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BMO FUNCTIONS AND THE 3-EQUATION

N. TH. VAROPOULOS

The o-equation associated with the Corona problem for
several complex variables is examined and the relation of
that equation with BMO functions on the boundary is brought
to light. A new characterisation, closely related with the
H' duality, for BMO functions is obtained.

0. Introduction. This paper came out of an unsuccessful attempt
to prove the Corona theorem for n-dimensions.

If we try to generalise L. Carleson’s 1-dimensional proof (with
the modifications. introduced by L. Hormander) (cf. [1], [2], [9]), we
come up against the following problem:

Solve the d-equation

ou =

in, say, the complex n-ball where £ is an arbitrary o-closed differ-
ential form that satisfies an appropriate Carleson condition and where
we require the solution u to have L* boundary values (also in an
appropriate sense, cf. [9]). ‘

We shall show in Part 3 of this paper that it is not always
possible to solve the above equation, and that the best we can
obtain in general for the boundary values of thé solution is'a BMO
condition.

However along the way a number of positive results will be
obtained. In Part 1 we obtain a new characterisation of BMO
functions which is closely related with the BMO, H' duality. -This
characterisation, grosso motto, runs as follows: f e L'(R") is a. BMO
function in R” if and only if it is the boundary value of some function
F defined in the upper half space R»™* such that

VF| =
7F = (35

+ I% )d(Vol)

is a Carleson measure. Exact statements will be given later. The
extension F' of f in the upper half space is mot, in general, the
harmonic extension and it is not easy to describe it explicitly.

In Part 2 the above results are generalised to the complex ball
and to general strictly pseudoconvex domains. This generalisation
is tedious but essentially routine.

In Part 3 the real “raison d’etre” of this characterisation appears
and it is used to study the d-equation and the Corona problem. It
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222 N. TH. VAROPOULOS

should be remarked however that for the proof of Theorem 3.1.2,
which is directly related to the Corona problem, the rather lengthy
and tedious Theorem 2.1.1 is not essentially (cf. the remark that
follows the proof of Theorem 3.1.2). All that one needs is the much
easier Theorem 1.1.1.

Part 1 uses entirely real variable methods. Part 2 uses some
of the geometry of pseudo-convex domains. Part 3 finally uses genuine
several complex variables methods and in particular the Henkin
Integral formulas.

Finally a few words about the style.

As it happens this paper is far too long. To avoid making it
longer still I have resorted to a few standard “tricks.” Often theorems
that are stated in full generality are only proved under some special
restrictive condition. This is especially applicable to strictly pseudo-
convex domains where all the explicit calculations are carried out
only for the complex ball and often only in C®. But hopefull the
reader who possesses some technique will be able to see without too
much difficulty how the proofs can be made to work in full generality.

Part 1. The real variable theory.

1.1. Statement of the results. In this paper we shall adopt
the notations of [15].

Let us recall that BMO (R") (or simply BMO) is the space of
measurable functions f on R™ that satisfy the following condition,

sup _LS \f = fildo < + oo

717 )
where I runs through all possible cubes of R* with sides parallel to
the axes, | I| denotes the volume of I and f; = |I |"S fdx, the average
of f over I. The key reference for BMO is [6]. ILet us also recall
that a measure £ on R (the interior of R"") is said to satisfy the
Carleson condition, or simply to be a Carleson measure, if:

LD -
SlIlp ¥i < +

where I is as before, || is the absolute value of ¢ and
I={( y)eRr; wel yc(,h)

where £ is the length of the side of I (ef. [3], [1], [15]).
The main result in this paragraph is summarised in the following

theorem.
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THEOREM 1.1.1. Let f € BMO (R") and let us suppose that f has
compact support. Then there exists an infinitely differentiable
function Fe C°°(1°£1+‘) that satisfies the following conditions.

(1) lim,, F(z, y) — f(x) € L=(R").

(ii) The measure

\PF|de dy = (Z

oF ]aF
IF| L 19F Nz g
oz 1oy ) Y

satisfies the Carleson condition.
(iii) There exists some g(x)e€ L'(R") such that

sup |F(z, )| £ g() .
(iv) |FF| = 0(1/y).

The above theorem has a number of converses that can be sum-
marised in the following theorems:

THEOREM 1.1.2. Let F(x, y)eC‘(Iii+ ) be a once continuously
differentiable function such that |VF|dxdy is a Carleson measure
and such that the limit

lim F(, y) = f(2)

exists for almost all x€ R*. Then the following assertions hold.
(i) If n =1 then f<BMO(R).
(ii) If n =2 is arbitrary but in addition we suppose that:
[PF| = 0(1/y) then feBMO (R").

It should be remarked here, once and for all, that the condition
|[PF| = 0(1/y), both in Theorem 1.1.1 and Theorem 1.1.2 is purely
technical and not very important in our context.

Let us denote by D = {2¢€C;|z| < 1} the complex disc.

THEOREM 1.1.8. Let F € CY(D) be a once continuously differentiable
Function in D (the interior of the complex disc) and let us denote
F (%) = F(re*),e?ecoD=T 0=r<1.

Let us suppose that |VF|dxdy ts a Carleson measure in D and that

F,— 8¢ 2'(02)

iwn the weak distribution topology o(=Z’, C).
Then we have:
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<P, 81 = ClI P,

for all dnal@tic polynomials P(z) = 3_a,2" where C is some con-
stant that is independent of P. a .

The notion of a Carleson measure in D is analogous to that of
R,
(P, S) indicates the scalar product ( sometimes abusively denoted
27
as (1/271')S P(e”)dS(&)) between &2’ and C=, and
. .

1Pl = —= | "1 P(e) s
27 Jo
denotes the L'(T) norm of P. Let Se¢.&'(R") be a temperate dis-

tribution. We say that S is of analytic type if
suppScC{& =0 i=1,2 -+, n)

we have then:

THEOREM 1.1.4. Let F e C(RL™) be a once continuously differen-
tiable function in Iii“ and let us suppose that |V F|dxdy is a Carleson
measure. Let us suppose that the continwous functions F,(x) =
F(x, y) converge to a distribution Se & '(R*) with compact support
when y— 0 (the convergence takes place in the weak distribution
topology).  Then we have

IS, )| = Clloll

for all infinite differentiable functions p, € S (R") of rapid decrease
at infinity and of anylytic type.

In §1.2 we shall give a direct and elementary proof of Theorem
1.1.1. In §1.3 we shall give an alternative approach to Theorem 1.1.1,
less elementary but which has the advantage that it generalises to
strictly pseudoconvex domains. In 1.4 we shall prove the converses
and examine the relation they bear with the Stein and Fefferman
BMO H* duality.

1.2. Proof of Theorem 1.1.1. We start with the slightly weaker

ProrosiTION 1.2.1. Let f € BMO (R") have compact support.  Then
there exists F e Ly (R*Y) and ge L(R") such that:

(@) lim,., F(z, y) — f(z) € L=(R").

() |F(x, )| = 9(»). V(x, y)e R

(c) |FF|, taken in the sense of distribution theory, s a Carleson
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measure in R

REMARK. In (a) and (b) what we mean of course is that there
exists a representative of F' in the class L3, for which (a) and (b)
hold.

