1.3.4) Th = {zeD; \z-ζo\<h}.

It is quite clear from the above that we have:

(1.3.5) \vz\(ϊh)^ch
I

^ r s.t. \z-ζo| > 1000ft

(1.3.6) I v z I ( ϊ h ) = 0 Vz = r e ί θ l - r > h

and we deduce from (1.3.5) and (1.3.6) that

(1.3.7)
-Co

0 ^ r s.t. \z - ζo

We can now give the proof of Lemma 1.3.1 (i).

Proof. Let ϊh be as in (1.3.4) and let

»i = ί
J U —

); v2 = \
J | z -ζ0l>1000fc

v4\μ\(z) .
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It suffices to verify separately the following two inequalities.

(1.3.8) vSIh)^ch

(1.3.9) v2(lh) ^ ch ,

where c is some constant independent of h. For indeed we always
have I dF/dp | ^ vx + v2 and our lemma follows.

We have now:

vSJn)^ [ \\vz\\d\μ\{z)^ \μ\{zei); I^ — Coi ^ 1 0 0 0 h ) ^ch
J\z-ζo\£]OOOh

by Lemma 1.3.2 (ii) and the hypothesis on μ. This proves (1.3.8).
On the other hand using (1.3.7) we see that

(1.3.10) \
Jiooofe t

where

Our hypothesis on μ implies that

F(t) ^ ct

and an easy integration by parts in (1.3.10) then proves the required
inequality (1.3.9), and completes the proof of the first part of Lemma
1.3.1.

For every fixed zeD let us define

the derivative being taken in the distribution sense. We have then:

LEMMA 1.3.3. pz is for every fixed z e D a measure that satisfies:

( i ) dFβθ = J

(ii) \\Pί\\s
where C is some numerical constant.

Proof. That p% is a measure and that (i) holds is obvious. To
prove (ii) we just have to observe that for all fixed z = reiφ we have

\\pz\\ = \ \[
^ c ( l - r ) M a x , | P 2 ( 0 ) | :g c

since Pz{θ) is a function that is monotone in two pieces as θ varies in
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[0, 2π], This proves the lemma. Let now ζ0 6 3D be fixed and let
ϊh be as in (1.3.4). We have then

(1.3.11) 1/0,1(7.) ^ ch\ VzeDs.t. I« — Co I
I ^ sol

To prove this we just have to use the estimate

dPXθ)
dθ

valid for all z = re2^ and all 0 e [0,
From estimate (1.3.11) and Lemma 1.3.3 (ii) we can give the

proof of Lemma 1.3.1 just as before. This concludes the proof of
Lemma 1.3.1.

Now to give a proof of Theorem 1.1.1 with this method we have
to modify the definitions of Pz and of the function F so as to obtain
a C°° function in B. But this is easy. It suffices to truncate Pz

with a smooth function rather than the characteristic function and
define:

(1.3.12) Pz(u) = PXQφl1. ~ l^,1) Vu = Iu\ζ , ζ 6 3D

where φ(t) 0 ̂  t is some positive C°° function chosen once and for
all that satisfies

φ = 0 t>2 φ = l t 6 [0,1] .

If we define F(u) then as before we obtain a function that satisfies
all the conditions of Theorem 1.1.1. The condition (iv) is the only
new thing that has to be verified but it is easy and will be left as
an exercise for the dedicated reader.

1*4* The converse of Theorem 1*1*1 and the use of Stoke's
formula*

Proof of Theorem 1.1.2 (i). Let F be as in the theorem and let
us denote by:

h = {(&, y) 6 R%; x 6 (α, a + h), y e (0, h)} .

Then by our hypothesis

(1.4.1) \ \FF\dxdy^ch

where c is of course independent of h and a. Then by Fubini's
theorem there exists some h0 e (0, h) such that
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\'+k\FF\(x, ha)\dx^c
Ja

and this of course implies that

(1.4.2) IF(x, hQ) - F(a, hQ)\ <, c Vα;e (a, a + h) .

On the other hand we always have

(1.4.3) lim F(x, y) - F(x, h0) VF(x,y)\dy

for every fixed x e (a, a + h). From (1.4.2) and (1.4.3) we conclude
therefore that

\f(x) - F(a, ho)\^c+ \k\FF(x, y)\dy
Jo

for all x e (a, a + h) and integrating the above inequality in x e
(α, a + h) and using (1.4.1) we get

(β +Ί/(») - F{a, h0) I dx ^ ch ,
Jα

which proves the required result.
The proof of part (ii) is identical only simpler; for, by our addi-

tional hypothesis, we do not need to use Fubini to get the preliminary
inequality (1.4.2).

Proof of Theorem 1.1.3. Let F and P be as in the theorem.
Let r 6 (0,1) and let us apply Stokes's formula to Dr = {z e C; \ z \ <; r}
we get then

^P(z)dz Λdz c[ F(z)P(z)dz .
Dr OZ JdDn

From this we conclude, letting r—>1, that

|<S,P>|^c [.\FF\ \P\dxdy
JD

(where z = x + iy) and this together with our hypothesis on \FF\
proves our theorem.

Proof of Theorem 1.1.4. Let us consider the poly-half space

P* = {z = 0*1, z*> -- ) e C - Imz, ^ 0},

the distinguished boundary of Pn can then be identified with R% and

any function feS^(Rn) of analytic type admits a unique extension

/ to an analytic function in Pn.
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We shall also identify Rl+ί with a closed subspace of Pn by the
correspondence

Rl+13 (x19 x2, . , xn9 y) > (x, + iy, x2 + iy, •• ) e P Λ ,

and we shall choose FeCι(Pn) an extension of F (F is a function
as in the statement of Theorem 1.1.4) that satisfies \vF\ ^ C\FF\ at
every point of UJ+1 (this is always possible) and we shall, as we may,
suppose that the supports of both F and F are bounded.

An application of Stokes' formula gives then

(1.4.4) [ f(z)F(z)dz1 A dz2 A • = ( f(z)dF(z) A dzx A dz2 A
JAe jBε

where:

A = {(z19 , zn) 6 Pn; Im zt = ε; i = 1, 2, •}

J5ε = {(zlf , zn) e Pw; Im ^ = Im zk > ε; i, k = 1, 2, •}

for all ε > 0. If we let ε -^ 0 in (1.4.4) we obtain that

f{x, + iy, x 2 + iy, - ) \ d x dy

and \VF\dxdy being a Carleson measure, our theorem follows.
I would like to finish this paragraph with some comments on

Theorems 1.1.3 and 1.1.4.
Theorem 1.1.3 exhibits another aspect of the well known duality

between B. M. 0. and H1 for the disc D. It can be used of course
to prove that duality, or if we take the duality for granted, it can
be thought of as a converse of Theorem 1.1.1.

To be able to do the same for higher dimensions we must combine
Theorem 1.1.4 with the following theorem of L. Garleson [4].

THEOREM (L. Carleson). Let feH\Rn) (the Stein and Weiss H1

space). Then there exist finitely many functions fieLι{Rn) (i —
1, 2, , N) where N depends only on n such that

and such that each ft becomes of analytic type after an appropriate
rotation of the axes (i.e., pi{fι){x) = fi(pi(oή) is of analytic type for
an appropriate ρt e SO (Rn) i = 1, 2, , N).

Indeed if Theorem 1.1.4 is combined with the above result the
duality between BMO and Hι is again obtained. (The only trouble
of course here is that Carleson's theorem depends on the fact that
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Calderon-Zygmund operators operate on H\ a fact which itself is
best proved via the H\ BMO duality!)

Part 2* Extension of the results to strictly pseudoconvex
domains*

2 1* Statements of the theorems* Let £& — {p < 0} C Cn be a
bounded strictly pseudoconvex domain in Cn where p is sufficiently
differentiable and dp Φ 0 in some Nhd of dϋ^ (p e C4 will do for
most purposes) cf. [8]. Our first goal will be to define the notions
of a BMO function on d£2f and of a Garleson measure in 3f.