For simplicity’s sake, we shall give the proof of Proposition 1.2.1
for m = 1, but the proof readily generalises to arbitrary dimension.

The proof of Proposition 1.2.1 depends on the following two
lemmas.

LeEmmA 1.2.1. Let fe€BMO (R) and let us suppose that supp f C
[0, 1] and that the average of f im [0,1] is 0. Then there exists a
Jamily Q of distinct closed diadic subintervals of [0, 1] and a cor-
responding family {a,€C; @€ 2} of complex numbers such that

1.2.1) la,| £C Ywef
(1.2.2) E_Ila)l < C|I| for all intervals I
(1.2.3) f(x) — %awxw(x) e L=(R)

where Yz denotes in general the characteristic function of the set E,
and C 18 a constant that depends only on the BMO norm of f.

LEMMA 1.2.2. Let f be as in Lemma 1.1.1 and let o,, o, be two
adjacent diadic intervals of equal length. We have then:

(1.2.4) 1fo, = Fol £C

where C 18 a constant that depends only on the BMO norm of f
and where we denote as before f, = 1/|o]| S fdzx.

REMARK. What is of some interest is that the conditions above,
(1.2.1)-(1.2.4) characterise B.M.O. functions. This is a consequence
of the proof below. (It can also be seen directly.)

Lemma 1.2.1, which, to my knowledge, has been proved for the
first time by J. Garnett (unpublished 1974) depends on a Calderon-
Zygmund argument, (stopping time) and holds also in the context
of diadic martingales. The proof will be omitted. Lemma 1.2.2 is
a trivial application of the BMO condition on the interval o, U o,.

Proof of Proposition 1.2.1. Let I = [a,a + k] be an arbitrary
interval and let us denote by

T={x,9;a<2<a+h, 0Sy=<hCR:
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the square in the upper half plane with I as base.
Let now f be as in Proposition 1.2.1 with # =1 and supp f C
[0,1]. Let 2 and {a,; ® e 2} be as in Lemma 1.2.1 and let us define

F(z, y) = Z a)s(x,y) VY, y)e R

which is a function defined in the upper half space with support in
unit square which is easily seen (by condition (1.2.2)) to belong to
L.(R%). We shall prove that F satisfies the conditions of Proposition
1.2.1.

Indeed if we define

o(@) = 3 7.

we have trivially:

(1.2.5) F(z,y)| = g() V(z,y)e R
(1.2.6) lim F(z, y) = Zgawxw p-prxeER.
y—0 e

Now condition (1.2.2) implies easily that g € L'(R) and from the above
we see that conditions (a) and (b) of Proposition 1.2.1 are satisfied.
Let us now denote:

in the sense of distribution theory.

It is an easy matter to see that g and v are bounded Radon
measures in R:. Indeed let I =[a, @ + k] be an arbitrary interval
of R, then oy;/ox (in the distribution sense) is the Lebesgue linear
measure concentrated on the two vertical segments {z = ¢, ¢ = y < h}
and {# =a + h, 0 < y < h} (with sign +1 in fact) and dy;/ox is the
Lebesgue linear measure on the horizontal segment {a <z <a-+h, y=~h}
(with sign —1). From this and conditions (1.2.1) and (1.2.2) it follows
that the two series

> aw@_X_ET_ S a(g%
s ox ace 0y

converge normally in M(R®) (the space of bounded measures in R2)
and this proves our assertion

To prove condition (c) we must verify separately the following
inequalities

1.2.7) IvI(D) = CII
(1.2.8) le|(D) = O[T
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for an arbitrary diadic interval I R with C some constant indepen-
dent of I.

From what has been said just above, the inequality (1.2.7)is an
immediate consequence of conditions (1.2.1) and (1.2.2). The inequality
(1.2.8) is harder however (condition (1.2.4) has to be used here). The
rest of the proof will be devoted to the proof of (1.2.8).

Let

I:I():[:—z%, pz_l;l] ngO pZO

be arbitrary and let us denote:

1:[20—1 _2] Iz[p_i_l_@_ir__%],
1 o 72n ’ 2 on ’ om

the two adjacent intervals. Let us denote:

r=>a% i=01,2.
wE€ 4 ax

wcl;

N = Zawax‘: weR w= I:_.Zl, b:l for some b > ﬁ_]:.
ox A on

)»Z:Zawamwe!) w:[a,p'*_ j‘ for some a < 2.
0% an A

(The intervals @ in A, and \, contain I, have a common end point with
I and are among the ones that have not already been counted in f,.)

0, = a2 e = [a,, ﬁ} for some o < 2—=
ox 2" A

0, =S a2 weo w:[p+ ,b] for some b>2+2
ox 2" "
(The intervals @ in p, p, have a common end point with I, have
empty intersection with @ and are among the ones that have not
already been counted in the &, 7 =1, 2.)
It is quite clear that to prove (1.2.8) it suffices to prove the
following inequalities.

£(1.2.9) (D)= ClII i=0,1,2
(1.2.10) v+ 0 (D) = ClI
(1.2.11) . + () = ClI) .

(1.2.9) is an immediate consequence of conditions (1.2.1) and (1.2.2).
Let us prove (1.2.10) the proof of (1.2.11) is identical. Let us consider
the measure
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0, = I)\’l + plle .

Then 6, can be computed explicitly. It is equal to the Lebesgue
linear measure on the vertical segment {x = »/2",0 < y £ 27"} mul-
tiplied by the constant k, = |I, — »,| where

L=>a, we co:[%,b] for some b>.7‘_’—2";—1
p—1
20

rn=>a, wWeL w:[a,%} for some a <

We must prove therefore that
(1.2.12) kL <C.
Towards that let us denote

m;, = >, 1=0,1,2
&
s= >, a, (0 is the interior of w).

pI2me B
wep

We have then:

f,=s+ll+%+hz

m,

fn=s+ntg

+ hy,
where h e L~(R) is the remainder term in (1.2.3). We conclude
therefore that:

ko= [l — | < 1fs — f| +‘—%'—]§|—'”—@i+c
and our assertion (1.2.12) follows then from (1.2.2) and (1.2.4).

We almost have a proof of Theorem 1.1.1 now. Indeed the
function F constructed above can be easily smoothed out in Iéi to
be made C>~ and satisfy conditions (i), (ii), and (iii). The only thing
that can give a little trouble is condition (iv). It can be shown that
provided that the smoothing out above is done with care we can
achieve condition (iv) also. We shall not do that however for two
reasons, firstly because condition (iv) is totally unessential and secondly
because we will be able to get condition (iv) for free (so to speak)
in our alternative approach in the next paragraph.

1.3. Alternative approach to Theorem 1.1,1. We shall give
here an alternative approach to Theorem 1.1.1. We shall treat the



BMO FUNCTIONS AND THE 3-EQUATION 229

compact case D = {z€C; |2]| = 1} of the complex unit disc. We do

that to avoid unnecessary complications at infinity and also because

this method is designed to generalise to bounded pseudoconvex domains,

and the dise is an (essentially the only) example of a pseudoconvex do-

main in C. The modifications needed to deal with R»** are rather easy.
The starting point of our approach is the following.

ProprosiTION 1.3.1. Let feBMO (0D) =BMO(T) (i.e., a 2n-
periodic BMO function on R), then there exists a Carleson measure
in D such that ’

(1.3.1) 1@ - P(0due) e L-GD) .
Conversely any function f that satisfies (1.8.1) s ¢ BMO fumnction

on the circle 0D. Here we denote:

L=z _ 1—7? _
PZ(C)‘CII—ZZIZ 61—2'r'cos(0—¢)+'r2 P.0)

where z =re*eD and { = ¢®caD, for the Poisson kernel of the
ctrele (¢ is the normalisation constant).

This Proposition is an immediate consequence of the BMO, H!
duality. A direct proof of this proposition (i.e., one that does not
depend on the duality) has also been given by L. Carleson in [4].

Let us define a new function.

X pz(u) = Pz(C)X(r,l)(p)
Ve=re*eD, u=p{eD, 0<r,p<1 (eodD,

where %, denotes the characteristic function of the interval (r, 1).

Let now f€BMO (D) be some BMO function on the circle and
let ¢ be some Carleson measure that satisfies (1.8.1). Let us then
define

F = Pwdue) ueb
0@ = _P@Oelr@ CeoD.

It is perfectly clear then that F e L, (D), that g € BMO(GD), and that:
(1.3.2) |[Fu)| =g9(0) Vvu=p 0<p<1l LeadD.

Also an easy passage to the limit under the integral sign implies that

(1.3.3) lim F(o0) = | _P.(0dp(z)



230 N. TH. VAROPOULOS
for all £ €dD such that g({) < + . We shall prove the following

LEMMmA 1.3.1.
(i) oF/op is a Carleson measure,
(ii) 0F/06 is a Carleson measure,
where of course u = e’ and the derivatives are taken in the sense

of the distribution theory of D.

It is quite clear that (1.3.2), (1.3.3), and the above lemma provide
us with an alternative proof of Proposition 1.2.1. The proof of
Lemma 1.3.1 will be broken up in a number of separate steps.

Let us fix ze D and let us denote by

oP (uw) 0
Uz = = 2\7) g O < < 1 .
30 U = Pe 0
We have then:

LEMMA 1.8.2. v, is for every fixed z ¢ D a measure that satis fies:

(i) oFjop = | vdp@),
(i) || < 1.

Proof. v, is of course just the Lebesgue linear measure on the
circle v = |2]¢(0 < 6 < 27) multiplied by the Poisson kernel P,(6).

From this and the fact that 1/27 S“P,(o)da — 1 (i) follows. (i), on

the other hand, is immediate by the definition of F.
Let now {,€0D be fixed and let us denote

(1.3.4) I,={zeD; |z — | < h}.

It is quite clear from the above that we have:

1.3.5) |v.|(5) < chl—zl—’%rz Ve =re® 0<r<ls.t.|z—C|>1000%
— S0
(1.3.6) v, |(T)=0 Vze=1r¢? 1 —7r>h
and we deduce from (1.3.5) and (1.3.6) that
1.3.7) |v,|J) < I_%F Ve =re® 0<r<ls.t.|z—0|>1000%.
2 =G

We can now give the proof of Lemma 1.3.1 (i).

Proof. Let I, be as in (1.3.4) and let

v.d|z)(z) .

Y, = S v.a|pl(z); v, = S
12—l =1000h l2—Cg1>1000%
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It suffices to verify separately the following two inequalities.
(1.3.8) v(I,) < ch
(1.3.9) v(l,) < ch,

where ¢ is some constant independent of . For indeed we always
have [3F/op| < v, + v, and our lemma follows.
We have now:

w(I) = | 1. 11d12 () < [z € D; |2 — €| < 1000 b} < ch

12—l =1000k
by Lemma 1.3.2 (ii) and the hypothesis on #. This proves (1.3.8).
On the other hand using (1.3.7) we see that ’

(1.3.10) mméwrdﬂn

w00 g2
where
F@t) = |tl{zeDl|z — &l = 8} .
Our hypothesis on g implies that
Fit)s et

and an easy integration by parts in (1.3.10) then proves the required
inequality (1.3.9), and completes the proof of the first part of Lemma
1.3.1,

For every fixed ze D let us define

the derivative being taken in the distribution sense. We have then:
LEMMA 1.3.3. p, is for every fized z € D a measure that satisfies:

(i) oFjas = | p.du(z)
(i) Jlo. = C,

where C is some numerical constant.

Proof. That p, is a measure and that (i) holds is obvious. To
prove (ii) we just have to observe that for all fixed z = re¢** we have

loi={ ale. s el dofiar.o)
Zc(l —r)Maxy |P,(0)| Z ¢

since P,(f) is a function that is monotone in two pieces as § varies in
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[0, 2r]. This proves the lemma. Let now {,€dD be fixed and let
I, be as in (1.3.4). We have then

L3.11) |o.l(T) = - "hz 5 Ve eDs.t. |z —C| > 1000% .
0
To prove this we just have to use the estimate

laP(ﬁ) (l—r)lsm(ﬁ—qJ)l c
Iz z&l4 |z___ewlz
valid for all z = re* and all 4 €0, 2x].
From estimate (1.3.11) and Lemma 1.3.3 (ii) we can give the

proof of Lemma 1.8.1 just as before. This concludes the proof of
Lemma 1.3.1.

Now to give a proof ofNTheorem 1.1.1 with this method we have
to modify the definitions of P, and of the function F so as to obtain

a C~ function in B. But this is easy. It suffices to truncate P,
with a smooth function rather than the characteristic function and
define:

1.312) P = PAC)@(%) vu = u|l, CedD

where @(t) 0 <t is some positive C~ function chosen once and for
all that satisfies

p=0 t>2 =1 tel0,1].

If we define F(u) then as before we obtain a function that satisfies
all the conditions of Theorem 1.1.1. The condition (iv) is the only
new thing that has to be verified but it is easy and will be left as
an exercise for the dedicated reader.

1.4, The converse of Theorem 1.1.1 and the use of Stoke’s
formula.

Proof of Theorem 1.1.2 (i). Let F be as in the theorem and let
us denote by:

I,={@w vy eR;zc(@ a+h),yc(0,h).
Then by our hypothesis

(1.4.1) S;,,' PF|dzdy < ch

where ¢ is of course independent of A and @. Then by Fubini’s
theorem there exists some %, € (0, &) such that
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|17 P, b ldo < o

and this of course implies that
(1.4.2) |F(x, hy) — Fla, h))| = ¢ Vxe(e,a+ h).

On the other hand we always have

(1.4.3) lim F'(x, y) — F(x, hy)

= IPF@, vy

for every fixed xe(a, @ + k). From (1.4.2) and (1.4.3) we conclude
therefore that

|£@) = Fla, )| = ¢ + | I7F@, 1)l dy

for all ze(a, @ + k) and integrating the above inequality in x¢
(a, @ + k) and using (1.4.1) we get

717 — Fla, kol do < oh,

which proves the required result.