Let us define a normalized (i.e., of Euclidean length equal to 1
everywhere) vector field v0 in some Nhd of d& that is normal and
directed inwards to d£2ί at every point ζ 6 dSf. Let us denote by
μQ = Jv0 the vector field obtained from v0 by applying /, the almost
complex structure underlying Cn, cf. [12] (Jis the operator on the
tangent space which is obtained by "multiplication by i" that is why
one sometimes sees the notation iv0 instead of Jv0 cf. [16], I prefer
to use the notation JvQ to avoid possible confusion when the tangent
space is complexified). μQ is then a normalized field in some Nhd of

that is tangential to δϋ^ at every point ζoed£gr.
Let us now complete the orthonormal basis by constructing fields

such that at every point v0, μQ9 μ19 , /i2w_2 form an orthonormal basis
of the tangent space. This can be done at least locally; i.e., for
every ζ0 e d2& there exists Ω some Nhd of ζ0 in Cn in which μlf ,
μ2n_2 can be constructed. It is also clear the fields v0, μ0, μ19 , μ2n_2

can be made to have the same degree of smoothness as d£&. For
every ζ0 e d2<$ we shall now define Bt(ζ0) the "ball" centered at ζ0 of
radius t > 0. In the tangent space Tζo(d&) of d£& at the point ζ0

let B*(ζQ) c TZo(d&) be the paralleliped centered at 0 of side t in the
μύ direction and side V t in the directions μ19 •• ,jW2Λ-2 We shall
define then Bt(ζ0) as the image of J?*(ζ0) by the exponential mapping
Tζo(d£^) —> d& which is well defined provided that t is small enough.
(There is nothing essential here, of course, about the exponential
mapping; in fact any other "ball" of the same "shape" and dimensions
as Bt(Q could be used in its place.) Let us also define

Bt(ζ0) - {Bt(ζ0) + XvQ(ζ0); X e (0, t)}

which is a box inside £& with base JS^ζo) and height t along the
normal at ζ0. It is the analogue of / in § 1.1. We shall say now
that / a measurable function on dSf is a BMO function / =
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BMO {$&) if:

where B runs through the collection of all balls B — Bt(ζ0) (ζ0 e
0 < t < t0) and where we denote as before

the average of / on B; dσ is of course the Euclidean 2n — 1 area
element on 3 ^ , and \B\ denotes the measure of B for that area.
Note that we have (cf. [16], [11])

cj? ^ I Bt(ζ0) I S cjn V ζ 0 e h&f 0 <t<t0

for two positive constants elf c2. We shall say that μ e M(£?) a
measure in 3ί (the interior of ^ ) is a Garleson measure if:

SUP
ζ0e9^0<ί<ί

Note that the above two notions of a BMO function and of a Carleson
measure are independent of the particular choice of the vector fields
Vo> Vo, f^if # t fan-z that we have taken. (The Bt(ζQ) do depend on the
choice of the fields but in a very inessential way.)

Before we can state our main theorem we shall have to introduce
one more notion, the notion of the nonisotropic gradiant near the
boundary of 3f%

Let F$C\ώ). We shall then define

\DF\ - \vQ{F)\ + \μ,(F)\ + | / > | - 1 / 2 Σ W F ) | .

(Let us recall that the μ/s are vector fields and therefore act on
functions; μ^F) is the differentiation in the direction μs.) \DF\ is then
well defined in every Nhd Ω of every point ζoed^ in which the
fields vQ, μQf , μ2n_2 have been defined. It does depend on the choice
of these fields but not in an essential way. In fact if v[, μ'Q, , /4%_2

is a different choice of fields in Ω and if we define \DfF\ as above
with these new fields we then have

cι\D'F\ ^ \DF\ ^c2\D'F\

at every point ω e Ω where clf c2 are two positive constants indepen-
dent of ω. We have then the following.

THEOREM 2.1.1. Let f e BMO (3^) . Then there exists F e
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such that
( i ) lima^F(C + λι;0(C))-/(O 6L-(a^) .
(ii) \DF\dV is a Carleson measure in £& (dV is the volume

element in 3f).
(iii) There exists some g e &{d£3?) and some λ0 > 0 such that

sup I F(ζ0 + XvQ(ζ0)) I <S g(ζ0) Vζ0 6 d&
o<λ<?.o

(iv) |Z)£7| = O(l/|/01).

The above theorem has a number of converses which can be
summarised in the following theorems.

THEOREM 2.1.2. Let FeCι(^) be a once continuously differen-
tiate function in 2f and let us suppose that \DF\ is a Carleson
measure and that it satisfies the condition \DF\ = 0(1/1^1). Let us
further suppose that

exists for almost every point ζ 6 d3?. Then f is a BMO function
of

To simplify notations we shall state our next theorem for the
complex ball

let Se^'(dB) be a distribution on the boundary of the ball. We
say that S is of analytic type if there exists Fe A{B), some analytic
function defined in the interior B of B, such that

in σ{&'\ C00)

where FP e C^idS?) is defined by:

0<p<l ζedB.

Analogous definitions exist of course for general domains. We have
then the following.

THEOREM 2.1.3. Let F e Cι(B) be a once continuously differentiate
function in the interior of the ball B, and let us suppose there exists
some distribution Se&'(dB) such that

S in
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Then the following assertions hold:
( i ) If we suppose that \DF\dV is a Carleson measure then

SeBMO(dB).
(ii) If we suppose that (\F\ + \VF\)dV is a Carleson measure

and in addition that S is of analytic type then SeBMO(dB). dV
denotes of course the volume element in B and VF is the Euclidean
gradiant (cf., §1.1).

The above theorem holds of course also for general strictly
pseudoconvex domains. We only state it here for the ball for sim-
plicity's sake. In fact right through this paragraph we shall have
to negotiate generality of general pseudoconvex domains 3ί against
the simplicity of the notations of the complex ball B. All of the
explicit calculations will be carried out for the ball but they all
generalise easily to strictly pseudoconvex domains. A dedicated
reader can do it for himself. In fact in what follows we shall
push the simplification one step further; we shall suppose that the
dimension of Cn is n = 2, this case is perfectly typical.

2.2. The geometry of B c C\ Let B be the unit ball in C2

and let 1 = (1, 0) be its north pole. We shall introduce then local
coordinates in N, some Nhd of 1 in dB, by setting

(2.2.1) ζ = (1 - a, + iβίf a2 + iβ2) eNczdB .

(βit a2j A) become then local coordinated of N as they run through
a Nhd of zero in R3 and ax satisfies:

(2.2.2) 2a, = a* + βl + al + βl.

We can choose our fields μ19 μ2 so that they satisfy:

dβι da2 dβ2

at the point 1. The one parameter family of balls Bt(ΐ) (0 ̂  t ^ t0)
is then equivalent to the family

Ct(l) = {| Al ^ t; \a2\, \β2\ ^ VT} (0 ^ ί ^ t9) ,

where we say that two one parameter families of sets (Λt)t^0

are equivalent if there exist two positive constants clf c2 > 0 s.t.

BC2tczAt(zBClt Vί .

Using these local coordinates it is easy to show that the family Ct(l)
is also equivalent to the family
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and since the above relations are rotation invariant we deduce that
for every ζ0 e dB the two families

^ t ^ ίo; {CeδjB; | 1 - ζ o . ζ | < t} O^t^tQ

are equivalent and also the two families

£Γ(ζo)(O ^ t ^ ί0); {zeB; | 1 - ζo z | < ί} 0 rg t ^ t0

are equivalent where we denote:

Z'U — zxuλ + z2u2 Vz, ueC2 .

We shall denote now by

PS) = cj* ~ ψj zeB, ζedB

the Poisson-Szego kernel of the ball (cf. [16]), which for ζ e N becomes
in terms of our local coordinates Ps(β19 cc2J fi2) for ζ = (βlf a2, β2).

We have then the following.

LEMMA 2.2.1. There exists two positive constants C and e such
that

( i )

(ii)

- 1 2|

da2
dβ,

c

for all ζeBt(ϊ) and all zeB that satisfy | 1 — l z\ > ct (0 < t < t0)

Proof, (i) We have of course

using (2.2.2) we get

3/9! 1 - a,

On the other hand provided that c is large enough w e have

(2.2.3) 1 - z ζ| ̂  C|l - l z\ ̂  C(l

for (z, ζ) in the required range. From this (i) follows,
(ii) If we set
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= (x1 + ίyί9 x2 + iy2)

The kernel Pz(ζ) becomes

= c-
[(1 - x, + α?^ -

and we deduce that

1 - x2a2 - y2β2f + (xβ, -

but we have:

and also using (2.2.2)

— I ̂  IV / 2

1 - α ,
^ CVΎ ζ 6 5,(

From this and (2.2.3) it follows that for z, ζ in the required range
we wave

da2

CVΊ
l-z 15/2 l z ιi -

and this proves the lemma.

2 3 . Proof of Theorem 2*1*1* Our construction of the function
F of Theorem 2.1.1 from the function /eBMO(3J2) is based on the
following:

PROPOSITION 2.3.1. Let f e BMO (dB) then there exists μ some
Carleson measure in B such that

(2.3.1) .P.(Qdμ(z)eL-(B).
B

Conversely if μ is a Carleson measure and f satisfies (2.3.1) then
f 6 BMO (dB)

A very easy proof of the above proposition can be given if we
use the BMO, Hι duality (cf. [5]). Alternatively, Carleson's argu-
ment can be adapted in this setting to give a direct proof. (This
was done by Y. Meyer, unpublished.) At any rate we intend to take
it for granted.