The proof of part (ii) is identical only simpler; for, by our addi-
tional hypothesis, we do not need to use Fubini to get the preliminary
inequality (1.4.2).

Proof of Theorem 1.1.3. Let F and P be as in the theorem.
Let r€(0,1) and let us apply Stokes’s formula to D, = {zeC; |z| £ 7}
we get then

S IF pyiz A de = ¢ S F(2)P(2)dz .
Dr O0Z oD,
From this we conclude, letting » —1, that

S, Pyl = ¢ | |PF||Plasdy

(where z = ¢ + 4y) and this together with our hypothesis on |/'F|
proves our theorem.
Proof of Theorem 1.1.4. Let us consider the poly-half space
P ={z= (2,2, --+)eC" Imz; =0},

the distinguished boundary of P" can then be identified with R* and
any function fe.(R") of analytic type admits a unique extension
f to an analytic function in P*.
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We shall also identify R**' with a closed subspace of P" by the
correspondence

R s (@, @y -+ -, Xy Y) — (@, + 1Y, T, + 1Y, ) EP,

and we shall choose F'e C(P") an extension of F' (F is a function
as in the statement of Theorem 1.1.4) that satisfies |[pF| < C|FF| at
every point of R+ (this is always possible) and we shall, as we may,
suppose that the supports of both F and F are bounded.

An application of Stokes’ formula gives then

(1.4.4) SAf(z)F'(z)dzl Adzy A oee = SB F@3F() A dz, A dzy A -+

where:

AE:{(ZU ---’zn)ep‘/b; Imzzzs;izl’z’ ---}
B.={(z, -, 2z)ePImz,=Imz, >¢1,k=12, .-}

for all ¢ > 0. If we let e—0 in (1.4.4) we obtain that
1S, DI = JPF T, + iy, @+ iy, ) |do dy
+

and |FF|dxdy being a Carleson measure, our theorem follows.

I would like to finish this paragraph with some comments on
Theorems 1.1.3 and 1.1.4.

Theorem 1.1.8 exhibits another aspect of the well known duality
between B. M. O. and H' for the disc D. It can be used of course
to prove that duality, or if we take the duality for granted, it can
be thought of as a converse of Theorem 1.1.1.

To be able to do the same for higher dimensions we must combine
Theorem 1.1.4 with the following theorem of L. Carleson [4].

THEOREM (L. Carleson). Let f e H'(R") (the Stein and Weiss H*
space). Then there exist finitely many functions f,e L'R") (1 =
1,2, ---, N) where N depends only on n such that

£=36 NS Cllf Ml

and such that each f, becomes of analytic type after an appropriate
rotation of the axes (i.e., p(f)(@) = fi(p(x)) is of analytic type for
an appropriate 0,€SO(R") 1 =1,2, ---, N).

Indeed if Theorem 1.1.4 is combined with the above result the
duality between BMO and H' is again obtained. (The only trouble
of course here is that Carleson’s theorem depends on the fact that
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Calderon-Zygmund operators operate on H', a fact which itself is
best proved via the H', BMO duality!)

Part 2. Extension of the results to strictly pseudoconvex
domains.

2.1. Statements of the theorems. Let & = {0 < 0} C” be a
bounded strictly pseudoconvex domain in C* where p is sufficiently
differentiable and dp = 0 in some Nhd of 0= (pe(C* will do for
most purposes) cf. [8]. Our first goal will be to define the notions
of a BMO function on 0= and of a Carleson measure in <.

Let us define a normalized (i.e., of Euclidean length equal to 1
everywhere) vector field v, in some Nhd of 6= that is normal and
directed inwards to 02 at every point {€0<=2. Let us denote by
M, = Jy, the vector field obtained from vy, by applying J, the almost
complex structure underlying C», cf. [12] (Jis the operator on the
tangent space which is obtained by “multiplication by %,” that is why
one sometimes sees the notation 7y, instead of Jy, cf. [16], I prefer
to use the notation Jy, to avoid possible confusion when the tangent
space is complexified). g, is then a normalized field in some Nhd of
07 that is tangential to 07 at every point {, € 0.

Let us now complete the orthonormal basis by constructing fields

Py Hoy * 0y Pons

such that at every point vy, &, f4, ***, lm_. form an orthonormal basis
of the tangent space. This can be done at least locally; i.e., for
every (,€0< there exists 2 some Nhd of {, in C* in which g, ---,
M.._» can be constructed. It is also clear the fields v, 4, t, -, ton_s
can be made to have the same degree of smoothness as 0. For
every (,€0< we shall now define B,({,) the “ball” centered at {, of
radius ¢ > 0. In the tangent space T, (0=Z) of 0. at the point ¢,
let By ((,)C T;,(0=2) be the paralleliped centered at 0 of side ¢ in the
tt, direction and side V¢ in the directions p, «+-, tf,_,. We shall
define then B,({,) as the image of B}({,) by the exponential mapping
T.(0=2)— o= which is well defined provided that ¢ is small enough.
(There is nothing essential here, of course, about the exponential
mapping; in fact any other “ball” of the same “shape” and dimensions
as B,((,) could be used in its place.) Let us also define

Et(‘:o) = {Bt(Co) -+ )"”O(Co); N € (0, i)}

which is a box inside & with base B~t(C0) and height ¢ along the
normal at {,. It is the analogue of I in §1.1. We shall say now
that f a measurable function on 0= is a BMO function f =
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BMO (0=2) if:

_1__8 _ o
sgplBI Blf Sfzldo < +
where B runs through the collection of all balls B = B,({,) ({,c0=2
0 <t <t,) and where we denote as before

5|
= = do
h=g1\,7
the average of f on B; do is of course the Euclidean 2n — 1 area
element on 0=, and |B| denotes the measure of B for that area.
Note that we have (cf. [16], [11])

et < |BL)| S eitt Vi, edz 0<t<t,

for two positive constants ¢, c¢,, We shall say that ;eeM(Q) a
measure in & (the interior of <) is a Carleson measure if:

|1 (By(&Y) -
tweazo<t<ty | By(E,)] <t

Note that the above two notions of a BMO function and of a Carleson
measure are independent of the particular choice of the vector fields
Yoy Moy Ll ***y Mane that we have taken. (The B,(,) do depend on the
choice of the fields but in a very inessential way.)

Before we can state our main theorem we shall have to introduce
one more notion, the notion of the nonisotropic gradiant near the
boundary of <.

Let FeC(2). We shall then define
|DF| = [v(F)| + |pt(F) | + lpl“"zglﬁj(F)l .

(Let us recall that the #;’s are vector fields and therefore act on
functions; p;(F') is the differentiation in the direction #;.) | DF| is then
well defined in every Nhd 2 of every point {,€0<= in which the
fields v, tty, ***, ttan_, have been defined. It does depend on the choice
of these fields but not in an essential way. In fact if i, g, -, .,
is a different choice of fields in 2 and if we define |D'F| as above
with these new fields we then have

¢,|D'F| < |DF| = ¢,| D'F|

at every point w € 2 where ¢, ¢, are two positive constants indepen-
dent of w. We have then the following.

THEOREM 2.1.1. Let f e BMO (0.2). Then there exists F e C=(2)



BMO FUNCTIONS AND THE §-EQUATION 237

such that

(i) lim,, F(C + M) — f(§) e L~(0=2).

(ii) |DF|dV is a Carleson measure in < (dV is the volume
element in g).

(iii) There exists some ge L'(0<2) and some N\, > 0 such that

sup |F(C + M) = 9@) VY eo=z
(iv) |DE| = 0{1/p)).

The above theorem has a number of converses which can be
summarised in the following theorems.

THEOREM 2.1.2. Let F'e C(D) be a once continuously differen-
tiable function in 2 and let us suppose that |DF| is a Carleson

measure and that it satisfies the condition |DF| = 0(1/|p|). Let us
further suppose that

lim F(C +wC) = fQ) Leo

exists for almost every point {co=2. Then f is a BMO function
of 0.

To simplify notations we shall state our next theorem for the
complex ball

B:{z:(zl’ .-.’z%)eCn; 'zl|2+ cee Izn|2§1}

let Se€ 2'(0B) be a distribution on the boundary of the ball. We
say that S is of analytic type if there exists F'e A(B), some analytic
function defined in the interior B of B, such that

F, ?—Tf S in a(=’; C®
where F, e C~(0=) is defined by:

F, () =F(pl) 0<p<1 (ecoB.

Analogous definitions exist of course for general domains. We have
then the following.

THEOREM 2.1.8. Let F'e CYB) be a once continuously differentiable
Sunction in the interior of the ball B, and let us suppose there exists
some distribution Se 2'(0B) such that

F,——8 in o(Z; 0.
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Then the following assertions hold:

(i) If we suppose that |DF|dV is a Carleson measure then
S € BMO (0B).

(ii) If we suppose that (|F| + |FVF|)dV is a Carleson measure
and in addition that S is of analytic type then Se€BMO (6B). AV
denotes of course the volume element in B and VF is the Euclidean
gradiant (cf., §1.1).

The above theorem holds of course also for general strictly
pseudoconvex domains. We only state it here for the ball for sim-
plicity’s sake. In fact right through this paragraph we shall have
to negotiate generality of general pseudoconvex domains &7 against
the simplicity of the notations of the complex ball B. All of the
explicit caleulations will be carried out for the ball but they all
generalise easily to strictly pseudoconvex domains. A dedicated
reader can do it for himself. In fact in what follows we shall
push the simplification one step further; we shall suppose that the
dimension of C* is n = 2, this case is perfectly typical.

2.2. The geometry of BC C? Let B Dbe the unit ball in C?
and let 1 = (1, 0) be its north pole. We shall introduce then local
coordinates in N, some Nhd of 1 in 0B, by setting

2.2.1) {=01—-a +18,a,+ t8,)e NCoB.

(8, @, B;) become then local coordinated of N as they run through
a Nhd of zero in R® and «, satisfies:

(2.2.2) 20, = ai + B + a3 + B .
We can choose our fields g, t¢, so that they satisfy:

=0 p =0 -0
th=ge Moo oo

at the point 1. The one parameter family of balls B,(1) 0t < ¢,)
is then equivalent to the family

Ct(l) = {|B1I =t ]a2|r ]:82! = VT} (O =t=st),

where we say that two one parameter families of sets (4.).z0 (B)izo
are equivalent if there exist two positive constants ¢, ¢, > 0 s.t.

B,,CA,CB,; Vt.

Using these local coordinates it is easy to show that the family C,(1)
is also equivalent to the family
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{CeoB; |1 -4 <t}

and since the above relations are rotation invariant we deduce that
for every {,€0B the two families

Bl =t =t;{{edB; |1 -l <t} 05t=t,
are equivalent and also the two families
BIC)0=t=t){zeB; |1 - (2| <t} 0=t=t
are equivalent where we denote:
Zeu = ZU, + Z,u, V2, ucC?.

We shall denote now by
P =L=2) ep, zeon
11— C-z|

the Poisson-Szego kernel of the ball (cf. [16]), which for { € N becomes
in terms of our local coordinates P,(8,, «,, B,) for { = (B, @, B.).
We have then the following.

LEMMA 2.2.1. There exists two positive constants C and ¢ such
that

(i) | 92.0) | < c _ ¢
6B, 17 L —1-2 |1—2p
(ii) | 9P.(Q) PR@'S C
b, Il 9B, | T |1 —1-2p

for all { e B,(1) and all z€ B that satisfy |1 —1-z| > ct (0 <t <t

Proof. (i) We have of course

OP.| _ (L= |21 — - L|(1 + |0,/38,])
0B, 1 —z.Cf
using (2.2.2) we get
o, B
B, 1l—a,

On the other hand provided that ¢ is large enough we have
(2.2.3) 1 —-%2-L|=C|1l —1-2z| =CA — |2))

for (z, {) in the required range. From this (i) follows.
(ii) If we set
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z= (@ + Wy, T + W) .
The kernel P,({) becomes
P,%)

y (A — 2]y

[(1 —&, w0 — yuBl — Xy — yzBZ)z + (-’”181 — YT Y0+ leez - ?/2“2)2]2

and we deduce that

2P0 | < o= lebYiL
3052 B ]1 - EC]G

2l ] + 1wl + (@] + )] 0z, foe, )

but we have:
[ler [yzl = Iz2| = 0(1 - |z1|)1/2 = C]]- - l'zil/z
and also using (2.2.2)

oo,
o,

<CV't (eB(Q).

=Fﬁ;
l1—a
From this and (2.2.8) it follows that for 2z, { in the required range
we wave

0P,
oa,

__C oVt _ G
ST —1-2/% |1 —1-2F [1— 12"

and this proves the lemma.

2.3. Proof of Theorem 2.1.1. Our construction of the function
F of Theorem 2.1.1 from the function f € BMO (B) is based on the
following:

PropoSITION 2.3.1. Let fe€BMO (6B) then there exists {t some
Carleson measure in B such that

2.3.1) ﬂO—Lgﬂmmmpwy

Conwversely if 1t is a Carleson measure and [ satisfies (2.3.1) then
f € BMO (0B)

A very easy proof of the above proposition can be given if we
use the BMO, H' duality (cf. [5]). Alternatively, Carleson’s argu-
ment can be adapted in this setting to give a direct proof. (This
was done by Y. Meyer, unpublished.) At any rate we intend to take
it for granted.

Let us define (in analogy with §1.3)
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Pw) = P2 Wann(ul) 2ueh
[
where |z|* = |2,|* + |2,|>, of course, and where ¥, ., is the charac-
teristic function of the interval (|z], 1).
Let now f € BMO (0B) be given and let /¢ be some Carleson measure
that satisfies (2.3.1) and let us define

Fa) = | Pwdue), ueb; 9@ = P.OdrE, (B,

It is an easy matter to verify then just as in §1.3 that F e L (B)
that

(2.3.2) | Fw)| < g(ﬁ> Vue B
and that
(2.3.3) lim Fo0) = | _P.©ds2)

for all {€oB such that g({) < + . We have then:

LEMMA 2.83.1. Let F be defined as above, then | DF'| (interpreted
in the sense of the distribution theory of B) is a Carleson measure
of B.