Let us define (in analogy with §1.3)
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hU)(\n\) z,ueB

where \z\2 = | ^ i | 2 + zx\
2, of course, and where χ ( |β |,i, is the charac-

teristic function of the interval (\z\, 1).
Let now / 6 BMO (dB) be given and let μ be some Carleson measure

t h a t satisfies (2.3.1) and let us define

F(u) = \ Pz(u)dμ(z), ueB; g(ζ) = ( Pz(ζ)d \ μ \ (z) , ζedB.
JzeB JzeB

It is an easy matter to verify then just as in §1.3 that FeL?0C(B)
that

(2.3.2) )?
\\u\

and that

(2.3.3) lim F(pζ) = \ Pz{ζ)dμ{z)
P-*l JzeB

for all ζedB such that g(ζ) < + °°. We have then:

LEMMA 2.3.1. Let F be defined as above, then \DF\ (interpreted

in the sense of the distribution theory of B) is a Carleson measure

of B.

Observe that by the remarks made in §2.1 the conclusion of the
lemma is independent of the particular choice of vector fields v0} μϋ,
μlf μ2 that we take. The proof of the lemma will be given in several
distinct steps.

The first thing we do is to observe that there exists some Nhd.
Ω of 1 in C2 which (β19 a2, β2), the local coordinats of Ω Π 5B and
p = I u I form a set of local coordinates of u = pζ 6 Ω, ζ = (β19 ct2, β2) e
dB. We shall use these local coordinates to take partial derivatives
in Ω. Let now Pz(u) be as above and let us define for each fixed zeB
the partial derivatives with respect to djdp, djdβlf of Pz{u) (con-
sidered as a function of u = (p, β19 a2, β2)) in the sense of distribution
theory in Ω f] B. We have then:

L E M M A 2 .3.2. For each fixed zeB the following distributions

„<.> _ dP.(u). <z) _ dPz(u) .
(Jχ f Q2 9

dp dβ1

da2 dβ2
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a\

are measures in Ω Π B. Furthermore there exist two positive con-
stants C and c such that

( 2 . 3 . 4 ) \ σ [ z ) \ ( B h ( l ) ) ^ C l ^ ΐ r g δ , z = ( r , 0 ) O ^ r ^ l V& > 0

(2.3.5) I σ< > I (£* (1)) ^ C — - ^ — - , 1 ^ i ^ 5

/or αZi « 6 J5 α^d A > 0 that satisfy

(2.3.6) | l - l - s | . ^ c & .

The proof of the above lemma which consists of eight distinct
parts will be deferred until the next paragraph.

Let Ω be some Nhd of 1 in C2 in which we have our local
coordinates (p, βlf a29 β2). If Ω is small enough we can take our
normal field v0 (cf. §2.1)

v0 - -1- in Ω
dp

and we can also choose our fields μ0, μ19 μ2 such that

(2.3.7) Λ = - ^ - » ^ = ^Γ' V* = 4ϊ
dβ, da2 dβ2

at the point 1.
Let us denote by:

which are vector fields in Ω. (2.3.7) implies then that:

(2.3.8) μt = μ\ + Σ ^ ^ ί i = 0, 1, 2 .
i=i

where ai5 are functions in β that satisfy

(2.3.9) aiS(v) = 0(| 1 - u|) %6fl

where | | indicates of course the Euclidean distance in C\ For every
fixed z e B we can now take the derivatives μi(Pz(u) in the sense of
distribution theory of Pz(u) (considered as a function of u e B) along
the fields μt(i = 0,1,2). The distributions μt(Ps(u)) are in fact
measures. Let us denote
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We have then:

LEMMA 2.3.3. The measures τ[z)(l <; i <^ 4) satisfy the following
relations:

(2.3.10) τ^{Bh(l)) SC z = (r,0) r > 0 h>0

(2.3.11) ί-{f)(

Proof. For i = 1,2 both the above inequalities are immediate
consequences of Lemma 2.3.2 a for i = 3, 4 we have to be but little
more careful because of the factor (1 — p)~1/2. We shall give the
proof for i = 3, the proof for i — 4 is identical. Using (2.3.8) and
(2.3.9) we see that

(This is the only point where σ{

b

z) is used and the extra factor
(β\ + al + βϊ)1/2 is supplied by (2.3.9).) (2.3.10) follows then again by
Lemma 2.3.2.

Using again (2.3.8) and (2.3.9) we see that

A(P.(0) ^ C[\μ[(Pz(ζ))\ + \μ[{Pz{ζ))\ + VT\μ[{Pz{ζ))]

for all ζeBh(l). (Observe that ζeJ3,(l) we have
From this and Lemma 2.2.1 we deduce that

(2.3.12)
II - l z 15/2

for all ζ6Bh(l) and all zeB that satisfies 11 — 1 z\ > ch, where c
is as in Lemma 2.2.1. Inequality (2.3.11) follows then from (2.3.12)
exactly as in §2.4 (proof of 2.3.5 ίoτ σ\?\ This completes the proof
of Lemma 2.3.3.

Let us finally remark that once we have passed to the fields
μ0, μlf μ2 it is no longer necessary to keep z of the form (r, 0) ( 0 ^ r < l )
in (2.3.10). Indeed, the situation is invariant by rotation and therefore
we deduce that

(2.3.13) τ^{Bh{l)) r g C ; l r g i ^ 4 , zeB, h>0 .

The only provision being that h should be small enough for Bh{\) to
stay in some set where the fields μί9 μ2 can be defined.

It is clear now from the definition of F(u) that if we take the
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derivatives of F in the distribution sense in Ω Π B we obtain:

= \ τfdμ{z)
JzeB

Σt=(l- p)-l'WF) = \ Λz)

JzeB

Σt = (l- pΓ'WF) = \ .τϊ'
JzeB

It is also clear from Lemma 2.3.2 that 2^(1 <̂  i <: 4) are measures

in Ω Π B we have then

LEMMA 2.3.4. There exists a constant c that depends only on
μ such that

c/ι2 Vh>0.

Proof of Lemma 2.3.4. Let h > 0 be arbitrary but fixed and
let us define the following measures

τϊβ)\d\μ\(z) l ^ i ^ 4

τ^\d\μ\(z) l ^ ί ^ 4

where c is as in (2.3.6).
We have then clearly:

(2.3.14) I Σ< I (J5Γ(1)) ^ ^ ( ^ ( 1 ) ) + 0,(^(1)) , 1 ^ i S 4 , h > 0 .

We also have by (2.3.13)

\
ll-l zlSck

From this and the hypothesis on μ it follows that

(2.3.15) Pi(B7(l)) g ch*.

We have similarly

( \τy\(B7(ΐ))d\μ\(z)



BMO FUNCTIONS AND THE ^-EQUATION 245

where we denote by:

F ( t ) = \μ\{zeB; |1 - l z\ ^t} .

But by our hypothesis we have

F(t) ^ ct2.

An integration by parts in the last member of (2.3.16) gives then
at once that

(2.3.17) Qt(Bΐ(l)) ^ eh2.

And if we combine (2.3.14), (2.3.15) and (2.3.17) we obtain our lemma.
We can now give the

Proof of Lemma 2.3.1. It follows from Lemma 2.3.4 that:

(2.3.18) \DF\(BΪ(l))£Ch*9

where C is a constant that only depends on μ and in fact only on
the Carleson constant of μ which in turn only depends on the BMO
norm of the original function /. Since that norm is rotation invariant
we see that we can rotate (2.3.18) and finally obtain the Carleson
condition

Ch2 VζoedB h>0.

This proves the lemma.

Proof of Theorem 2.1.1. To satisfy the conditons (i), (ii), and
(iii) of Theorem 2.1.1 we only have to modify the definition of Pz in
a manner analogous to the one in (2.3.12). This makes the function
F infinitely differentiate. Conditions (i), (ii), and (iii) follow then
from (2.3.2), (2.3.3), and Lemma 2.3.1. The verification of (iv) has
to be done separately but for the same reasons as before it will be
omitted.

2*4 Proof of Lemma 2*3*2*

The proof for σ[z\ For every fixed zeB, σ[z) is seen at once to
be the 3-dimensional Lebesgue on the sphere dBhι — {u = \z\ζ; ζedB}
multiplied by the function Pz(ζ). (2.3.4) follows therefore from the
fact that | |P , I Una*) = 1- On the other hand:

£ Λ sup
c J B d
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But for 1 — I z I > h we also have σ[z)(Bh(l)) = 0 and for z e B satisfying
(2.3.6) with c > 0 large enough we have

and from this, (2.3.5) follows.