Observe that by the remarks made in §2.1 the conclusion of the
lemma is independent of the particular choice of vector fields v, t,,
o, M, that we take. The proof of the lemma will be given in several
distinct steps.

The first thing we do is to observe that there exists some Nhd.
Q of 1 in C* which (B, a,, 5;), the local coordinats of 2 N oB and
© = |u| form a set of local coordinates of u = p{e 2, { = (B, a,, B, €
0B. We shall use these local coordinates to take partial derivatives
in 2. Let now P,(u) be as above and let us define for each fixed z e B
the partial derivatives with respect to 9/0p, 0/68,, -+ of ?,(u) (con-
sidered as a function of w=(p, B,, @, B,)) in the sense of distribution
theory in 2 N B. We have then:

LEMMA 2.3.2. For each fized z¢ B the following distributions

U;Z) — aﬁz(u); O';Z) —_ apz(u) ;
ap 0B,

() — (1 — p)-1/2 aﬁz(u). () — (1 — p)-1/2 aﬁz(u) .
o' = (1 —p) R @ =0 = 5
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o-éz) — (1 _ ,‘0)—1/2(‘85 + ag + Bg)l/z aﬁ,(u)
B,

are measures in Q2 B. Furthermore there exist two positive con-
stants C and ¢ such that

2.3.4) |0 |B,(1)=C 1<£i<5,2=(,0 0<r<1 VhA>0

and

~ 5/2 .
(2.3.5) B S O, 15is5
for all ze B and h > 0 that satisfy

(2.3.6) 1 —1.2|=ch.

The proof of the above lemma which consists of eight distinet
parts will be deferred until the next paragraph.

Let 2 be some Nhd of 1 in C? in which we have our local
coordinates (o, B, @,, B,). If 2 is small enough we can take our
normal field v, (cf. §2.1)

Y, = 2 in
op
and we can also choose our fields g, 2, 2, such that
0 0 0
2.3.7 C:—-—’ 1:—-—-’ = e—
( ) Ho 3B, H 2a, Je 3B,

at the point 1.
Let us denote by:

) 0 ’ 0 , 0
b = —— = —, y = —
Ho 8.’ )2 oa, < B,

which are vector fields in 2. (2.3.7) implies then that:
(2.3.8) o= th+ Sat; i=012.
J=1

where @,; are functions in 2 that satisfy
(2.3.9) a;(u) =001 —u|) uef

where | | indicates of course the Euclidean distance in C*. For every
fixed z€ B we can now take the derivatives ,(P,(u) in the sense of

distribution theory of P,(u) (considered as a funcEion of we B) along
the fields p,(¢ = 0,1,2). The distributions pg,(P,(u)) are in fact
measures. Let us denote
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7 = [2(P.w)]; 77 = | tolPow)) |
T = (L — )| tteo(Pw))] 1=3,4.

We have then:

LEMMA 2.3.8. The measures ti”(1 < © < 4) satisfy the following
relations:

(2.3.10) BN EC 2=(@,0 r>0 h>0
(B Ch*2
(2.3.11) (B, (1) = T= 17"

Proof. For i =1,2 both the above inequalities are immediate
consequences of Lemma 2.3.2 a for 7 = 3,4 we have to be but little
more careful because of the factor (1 — p) V2. We shall give the
proof for ¢ = 8, the proof for ¢+ = 4 is identical. Using (2.3.8) and
(2.3.9) we see that

7?(Bu(1)) = Clo(Bu(1) + ai2(Bu(1)) + 0i(B4(1)] -

(This is the only point where of” is used and the extra factor
(B2 + ai + BY)? is supplied by (2.8.9).) (2.3.10) follows then again by
Lemma 2.3.2.

Using again (2.3.8) and (2.3.9) we see that

t(PAQ) = ClI AP + [ 1a(PO) + V'R | 5P

for all {eB,(1). (Observe that e B,(1) we have |1 —{|<V'h.)
From this and Lemma 2.2.1 we deduce that

C

(2.3.12) PO S T
for all {e B,(1) and all ze B that satisfies |1 — 1-z| > ch, where ¢
is as in Lemma 2.2.1. Inequality (2.3.11) follows then from (2.3.12)
exactly as in §2.4 (proof of 2.3.5 for o{”. This completes the proof
of Lemma 2.3.3.

Let us finally remark that once we have passed to the fields
Moy M4, I it is no longer necessary to keep z of the form (r, 0) (0=r<1)
in (2.3.10). Indeed, the situation is invariant by rotation and therefore
we deduce that

(2.3.13) B, <C;1<i<4, zeB, h>0.

The only provision being that & should be small enough for B,(1) to
stay in some set where the fields ,, %, can be defined.
It is clear now from the definition of F'(u) that if we take the
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derivatives of F' in the distribution sense in 2 N B we obtain:
3, = v(F) = Szeé‘cﬁ“dp(z)
5=p@) =\ v
5= - o) = | et
To= - o) = | civapa)

It is also clear from Lemma 2.3.2 that 3,(1 < 7 £ 4) are measures
in 2 N B we have then

LEMMA 2.8.4. There exists a constant c¢ that depends only on
v such that

|2, /(BY()) < ch* Vh > 0.

Proof of Lemma 2.8.4. Let h >0 be arbitrary but fixed and
let us define the following measures

P - | 70 d]pl(e) 144

li—1-zl=ch

Q= lwldee 1=is4

l1—1-z|>ch

where ¢ is as in (2.3.6).
We have then clearly:

(2.3.14) |2 |(Bi() £ P(By(1)) + Q(B:(1)), 1=i=4, h>0.
We also have by (2.3.13)

PEW) | (e B @)
=Clp|{zeB;|1—1-z|=c¢ch}, 15154,
From this and the hypothesis on ¢ it follows that
(2.3.15) P(By(1)) = ck’.

We have similarly

QB®=|_ I IBONILE
< Cper Sw dF(t)

o 7

(2.3.16)
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where we denote by:
F@)=|p#{zeB; |1 —1-z[ = t}.
But by our hypothesis we have
F@t) <ot

An integration by parts in the last member of (2.3.16) gives then
at once that

(2.3.17) Q(By(1)) = ch’.

And if we combine (2.3.14), (2.3.15) and (2.3.17) we obtain our lemma.
We can now give the

Proof of Lemma 2.3.1. It follows from Lemma 2.3.4 that:
(2.3.18) |DF'|(By (1)) = Ch*,

where C is a constant that only depends on # and in fact only on
the Carleson constant of g which in turn only depends on the BMO
norm of the original function f. Since that norm is rotation invariant
we see that we can rotate (2.3.18) and finally obtain the Carleson
condition

[DF|(By(C) = Ch* v{,€c0B h>0.

This proves the lemma.

Proof of Theorem 2.1.1. To satisfy the conditons (i), (ii), and
(iii) of Theorem 2.1.1 we only have to modify the definition of P, in
a manner analogous to the one in (2.3.12). This makes the function
F infinitely differentiable. Conditions (i), (ii), and (iii) follow then
from (2.3.2), (2.3.3), and Lemma 2.3.1. The verification of (iv) has
to be done separately but for the same reasons as before it will be
omitted.

2.4. Proof of Lemma 2.3.2.

The proof for . For every fixed z¢€ B, 0\ is seen at once to
be the 3-dimensional Lebesgue on the sphere 0B, = {u = |2|{; { € 0B}
multiplied by the function P,({). (2.3.4) follows therefore from the
fact that ||P,||z10s = 1. On the other hand:

loi? [(Bx (1)) = | Bu(D)| ;esBuhg)I P.(O)]

2 1—|2z[)®
- ciggl)ll—c.zr
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But for 1 — |2| > h we also have ¢"(B,(1)) = 0 and for z ¢ B satisfying
(2.3.6) with ¢ > 0 large enough we have

L —C-2|=C|1l—1-2| = CQ — |2]) V{eB;(1)
and from this, (2.8.5) follows.

Proof of (2.3.5) for o, ¢{”, 0{*, and o, That ¢, 0{”, 0”, and
o are all measures is evident. We have further

0P,(C)
2B,

< ch3 g ch5/ 2
T—1zf~[1-1zP"

02| (Bx(1)) = | Bi(1)| sup

BpL1)

in the required range by Lemma 2.2.1 (i), provided that ¢ is large
enough in (2.3.6) which is the required result for . We also have
for 1 = 8,4

0P (%)
o,

o1 B = B[ @~ 0)do ) sup { + [ 58]

<wr__C o _Ch"

|1 — 1.2 |1 — 12"

in the required range by Lemma 2.2.1(ii)). We finally have

0 1Buw) = 1B @~ 0)do) sup [ (6] + ] + 6.0 L]

0B,
)1/2 C’l/ h < Ohwz

< 1l —
e SR v pr e po

again by Lemma 2.2.1 (observe that the 8, a,, B,, which are the local
coordinates of ¢ in B,(1), are bounded by 1V %). To complete the
proof it suffices to prove (2.8.4) for 7 = 2, 3,4,5. Towards that we
shall show that:

@24.1) |6P|(RNB)<C;2<i<5 z=(,0 0=r<1,

where 2 is some fixed Nhd of 1 in C* (in which we have our local
coordinates).
Since z = (r, 0) we have:

@ -7
[A —7r + ra) + B
@ -
[(1 —r + (B + af + BY)) + B

P=PQ=C

(2.4.2)

/\

Proof of (2.4.1) for © = 2. Using Fubini’s theorem we obtain
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oei@n B = cw—n ||| %’\dﬁldazdﬁz
(2.4.3) a
=Cl—7) Sgdazaﬁzg

oP
_a_é_l('@“ a;z, BZ) dl6)1

where the integration in B3, «,, 8, ranges through some fixed small
cube (depending only on 2).

Now it is clear that for every fixed «,, 5, in the range of integra-
tion we can split the range of integration in B, into N intervals on
each of which P(8, &, £,) is a monotone function of 5,. N, the
number of intervals, is bounded by some numerical constant.

From this we deduce that for every fixed «,, B, in the range of
integration we have

VI3

Using (2.4.2) to get the above max and substituting its value in
(2.4.3) We finally obtain

8, @, 5y |del < Cmax | P(5, @, )]

oi@n B soa - |jE—SR__<c, osrst

which gives the required result.

Proof of (2.4.1) for © = 3. The argument runs as before. A
use of Fubini gives that

dB,de,ds,

im0 hzofo—o el

= 0 — || Max | P.(8, @, £ dB.08,

because here again P, as a function of a, for fixed 8, and 5, is
monotone in “finitely many pieces.” If again we obtain the maximum
from (2.4.2) and substitute it in the above integral we obtain

|2 ’ _ a\B/2 d181d52
eien B =6 o e e

< ot SwdRr Rdo
0 o [(t + R?)® + R?cos® p)*

where we have set 1 — » =¢. But
SZ: Rdyp < ZS Rdop
o[(t + R+ RPcos* @ = Juicoseizsi[(t + R?)? + R®cos® o)
<CS2* Rsinpdop <C§+°° do
T D [t + Ry + Reos’pr T )-o[(t + R + 0T
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as we obtain by the substitution Rcos @ = 0. The substitution ¢ =
(t + R*)S in the last integral gives therefore that:

° ® e
lo-s(;Z)[("Q N B) é thz SO (t iRR2)3S—°° (1 issz)Z )

A final substtituion R = 1"t R* implies therefore the required result.
lo(2NB) < C.

The proof of (2.4.1) for ¢ = 4 is identical. It remains therefore to
give the

Proof of (2.4.1) for i =5. A use of Fubini gives as before:

1@ B s o~ rff{is + oz + ey | 2| as.asas,

a8,

(2.4.4) <Cl - ,,.)1/2[““5 + B da,dB, S 21‘; s

0P,
08,

We shall estimate the two integrals separately. The first one can be
estimates as in the proof of (2.4.1) for 7 = 2 by:

+ “dazdﬁz S B,

d/&] .

e ([0 + B dards,
o=\ e = ¢

To estimate

[ .5

we have to use once more the fact for fixed «, and B, the function
P, is monotone in each of N disjointed intervals (N < C) and to
integrate by parts on each interval. We obtain therefore

{22

But we have as before:

B |dB,

|46, = ¢ Max |6, P.(8, @, £) | + [P.d6. .

— )2 (1 — 1’)5/2da2d,32
(. — ry|{ Max |8.P.(8, @, ) dasds, < © ([0 <

and also

SSSP (B, @, B)dB.da.dB, < C .
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If we substitute all these estimates back in (2.4.4) we obtain the
required result.

2.5. Proof of the converse of Theorem 2.1.1. The proof of
Theorem 2.1.2 is identical to the proof of Theorem 1.1.2(ii), and will
be therefore omitted. Before we give the proof of Theorem 2.1.3
we shall prove the following geometric

LeEmMMA 2.5.1. Let & ={p <0} be a strictly pseudoconvex domain
and let us suppose that F e C(D) is such that | DF|dV is a Carleson

measure (4V denotes the volume elemeot in 2). Let us consider
the following two forms:

oF =, a,dz,

1 5 3 fomnnd .dz .
1—/I——__la,o N OF = i%a,.,dzi A dZ; .

Then the measures
p=|Slalfev
y = [2 IaM]dV
i<jJ
are both Carleson measures in <.

Proof. That g is a Carleson measure is immediate. To prove
that v is a Carleson measure we have to choose a special set of
coordinates on the cotangent space.