Proof of (2.3.5) for σ{

2

z\ σ[z\ σ\z\ and σ[z). That σ{

2'\ σ[z\ σ[z\ and
σ[z) are all measures is evident. We have further

ch3

ip
Ce5A(t) l l - l sl

in the required range by Lemma 2.2.1 (i), provided that c is large
enough in (2.3.6) which is the required result for σ%\ We also have
for i = 3, 4

I Bh(l) \
l-h

C

sup
ζeBh(l)

dPΛO
da. dβ, 1}

Ch!5/2

in the required range by Lemma 2.2.1(ii). We finally have

(
I*I

sup

h\l- |z|)1/2

:

CVT
1 - l zl - 1 « |5/2

again by Lemma 2.2.1 (observe that the βu az, βit which are the local
coordinates of ζ in Bh(l), are bounded by τ/7Γ). To complete the
proof it suffices to prove (2.3.4) for i = 2, 3, 4, 5. Towards that we
shall show that:

(2.4.1) = (r,0) O g r g l ,

where Ω is some fixed Nhd of 1 in C2 (in which we have our local
coordinates).

Since z = (r, 0) we have:

P = P,(ζ) = C- (1 - r2)2

(2.4.2)
[(1 - r + rcO2 + r2

(1 ~ r2)2

~ [(1 - r + r(/32 + αj + βt)Y + r'βlf

Proof of (2.4.1) for i = 2. Using Fubini's theorem we obtain
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dP
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(2.4.3)
dβ,

dβida2dβ2

5P
dβ,

(βlf a2J β2) dft

where the integration in β19 a2, β2 ranges through some fixed small
cube (depending only on Ω).

Now it is clear that for every fixed a2, β2 in the range of integra-
tion we can split the range of integration in βλ into N intervals on
each of which P(ft, ct2, β2) is a monotone function of βί9 N, the
number of intervals, is bounded by some numerical constant.

From this we deduce that for every fixed a2, β2 in the range of
integration we have

3P
(ft, α» β2)

Using (2.4.2) to get the above max and substituting its value in
(2.4.3) We finally obtain

σ{

2

z) I (Ω rf \ [
J3[(l -J[(l - r) + at +

which gives the required result.

^ C, 0 ^ r ^

Proof of (2.4.1) for i = 3. The argument runs as before. A
use of Fubini gives that

|<7i*> I (Ω n B) £ C p)~1/2dp dP,
da.

dβ1da2dβ2

- r) 1 / 2 f ( Max |P,(ft, ai9

because here again Pz as a function of a2 for fixed /Si and β2 is
monotone in "finitely many pieces." If again we obtain the maximum
from (2.4.2) and substitute it in the above integral we obtain

dftdft

[(t + R2)2 + R2 cos2 φf

where we have set 1 — r = t. But

Rdφ < 9f Rdφ
[(ί + i22)2 + Λ2 cos2 i? 2 ) 2

< C
sin φ dφ

[(ί [(t +
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as we obtain by the substitution R cos φ = σ. The substitution σ —
(t + R2)S in the last integral gives therefore that:

β dS

A final substtituion R = VtR* implies therefore the required result.

The proof of (2.4.1) for i = 4 is identical. It remains therefore to
give the

Proof of (2.4.1) for i = 5. A use of Fubini gives as before:

i (jjβ) | ( ΰ n ΰ ) ^ a\ + /9^1/2

(2.4.4) dβ,

We shall estimate the two integrals separately. The first one can be
estimates as in the proof of (2.4.1) for i = 2 by:

(aϊ

To estimate

dβ,

we have to use once more the fact for fixed <x2 and βz the function
Pz is monotone in each of N disjointed intervals (N ^ C) and to
integrate by parts on each interval. We obtain therefore

^
3/Si

,ύ φ l a x |AP,GSlf α» /52)|
L it

But we have as before:

(1 - rY'2[[ Max \β1Pz{βι, a2, β2)\da2dβ2 ^ C

and also

— V

, ^ 2 , β2)dβ1da2dβ2 ^ C .



BMO FUNCTIONS AND THE 3-EQUATION 249

If we substitute all these estimates back in (2.4.4) we obtain the
required result.

2*5* Proof of the converse of Theorem 2*1*1. The proof of
Theorem 2.1.2 is identical to the proof of Theorem 1.1.2(ii), and will
be therefore omitted. Before we give the proof of Theorem 2.1.3
we shall prove the following geometric

LEMMA 2.5.1. Let 3ί = {p < 0} be a strictly pseudoconvex domain

and let us suppose that F eC\&) is such that \DF\dV is a Carleson

measure (dV denotes the volume elemeot in &). Let us consider

the following two forms:

dF = Σ a^i
i

-y==^p A dF = Σ aiSdzt A dzό .
V\ρ\ i<j

Then the measures

Li<3

are both Carleson measures in £&.

Proof. That μ is a Carleson measure is immediate. To prove
that v is a Carleson measure we have to choose a special set of
coordinates on the cotangent space.

Let vQ and μQ be as in §2.1 and let us choose μιt μ2, -- ,/V-i
smooth vector fields in some Nhd Ω of some point ζ0 e dJ3? such that
the fields

(2.5.1) v09 JvQ, μίf Jμlt μ2, Jμ2, , μn_lf Jμ%_,

form an orthonormal basis of the tangent space at every point of
Ω. Such a choice is clearly possible. Let us then choose differential
forms ω0, ωlf , (ύn_γ in Ω such that the forms

ω0, —Jω0, ωlf ~Jωlf

form a basis of the cotangent space that is dual to the basis (2.5.1)
(we denote of course Jω(X) = ω(JX)). The complex differential forms

(2.5.2) ωQ ± iJω0, ω, ± iJωlf , ω%_x ± i

form then a basis of the complexified cotangent space and since dp
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is proportional to o)Q it follows that

(2.5.3) ω0 + iJω0 = kdp; ω0 — iJα)0 = ldρ ,

where A; and I are smooth functions.
Let us now express di*7 and βF in terms of the basis (2.5.2).

We obtain then

n—1 %—1

+ ί JO)j)

+

To prove that v is a Carleson measure it suffices therefore to prove
that

is a Carleson measure. But we have

2ad = dF(μό + iJμd) = μs(F) + %Jμs(F) (j ^ 1)

(i.e., αy involves only complex tangential derivatives of F) and this
of course together with the hypothesis on F completes the proof of
the lemma.

We shall also need the following two facts about functions and
distributions of analytic type on BB the boundary of the complex
ballJScC".

PROPOSITION 2.5.1. (i) Let feLι(dB) and let us suppose that:

\

for all ψ smooth in some Nhd of B and of type (n, n — 2). Then
f is of analytic type.

(ii) Let us denote by P the orthogonal projection of L\dB) on
the subspace

H\dB) = {feL\dB)\ of analytic type} ,

Then P[BMO(dB)] c BM0(3£).

Part (i) is standard and well known (cf. [10], [18]). Part (ii)
holds because P is given by the Szego kernel that is a singular integral
operator (cf. [17]). Both parts (i) and (ii) hold for general strictly
pseudoconvex domains, although part (ii) is much harder to show in
general.



B.M.O. FUNCTIONS AND THE ^-EQUATION 251

Proof of Theorem 2.1.3(i). We can now give the proof of Theorem
2.1.3(i). Towards that we shall suppose in addition that SeG°°(3jB)
and we shall prove the a priori estimate

(2.5.4) \\S\Uo^CK(\DF\dV)

where K(\DF\dV) denotes the constant involved in the definition of
the Garleson measure. Once the estimate (2.5.4) is .known, Theorem
2.1.3(i) follows at once by an easy regularisation process.

Let then F be as in the theorem using then our hypothesis on
F, Lemma 2.5.1 and Theorem S.l.l(i). It follows that there exists
some φeΊMO(dB) such that:

\\φ\Uo^CK(\DF\dV)

and such that:

[ φ Λ ψ = ί βF A ψ
)dB JB

for all form ψ, smooth and 9-closed, in some Nhd of B of type
(n, n - 1).

On the other hand an easy use of Stokes's theorem in the ball
Bp = {zeCn; \z\ 5ΞJ p) and a passage to the limit as p—+l gives us

\ S Λ f = 1 9F Λ ψ
J8B JB

for the same class of ψ's as above.
We conclude therefore that:

( (8 - φ) A ψ = 0
JdB

again for the same ψ's, and from that and Proposition 2.5.1(i) we
conclude that there exists some function a of analytic type such that

(2.5.5) S• = φ + a .

But the hypothesis of our theorem are clearly stable by complex
conjugation. We conclude therefore that there exist ψ and a such
that a is of analytic type and such that:

(2.5.6) S = φ + a

From (2.5.5) and (2.5.6) we conclude therefore that:

S = (I - P)(φ + a) + P(φ + S)

= (I - P)φ + P(φ) + P(S)
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but a being the complex conjugate of an analytic function, it follows
that P(a) is a constant; and since constants do not affect the BMO
norm (|| ||BMO It is not a norm, it is only a norm on functions
modulo constants.). We obtain

IISIIBMO ^ 11(1 - P)<P\\BMO + ||P(9)IIBMO

and (2.5.4) follows then from Proposition 2.5.1(ii).
For the proof of the second part of the theorem we shall need

the following.

LEMMA 2.5.2. The exists some ω e CZn-i(Cn) such that

\ φω = \ φ(ζ)dσ(ζ) Vφ e C~(dB)
JdB JζBdB

where dσ is the normalised Lebesgue measure on dB.

Proof. Let π = zndzι A dz2 A Λ dzn A dz1 A Λ dzn^. It
is clear then by Stokes's theorem that

ί ^ 0 .
JdB

π determines then some XeM(dB) by the equation

(2.5.7) ( φπ = [ φ(QdX(ζ) Vφ e C~(3B) .
JdB JζedB

Let now asSU(n) be some complex rotation on Cn and denote by
πα e Cn,n-ι{C%) the form πa = a*(π) where:

a: z > az .

Let us also denote by λα the measure that is determined by dB from
πa by the analogue of (2.5.7) and let us define

ω = ί πada e CZn-ι(Cn); λ = ( Xada e M(dB)
JcceSU(n) JaeSU(n)

where da denotes the normalized Haar measure on SU(n). dμ is
rotation invariant and it satisfies

(2.5.8) ( φω - ( φ(Qdμ(ζ) Vφ e C°°(dB)
JdB JζedB

\ dμ = \ dX — \ π Φ 0
idB JdB JdB

dμ is therefore proportional to the normalised uniform measure on
dB dσ and (2.5.8) proves the lemma.
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Proof of Theorem 2.1.3(i) Let us suppose that F and S are as
in the theorem and let us suppose in addition the SeC°°(dB).

Let f(z) be an analytic polynomial in z e C\ We see then by
an easy application of Stokes's theorem to BP = {z e Cn; \ z | ^ p} and
a passage to the limit as p —> 1 that

fSdσ(ζ) =\ fSω=\ fiifFω)
B JdB JB

and therefore:

\/dF Λ ω Λ

By our hypothesis on F it follows therefore that

(2.5.9) I ί /Sdσ(ζ)
IJζedB

^CK\\f\\LHSB)

where C is a numerical constant and K is the constant associated to
the Carleson measure (| VF\ + \ F\)dV. From (2.5.9) it follows therefore
that there exists φ, Θ e L™(dB) such that

and θ is orthogonal to every analytic polynomial in L\dB). Let P
now by the projection of Proposition 2.5.1(ii). We have then Pθ = 0
and therefore

S = PS = Pφ

by our hypothesis on S. And this implies by Proposition 2.5.1 (ii)
that:

and with this a priori estimate we can complete the proof of
Theorem 2.1.3 at once.

Part 3* The 9-equation and the Corona problem*

3*1Φ Statement of the results* One novelty in this paragraph
will be the systematic use of differential forms. Let ΩaCn be an
open subset. We shall then denote by C~q(Ω) and Ls

p,q(Ω) the
differential forms of type (p, q) in Ω with coefficients in C°° and L8

respectively. We shall also denote by Mp>g(Ω) the "differential
forms" in Ω with coefficients in M(Ω), the space of bounded measures
in Ω. Strictly speaking Mp>q(Ω) is not a space of forms but a space
of currents, but we shall ignore this complication here and will not
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use the (irrelevant for our purposes) formalism of currents. (We
shall tacidly identify currents of degree 0 with distributions.)

The only thing that has to be correctly understood is the
meaning of the form dμ for:

^ = Σ Pi,jdzj A dzj 6 Mp>q(Ω); μz>J e M(Ω) VI, / .
I,J

We shall simply define9.

3j" = Σ ^^-dz, A dzj A dzj e &P,q+y{Ω)
i>j>a σZi

where the derivatives dμIyJjdzi are taken in the sense of distribution
of Ω 3ί\Ω). We can verify that dμ satisfies all the obvious formal
properties.

We shall use the notation Cp,q(K) where K is a closed subset of
Cw to indicate the space of (p, q) forms defined and smooth in some
Nhd of K.

Together with the above spaces of forms we shall need to
consider spaces of forms on 3 ^ , the boundary of a strongly
pseudoconvex domain 2fm e.g., we shall need to consider the spaces
Cp,q(d^) (resp. BWQPtq(dB), L8

p,q(dB)). These are not spaces of forms
on the differential manifold d&\ they are spaces of forms in Cn

(this is why we are allowed to talk about the type (p, q) which
comes about from the 9, d decomposition), but the coefficients are
only defined on d& and are C°°(dJ5) (resp. BMO(dJS), L8(3B)) functions
on dB, using the editoriolizing language of the topologists C£q(dB)
is a C°° section of Λp>qT*{C%) over d&.

Before we can state our main theorem we shall need to introduce
the following definition. Let

j " = Σ fr.jdzz A dzj 6 Mp,q(&)
I,J

where & = {p < 0} is as in §1.1. We shall say that μ satisfies the
Carleson condition if the measure μ — Σ I , J I £*/,/! a n ( * the measure
y = ΈJI,J I vi,J I a r e Carleson measures in <2ϊ, where we denote

= ΣΣ
1/2μ Adpe

We have then:

THEOREM 3.1.1.
( i ) Let μ 6 Mv,q(ϊ2f) (q ^ 1) satisfy the Carleson condition and

be such that dμ — 0 in <2tm Then there exists some g e
such that
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(3.1.1) ^ g A ψ = Jo μ

for all <f e CZ-v,n-q{&) that satisfy dψ = 0 in some Nhd of t&
(ii) Conversely let us suppose that g e B M O ^ ^ d ^ ) .

ίfeere exists μ 6 ilfJ,,g(^r) α form that satisfies the Carleson conaotion
in & and feL°°(d££?) such that:

/or αίί ψ e C^_^,%_(ί(^
r) t/iαί satisfies dψ = 0 m some Nhd o/ ^ .

Equation (3.1.1) is, of course, a global formulation of the so-
called 36-problem.

When the dimension of the space n = 1, Theorem 3.1.1 (i) can
be improved and we can choose g e LΓ(d3ί) cf. [2], [9], and this is
crucial for the proof of the Corona theorem.

THEOREM 3.1.2. Let B be the unit ball in C2. Then there exists
some f 6 C"Λ(B) such that df = 0 and such that the form f satisfies
the Carleson condition and such that whenever u e U{dB) satisfies
the equation

\ u A ψ = \ / Λ φ
JoB JB

for all φ e C?Λ(B) that are d-closed in some Nhd of B then

ess sup I u I — + co .

Another way to express the above theorem is to say that the dbu — μ
problem for μ satisfying the Garleson condition is not always solvable
in L°°(dB).

3*2* The Henkin construction* In this paragraph we shall
content ourselves in recalling and explicitating some of Henkin's
notations and theorems from [7]. They will be basic for the proof
of Theorem 3.1.1 (i).

Let &c.Cn and p be as before and (following Henkin) let us
suppose for simplicity that <2ί is in fact strictly convex.

We shall denote then

, z) = Σ P/Λί, s)(Ck - *k); v = {Pi, v»

) = Σ pί(C, «)(C* - «*); ί>* = ipf, P
k
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where

A(C z) = | ^ ( ζ ) ; pϊ(ζ, z) = Pk(z, ζ)

We set ω(ζ) = Λ?=idζ* and we orient Cn by

Let 17 = (ηίf η2, , 77J = ^(ζ, z, λ) be a smooth vector valued function
of ζ, 2eC% and the real parameter λ. We set then

The differential form ω\η) A co{ζ) A o)(z) = θ may be decomposed
then as the sum.

θ = Σ>;(τ?) Λ α>(ζ) Λ ω(z)

where α̂ O?) is a form of degree q with respect to ώz and, corres-
pondingly of degree (n — q — 1) with respect to dζ and dX. We
shall further write

- 3) = Σ ωP(ζ + «)
p = 0

where ωp(ζ + z) is a form of type {p, 0) in 2 and of type (n — p, 0)
in ζ. We shall now introduce the following definition. We shall say
that / e Q ? ( 3 ^ ) satisfies dbf — 0 if / admits some C°° extension /
in some Nhd of 3ϊ such that

(3.2.1) 3/ = dp A h + pk

in some Nhd of d3$ where h and k are forms defined in some Nhd
of d3f (observe that the above definition is independent of the
particular extension / cf. [13]). We shall also introduce the follow-
ing condition which is stronger than the condition dbf = 0. Let
feLi,q(d&). We shall say that Hb(f) = 0 if

(3.2.2) ( fAφ = 0

for all φ e Cί_ί?>%_g_1(3^Γ) such that dhφ = 0. (Notice that we do not
attempt to give an intrinsic meaning to Hb(f) or to dhf, as far as
we are concerned dbf = 0 and Hb(f) = 0 are just abbreviations for
(3.2.1) and (3.2.2).)

G. M. Henkin has proved in [7] the following basic:
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THEOREM (Henkin). Let feC£q(d&) be such that Hbf = 0, and
q < n. Let us define

(3.2.3)

0 = \ /(O Λ ω',J(l - λ ) i f ^ + λ ^ ^ H l Λ ωp(ζ + z) .
J ( A 3 [ ] L φ(ζ, Z) φ (ζ, £)J

g£L\Λ_γ(d!3$) and g satisfies the equation:

(3.2.4) ( g Λdφ = c\ fΛφ

/or αii 9> G C7l_p,,ι_g_1(^r), where C Φ 0 is <x constant that defends
only on n, p, q.

We shall specialise now the above formulas to n — 2, p = 2,
g = 1. We have then

ω\η) - ηλdη2 - y2dVι

from which it readily follows that

4-
*(ζ, z)

where % is a form that involves dζ. On the other hand ω2(z + ζ) is
equal to dzι A dz2. If we substitute the above expressions in the
formula (3.2.3) of Henkin's theorem we obtain:

r ^ \ ! Λ dz2

where of course:

/(ζ) - f&Qdζ, A άζ2 A dlt + MQdζ, A dζ2 A dζ2 .

We shall now specialise further and suppose that & — B, the interior
of the unit ball, and that ^(ζ) = | ζ j 2 + |ζ 2 | 2 - 1. We have then:

Pι(ζ, z) - ζ, pf (ζ, z) = z< i = 1, 2

w i t h t h e u s u a l n o t a t i o n ζ z = Zt'ZL + ζ2 z2 a n d C-C = ICi2- We
d e d u c e t h a t :

P2P? =

φφ*

let us then set:
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K(z, ζ) = *J

K1(z,O= , K 2 =
| l - ζ z|

which are all well defined for z, ζ e B except when z = ζ e dB. We
have then:

Z) ζ )

ζ) = gt = zjίiz, ζ) z, ζ)

and by an easy computation we obtain that for ζ e dB:

dzt

3K, __y
dz2

ζ211 ~ιz
•α- ?.,)

•α - ί.*)

dz2

and the analogous expressions for K2. From the above we conclude that

T — dKj dp _ dKj dp _ / \\i+ir

and

(3.2.5)

where

(T ^^
dzγ

7 K
Z2XVι

+ z

dp
dz2

1 Zγ

Ί i
f M2

M

M

dK
dz2

A2 +

ζ

- ζ
+ M

i = Zi

2 ~~ ^

9^

^ 11 Γ

2 - 1
2|2(1 - ζ 3)

. ^ ^ • ^

l2d - C «)

* + * A

| i _ r z 2ί
^ I 2

1 — ζ'Z)
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• (z ζ - D 2

Let us now denote by

(3.2.6) T: L\Λ(dB) — > C°°(B)

the linear mapping:

Tf(z) = ̂  \ K(z,

where C is the constant of equation (3.2.4). If we take the deriva-
tives of Tf with respect to 2 we see that the coordinates of FTf
can be expressed as a linear combination (with coefficient functions
in C°°(2?), i.e., C°° up to the boundary) of following ten integrals

(3.2.7) \ Ki(zfζ)f(ζ); \ ψ±(z,ζ)f(ζ); \ Ά z , ζ)f{ζ)
JdB JdB dZj J3B dZj

with i, j = 1, 2.
Let us now denote by Ak(z, ζ) (k = 1, 2, 3, 4) the following four

kernels:

1 ' ' '. | l ~ ^ ζ | 2 ( l - ^ . ζ ) ' \l-z.ζ\(l-z.ζ)

for j = 1, 2. It follows then from the expressions of the derivatives
obtained above that the last two integrals in (3.2.7) can be expressed
as linear combinations with constant coefficients of integral of the
form:

(3.2.9) (1 - I s |T 1 / 2 ( Ak(z, C)α(C)ΛC) k = 1, 2, 3, 4

where a(ζ)eC°°(dB) (in fact α(ζ) is any of the four functions ζl9 ζ2,
ζx, ζ2 restricted to SB). We also have

LEMMA 3.2.1. Let feL\Λ{3B). Let us suppose that Hb(f)~0
and let us define Γ(z) e C°°(B) by the equation

d(Tf) Λ dp = Γ(z)dz1 A dz2 .

Γ(z) is then a linear combination with coefficients in C°°(B) (in fact
the coefficients are polynomials in z and z and are C00 in the whole
of C2) of the following four integrals.

\ Ki(ztζ)f(ζ); \ B(z, QC,/(C) i, j = 1, 2
JdB JdB
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1 — ζ z

2

2(1 — ζ-z)
B{z, ζ) =

Proof. The proof is an immediate consequence of the expres-
sion of L in (3.2.5) and the fact that our hypothesis Hb(f) = 0
implies that:

M3(z, ζ)/(ζ) = 0

3*3* Estimates on the kernels* In this paragraph we shall
make a number of estimates on the kernels that were introduced in
the previous paragraph.

LEMMA 3.3.1. The two kernels K, (i = 1, 2) defined in §3.2
satisfy the following conditions:

sup ( sup I K&ζ, ξ) I dσ(ζ) < + ̂
ζedB JζedB 0 < r < l

sup \ sup I Kt(rζ, ξ) I dσ(ζ) < + <*> .
ξedB JζedB 0 < r < l

Proof. The two kernels Klt K2, taken together, are rotation
invariant in the sense that if g e S Z7(2) is a complex rotation of C2

then we have

KAgz, gζ) = a™KHz, ζ) + 6^ f (« f ζ)

where a{g\ b{

g

ί} are constants that only depend on g. From this we
see that it suffices to show that:

(3.3.1)

(3.3.2)

( sup I K(rl, ζ) \ dσ(ζ)
JdB 0<r<l

< +

sup|2i:(rζ, l)\dσ(ζ)<
0 < < l

Introducing then the coordinates of § 2.1 ζ = (1 — ax + ift, ct2 + iβ2)
in some Nhd of 1. We see that (3.3.1) and (3.3.2) are both con-
sequences of the following two inequalities.

T 1-r
β\

(β\ < + ^
(1 - r + β\ + αj + /S2)2 + /S

where the integration is taken in some fixed cube of (βl9 cc2f β2)
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centered at the origin. Now we have:

JJJ {β\ + a\ + βty + β\

as an easy calculation readily shows. The change of variables
β\ + cc\ + β\ = R2, βx = R cos φ and then the change of variables
R cos φ — σ shows that:

sup
-Br\ 0<ί<l (t + ΛO2 +

dσ

Γ° sup I—^—\dσ

i22 + σ 2

and this completes the proof of the lemma.

As an immediate corollary of the above lemma we obtain the
following:

LEMMA 3.3.2. Let feC?fl(dB). Then there exists some constant
C such that:

(3.3.3) \Tf{z)\ ^C VzeB

we also have:

(3.3.4) Tf{rζ) —-* Tf(Q Vζ e dB

and the convergence in (3.3.4) is uniform with respect to ζ 6 dB.

Proof. (3.3.3) is an immediate consequence of the provious
lemma.

The convergence in (3.3.4) follows from the fact that:

II j ζ K , ζ) - κt(ζ, e)iu,Λ*(e)> — o

uniformly in ζ. The uniformity follows once more from the rotation
properties of the K/s that allow us to bring any ζ to the point 1.

In what follows we shall denote by S(z, ζ) any of the following
12 kernels:

(3.3.5) Kfa ζ) = **~^\% , i = 1, 2
| 1 — Q'Z\

rt S to (1 - 1 g I2)172 Re Im {ζ« - Zj} Re Im {1 - ζ z) i -
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(3.3.7)

where Re Im { } means that either the real or the imaginary part
in { } has to be taken. Let us now take as before the local
coordinates ζ = (1 — at + iβlf a2 + iβ2) in some Nhd of 1 on dB.
S(z, ζ) becomes then S(z; βίf a2, β2) a function of z and of the local
coordinates (βlf a2, β2). We have then:

LEMMA 3.3.3. Let S be as above, then there exists two positive
constants C and c such that:

( i ) j \S(z,ζ)\dσ(Q£C VzeB

(ii) For all h > 0 we have:

(3.3.8)

(3.3.9)

an
3A

da2

dS

for all (z, ζ) in the range

ζeBh(l);zeB Vz\ > ch .

Proof. ( i ) Using, as in the proof of Lemma 3.3.1, the rota-
tion properties of the above kernels we see that if we may suppose
in (i) that z = (r, 0) 0 < r < 1. When in (i) S is as in (3.3.5) our
assertion is already contained in Lemma 3.3.1. When it is one other
kernels an easy culculation shows that the integral in (i) is dominated
by a linear combination of the following two integrals:

- r + β\ + at + +

}

/ t

[(1 - r + β\ + al + βiγ + 13/2

where the integration range is some fixed cube in (βu a%, /S2). And
using the changes of variables β\ + a\ + β\ = Rz, βt = B cos φ and
then R cos φ = a. We can verify readily that the above two integrals
are uniformly bounded in 0 < r < 1 as required by the lemma.

(ii) Proof of (3.3.8): For S as in (3.3.5), (3.3.6), and (3.3.7)
we have respectively.

(3.3.10) ds
- Ln-c

z-
| l - ζ z | 2 \l-ζ-z\
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l ~ l 2 '

as
dβi

11

| i

c

1
-l-i

1 -

1 - I
z\*

l'Z\l

1
11

z - Cl(3.3.11) d S

(3.3.12)

and if we use the inequality:

(3.3.13) \ζ-z\^C\l-ζ z\i/2 zeB, ζedB

and the inequality:

(3.3.14) (1 - Iz | 2) ^ (7(1 - |zxl
2) ^ C | l - z j

which is valid in our range of ζ and z provided that c is large
enough. We obtain the inequality (3.3.8) in all three cases (3.3.10),
(3.3.11), and (3.3.12).

Proof of (3.3.9). For S as in (3.3.5), (3.3.6), and (3.3.7), we have
respectively:

(3.3.15)

(3.3.16) ^ ^ ^

(3.3.17)

9S
da% —

dS ^
da2

Γ

L 1

L

1

1

1 _ ζ

2 I l - C *

2;i3 11 — ζ

dS
< ca -

To obtain the inequalities (3.3.16), and (3.3.17) we use the same
calculation as in the proof of Lemma 2.2.1 (ii).

Using then (3.3.13), (3.3.14), and the same inequalities as in the
proof of Lemma 2.2.1 (ίi), we see that we obtain (3.3.9) in all three
cases (3.3.15), (3.3.16), and (3.3.17). dS/dβ2 behaves exactly as dS/da2.
We have finally:

LEMMA 3.3.4. Let S(z, ζ) be any one of the 12 kernels as in

(3.3.5), (3.3.6) or (3.3.7), and let μeM(B) be a bounded measure in

B, then the integral

/(ζ) = \ o S(z, ζ)dμ(z)
JzeB

converges absolutely for almost all ζedB and feL1(dB). If in
addition μ is a Carleson measure then f(ζ) e BMO (dB).
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Proof. Let us denote by

φ(Q = \\S(z,ζ)\d\μ\(z)

we have then

J s s φ(ζ)dσ(ζ) = 5C β ϊJ# β i |S(2, ζ)\d\μ\(z)dσ(ζ)

= \ .d\μ\(z)\ \S(z,ζ)\dσ(ζ)<+c
JzeB JζedB

by Lemma 3.3.3 (i). This proves the first part of our lemma.
To prove the second part we first observe that it suffices to

verify the BMO condition on the balls Bh(ΐ) centered at 1. Indeed
as we have already observed twice before, the kernel S(z, ζ) trans-
form into linear combinations of themselves under complex rotations,
and by an appropriate rotation we can bring any point ζo£dB to
the north pole 1.

Let h > 0 be arbitrary but fixed and let us denote by:

(ζ) = \ S(z, ζ)dμ(z)

Q = \ S(z, Qdμ(z)

where c is as in the Lemma 3.3.3.
We have then by our hypothesis on μ and by Lemma 3.3.3 (i):

(3.3.18) \ \m)\dσ{ζ) ^ C\μ\\{zeB; |1 - Vz\ ^ ch} ̂  Ch2 .
JBA(1)

By Lemma 3.3.3 (ii) we also have:

(3.3.19) I S(s, ί) - S(M) I S ̂ ^ ^ + j ^

for all

ζeBh(ΐ); zeB, [1 — 1 «| > cΛ .

We conclude therefore from (3.3.19) that:

(3.3.20) |/2(ζ) - Λ(l) I <ί Ch \" ΪΣβ + Ch1"
J ch f

where, as before, we denote:
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and if we integrate by parts in (3 3.20) and use the fact that
F(ί) ^ ct2, which is a consequence of our hypothesis, we conclude
that:

SC Vζeft(l)

which together with (3.3.18) implies that

and completes the proof of the lemma.

3 A. Proof of the first half of Theorem 3ΛΛ. Let
& — [p < o} be as before and let us denote by Σ M C ^ M ^ )

 t h e

space of forms μeMp>g(£&) that satisfy

\p\~1/2dp ΛμeMp>q(&).

We can then identify Cp,q, the space of (p, </)-forms that satisfy
the Carleson condition with a subspace of Σ?,? The two spaces
Σ P ) 9 and Cp,q have a natural norm.

For arbitrary / 6 C?Λ(dB) we shall denote

Qfiz) = d(Tf) A dz1 A dzz e CΐΛ(B)

where T is the mapping defined in (3.2.5). We have then

PROPOSITION 3.4.1. there exists

Λ(z, ζ) - (Λ(z, Qdzt + Λ2(z, ζ)dz2) Adz, A dz2

a vector kernel of type (2, 1) that is defined and smooth for zeB and

ζedB that has the following properties.

The integral:

is absolutely convergent for all j«eΣo,i and almost all ζedB and
it satisfies

( i ) \\μ\UHSB)^C\\μ\\Σ

( i i ) If μeC0Λ then j«eBMO(dB) and | | ^ | | B M O ( 3 B ) ύ \\μ\\0

(Hi) ί μΛQf=\ pf
JB JdB

for all feC%Λ{dB) that satisfies Hb(f) — 0.

Proof. Using a simple argment involving a partition of unity
we see that it suffices to prove the proposition locally.
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More explicitly it suffices to show that for all ζoe B there exists
Ω some Nhd of ζG in C2 and a kernel Λ(z, ζ) = ΛΩ(z,ζ) as in the
proposition such that the conclusion of the proposition holds for that
ΛQ and all μ as above that satisfy the additional hypothesis

(3.4.1) supp μ c Ω .

Let us fix therefore some ζoeJ5 and let us choose ωeCZQ(Ω) a
normalised (i.e., of length 1) differential form in a small enough
Nhd Ω of ζ0 such that

dp, dp, ω, ώ

form a basis of the complexified cotangent space at every point of
Ω (here of course p(z) = \ z |2 — 1 but we prefer to keep the general
notation).

Let also μ e Σo,i be arbitrary but satisfying (3.4.1):

μ = μMr + frdz2 = ββp + fi2ώ

By our hypothesis we have then:

(3.4.2)

and if we suppose in addition that μeC0>1 (satisfying the Carleson
condition) then the measures (3.4.2) are Carleson measures.

Let now / be as in part (iii) of our proposition. We have then:

dTf = Xdp + Yώ .

Using now (3.2.7), (3.2.8), and (3.2.9) we see that

(3.4.3) X(z) = I p(z) r». Σ β(z) \ S(z,
a,β,S JdB

where the summation extends over a finite number of kernels S(z, ζ)
taken out of the 12 kernels (3.3.5), (3.3.6), (3.3.7), and also a finite
number of a(ζ) that are polynomials in ζ and ζ and a finite number
of β(z) e C°°(J5) that are bounded and continuous in B.

Using Lemma 3.2.1 we also see that

= Σ β*(z)\ S*(z,
a*,β*,S* JdB

where the summation is as in (3.4.3).
We conclude therefore that for μ and / as above we have:

μΛdTf== (fi1Y - β2X)dp A ω = ( Θ(z,
JdB

where
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( , O = [A(«O Σ β*(z)S*(z, ζ)α*(ζ)
(3.4.4) "'*••*

- \(M\-utPJίz) Σ β(z)S(z, Qa(ζ)]dp A ώ .
a,β>8

If we express /?„ μ29 dp, and α> in terms of μlf μ2f dz1 and dz2 in
(3.4.4) we obtain

0(3, ζ) = (,M2 - jMi)o®i Λ dl2

where 4(2, ζ) and Λ2(2, ζ) (z e J3> ζ e dJB) are two well determined
kernels.

Let us then set:

4<?(z, ζ) = (Λ^z, ζ^dZi + Λ2(s, C)d«2) Λ dίδ,. Λ dz2 .

We have then

(3.4.5) θ(z, Q Λ rfβx Λ dz2 = /£(«) Λ Λ(s, 0

and -4̂  satisfies the conditions of (i) and (ii) in our proposition. To
see that, we observe that all the kernels in the summations of
(3.4.4) satisfy the conditions of Lemma 3.3.3. It suffices then to
use (3.4.2) to obtain our result.

(3.4.5) on the other hand implies that

μ Λ Qf(z) = ί μ(z) A ΛΩ(z, ζ) Λ /(ζ) .

It therefore follows that:

μ(z) A ΛΩ(z, ζ) Λ /(C)

(ί Mz) Λ Λ0{z, θ ) Λ /(ζ) - ί jδΛ(0/t0
ζedB \jzeB / JdB

and this proves part (iii) of the proposition.
Before we give the proof of Theorem 3.1.1 (i) we shall need two

lemmas.

LEMMA 3.4.1. For every feC?tl(dB) that satisfies Hb(f) = 0 we
have:

z e B J ζ e d B

/? ( QfAφ; VφeC°°(B)
dB r - l JdBr

where Br = {z e C2; | z \ ̂  r}.

Proof. We have by Stoker's theorem

= - j TfAdφAdz.Adz,.
)dB



268 N. TH. VAROPOULOS

But by Lemma 3.3.2 we also have

lim ( TfΛdφΛ dz1 A dz2 = \ Tf A dφ A dz, A dz2.
r-*l JdBr JdB

We deduce therefore that:

lim ( QfAφ=-\ TfAdφ AdzxA dz2 .
r-*ί JdBr JdB

But by Henkin's theorem in §3.2 we also have:

S TfAdφAdzίAdz2=-\ fAφ.
JdB JdB

From this our lemma follows.

LEMMA 3.4.2. Let f be as in Lemma 3.4.1. Then for all

u e C°°(B) the integral \ du A Qf is absolutely convergent and it

satisfies

(3.4.6) \ u Af=[ du A Qf .
JdB JB

Proof. The first part of the lemma follows from (3.2.7), (3.2.8),
and (3.2.9) which show that the behavior of Qf near the boundary
is controlled by \p\~1/2. To obtain (3.4.6) we use our previous lemma
and Stokes's theorem in Br and then let r —> 1; we have

( u A f = lim \ u A Qf = lim ( du A Qf = (. du A Qf.
JdB r-*l JdBr r-+l JBr JB

The following theorem is essentially due to Henkin [14].

THEOREM (Henkin). For every μ e Σo,i such that dμ = 0. We
have:

for all ψ € C2Λ(B) that satisfies dψ = 0 in some Nhd of B (jί is the
function defined in Proposition 3.4.1).

We shall give a quick proof of the above result making the
additional hypothesis that μeC™}1(B). Let μeC™Λ(B) and let us
suppose that dμ = 0 in some Nhd of B. Using then standard methods
we can find some ueC°°(B) such that

du = μ

in some Nhd of B.
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It follows therefore from Stokes's theorem that

(3.4.7) \ u A ψ = ( . μ A ψ
JdB JB

for all f as in the statement of the theorem.
But by Lemma 3.4.2 and Proposition 3.4.1 we also have:

(3.4.8) \ u A ψ = ί. μ A Qψ = [
JdB JB J3

for the same class of ψ's. From (3.4.7) and (3.4.8) therefore our
theorem follows. (Observe that the above ψ's satisfy Hb(ψ) = 0.)

The difficulty in obtaing the general case from the above lies
in the fact that the condition that determines the space Σo,i has a
singularity at the boundary. It is therefore not trivial to regularise
in that space (say by convolution) and to approximate a general
element of Σo,i by one that satisfies our special conditions. It can
be done however, the interested reader should look, for example,
in Skoda [16]. (In [16] Skoda has obtained formulas that are
equivalent to Henkin's and for the same purpose. Although I have
not gone through the details I am convinced that one could obtain
the BMO estimates from Skoda's formulas as well.)

It should be observed, however, that the above special case
which gives the solution with a priori estimates is sufficient for
most practical purposes.

Proof of Theorem 3.1.1 (i). It now suffices to combine the
above theorem (of Henkin) with Proposition (3.4.1) (ii) to obtain our
theorem.

3*5* Proof of the second part of Theorem 3*1Λ and the
Corona problem*

Proof of Theorem 3.1.1 (ii). Let g e BMO (dB). Then by Theorem
1.1.1 there exists some FeC°°(B) and feL°°(dB) such that

(3.5.1) ( (g - f) A φ = lim ( F Aφ Vφe C^Λ
JdB r->l JdBr

where Br = {z e C2; | z \ <; r], and such that

\DF\d(Vol)

is a Carleson measure in J5.
It follows therefore by Stokes's theorem and a simple passage

to the limit as r ^ l that
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\ (9 ~ f) Λ ψ = ( . dF A ψ Vφ e C°°(B)
JdB JB

provided that dφ = 0 in some Nhd of B.
But by Lemma 2.5.1 and our hypothesis on F it follows that

the form μ = dF satisfies the Carleson condition, and being trivially
d-closed we see that μ satisfies all the conditions of Theorem 3.1.1
(ii). This completes the proof.

Let us now consider the Hopf mapping

π: (zlf z2) > zjz2

which is defined for all (zlf z2) e dB, z2 Φ 0, and takes its values in
the complex plane C — R2. (We can in fact define π from the whole
of dB into the compactified complex plane CU°°, i.e., the Riemann
sphere, but we shall not need to do that here.)

Using that mapping we can give the following coordinates on
{dB; z2 Φ 0}.

1 1/1 + \u\2

z2 =
1/1 + \u\2

θ e [0, 2τr), i t e C .
We have then:

LEMMA 3.5.1. Let f(u) e BMO (R2), f g L°°(JB2) αwd o/ compact
support, and let us define:

/(Sl! «2) = /(^A) V(«i, Z2) 6 dB Z2ΦO

f(zl9 0) = 0 Vfo, 0) 6 95 .

Γfeê  /eBMO(aJS) and it cannot be decomposed in the form:

(3.5.2) f = φ + ψ; φe L°°(dB) , ψ e H\dB) .

Proof. To test the BMO condition on / observe that the
vector field μ0 runs along the fibers of the Hopf mapping, and that
therefore Bt(ζ0), a ball in dB centered at ζoedB, is essentially the
cartesian product of a ball Bft(H{ζ<)) in C = R2 centered at H(ζQ)
and of radius V t and of a segment of length t centered at ζ0 along
the fiber. Using the above the verification of the BMO condition
is immediate.

To see that the decomposition 3.5.2 is impossible, let us suppose
by contradiction that we could write

f(u) = φ(u, θ) + ψ(u, θ); φeL°°(3JB) , ψeH\dB)
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where we use the coordinates of the Hopf mapping introduced above.
It would then follow that:

(3.5.3) 2πf(u) = P φ(u, Θ)dθ + Γ ψ(u, θ)dθ
Jo Jo

S 2π

ψ(u, θ)dθ is at consant (in-
0

dependent of u). The expression (3.5.3) implies therefore that
/eL°°(3J5) which is in contradiction with the hypothesis. We can
now give the:

Proof of Theorem 3.5.2. Let us suppose, by contradiction, that
Theorem 3.5.2 fails.

Let v e BMO (dB) be an arbitrary BMO function. Then we know
by Theorem 3.1.1 (ii) that there exists some μeCOtl and some
weL°°(d&) that satisfy

dμ = 0 \ V Λφ ^ \ o μ Λ φ +\ W Λ φ
JdB JB JdB

for all φ e C?tl(B) that is 3-closed in some Nhd of B. By our con-
tradictory hypothesis it follows that there also exists some u e L°°(dB)
such that:

I u Λ φ = \ o μ Λ φ

JdB JB

for the same class of φ's as above. We conclude therefore that

r

I (v — u — w) A φ = 0
JdB

for the same φ's as above.
But from Proposition 2.5.1 it follows then that w + u — v is of

analytic type and that therefore we can write

v = Uι + a u,e L°°(dB) , a e H\dB)

and v being arbitrary, this contradicts Lemma 3.5.1 and proves our
theorem.

REMARK. If we choose v as in Lemma 3.5.1 we see that the
measure μ can be constructed without the use of Theorem 2.1.1.

Indeed to construct the function FeC^φ) whose boundary
values are v and for which |ZλFΊci(Vol) is a Carleson measure, it
suffices to construct the corresponding F in the interior of the
Riemann sphere (or in R\) and lift it up by the Hopf mapping
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(which readily extends to the interior of the ball). All one needs
then to do the above construction is the much easier Theorem 1.1.1

0).
The above considerations are not conclusive as far as the Corona

problem is concerned, they do show however that the classical ap-
proach breaks down at a very essential point!

In the positive direction we can use Theorem 3.1.1 (i) to prove
the following.

THEOREM. Let f19 f2 e H°°(B) be two bounded analytic functions

in B such that

VzeB.

Then there exist two holomorphic functions φίf φ2 in B that satisfy:

fiψi + fzφz = 1

SUP {ll^ζ) I|

The same holds for general strictly pseudoconvex domains.
The proof which is a straightforward but lengthy adaptation of

L. Carleson's one-dimensional proof (with the modifications of
L. Hδrmander) will be omitted.
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