Let y, and g, be as in §2.1 and let us choose ft, tty, «+-, ft._,
smooth vector fields in some Nhd 2 of some point {,€0< such that
the fields

(2.5.1) Yo, J”oy Ly J)uu ey J#z’ sy Py JX“%—I

form an orthonormal basis of the tangent space at every point of
2. Such a choice is clearly possible. Let us then choose differential
forms w, w, +++, ®,_, in 2 such that the forms

@,, —on’ @,, "Jwv M

form a basis of the cotangent space that is dual to the basis (2.5.1)
(we denote of course Jo(X) = @w(JX)). The complex differential forms

(2.5.2) W, + 1Jw, o, £ iJw, -, ®,_, + iJo,_,

form then a basis of the complexified cotangent space and since dp



250 N. TH. VAROPOULOS

is proportional to w, it follows that
(2.5.8) w, + iJw, = kdp; w, — 1Jw, = 1o ,

where % and [ are smooth functions.
Let us now express dF and j0F in terms of the basis (2.5.2).
We obtain then

iF = S ay0; + iJo,) + S, Biw; — iJw;)
gF = Ela,-(a)j + 'l;J(l)_,) .
i=o0

To prove that v is a Carleson measure it suffices therefore to prove
that
1

Y = m[ illajl]dV

i=1
is a Carleson measure. But we have
2a; = dF(; + idpt;) = p(F) + idpy(F) (2 1)

(i.e., «; involves only complex tangential derivatives of F') and this
of course together with the hypothesis on F' completes the proof of
the lemma.

We shall also need the following two facts about functions and
distributions of analytic type on 0B the boundary of the complex
ball Bc C".

ProPOSITION 2.5.1. (i) Let fe L'(0B) and let us suppose that:
S FANOp=0
2B

for all + smooth in some Nhd of B and of type (n,n — 2). Then
f 18 of analytic type.

(ii) Let us denote by P the orthogonal projection of L*6B) on
the subspace

H*6B) = {f € L*(0B); of analytic type},
Then P[BMO(6B)] < BMO(B).

Part (i) is standard and well known (cf. [10], [18]). Part (ii)
holds because P is given by the Szego kernel that is a singular integral
operator (cf. [17]). Both parts (i) and (ii) hold for general strictly
pseudoconvex domains, although part (ii) is much harder to show in
general.
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Proof of Theorem 2.1.3(1). We can now give the proof of Theorem
2.1.3(). Towards that we shall suppose in addition that SeC=(3B)
and we shall prove the a priori estimate

(2.5.4) [S1lexo < CK(|DF'|AV)

where K(|DF|dV) denotes the constant involved in the definition of
the Carleson measure. Once the estimate (2.5.4) is known, Theorem
2.1.3(i) follows at once by an easy regularisation process.

Let then F' be as in the theorem using then our hypothesis on
F, Lemma 2.5.1 and Theorem 3.1.1(i). It follows that there exists
some @ € BMO(6B) such that:

l|@llewo =< CK(|DF|dV)
and such that:

S3B¢ A= LﬁF/\ v

for all form +, smooth and o-closed, in some Nhd of B of type
(n, n — 1).

On the other hand an easy use of Stokes’s theorem in the ball
B, = {zeC"; |z] < o} and a passage to the limit as p—1 gives us

SaBS A= SﬁgF/\ v

for the same class of +’s as above.
We conclude therefore that:

lLE-PAv=0

again for the same ’s, and from that and Proposition 2.5.1(i)) we
conclude that there exists some function & of analytic type such that

(2.5.5) S=¢p+a.

But the hypothesis of our theorem are clearly stable by complex
conjugation. We conclude therefore that there exist & and @ such
that @ is of analytic type and such that:

(2.5.6) S=%+a ||P|lsxo < CK(DF|dV).
From (2.5.5) and (2.5.6) we conclude therefore that:

S=(— P)p + a) + PP + &)
= (I — P)p + P($) + P(@)
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but @ being the complex conjugate of an analytic function, it follows
that P(@) is a constant; and since constants do not affect the BMO
norm (|| |lsmo. It is not a norm, it is only a norm on functions
modulo constants.). We obtain

IS]lexo = [[(I — P)p|lsmo + HP((;)HBMO

and (2.5.4) follows then from Proposition 2.5.1(ii).
For the proof of the second part of the theorem we shall need
the following.

LEMMA 2.5.2. The exists some @€ Cy,_(C*) such that

20 =\ #0ds© vpec-eB)
aB {edB
where do is the normalised Lebesgue measure on o0B.

Proof. Let 1 =Z,dz, ANdz, \ -+ Ndz, NdZ, \ +++ NdZ,_,. It
is clear then by Stokes’s theorem that

S T#0.
aB
7w determines then some )\ € M(0B) by the equation
2.5.7) S - S P(O)IME) VpeC=(B) .
aB {edB -

Let now a € SU(n) be some complex rotation on C* and denote by
o€ Cy,_(C") the form 7, = a*(w) where:

az—az.
Let us also denote by )\, the measure that is determined by B from
7, by the analogue of (2.5.7) and let us define

® = S mdaeCia (€ h = S \da & M(B)
aeSU(n) %

ae SU(

where da denotes the normalized Haar measure on SU(n). dy is
rotation invariant and it satisfies

2.5.8) [, 0=, 200 veec-oB)
== e

dye is therefore proportional to the normalised uniform measure on
0B do and (2.5.8) proves the lemma.
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Proof of Theorem 2.1.3(1). Let us suppose that F' and S are as
in the theorem and let us suppose in addition the Se C=(dB).

Let f(z) be an analytic polynomial in 2eC*. We see then by
an easy application of Stokes’s theorem to B, = {z€C"; |z| £ p} and
a passage to the limit as p —1 that

SceanSda(C) = SanSw = Sﬁd( fFw)

and therefore:

S dea(c)|g[§,fa‘F‘/\w|+[§,fﬁ/\5w|.
{edB B B
By our hypothesis on F' it follows therefore that

(2.5.9) |, 78800 = CK1 £ lluam

where C is a numerical constant and K is the constant associated to
the Carleson measure (|VF'|+|F|)dV. From (2.5.9) it follows therefore
that there exists ¢, 6§ € L=(6B) such that

S=¢+06;|ell.<CK

and @ is orthogonal to every analytic polynomial in L*6B). Let P
now by the projection of Proposition 2.5.1(ii). We have then P =0
and therefore

S=PS=Pyp

by our hypothesis on S. And this implies by Proposition 2.5.1 (ii)
that:

[[Sllswo = CK

and with this a priori estimate we can complete the proof of
Theorem 2.1.3 at once.

Part 3. The d-equation and the Corona problem.

3.1. Statement of the results. One novelty in this paragraph
will be the systematic use of differential forms. Let 2 < C® be an
open subset. We shall then denote by C;(2) and L; (2) the
differential forms of type (p, q) in 2 with coefficients in C* and L’
respectively. We shall also denote by M, (2) the “differential
forms” in 2 with coefficients in M(Q2), the space of bounded measures
in Q. Strictly speaking M, ,(2) is not a space of forms but a space
of currents, but we shall ignore this complication here and will not
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use the (irrelevant for our purposes) formalism of currents. (We
shall tacidly identify currents of degree 0 with distributions.)

The only thing that has to be correctly understood is the
meaning of the form dy for:

# - [ZJ' #I,szl /\ dz'] c Mpyq(ng); #I,J € M(I-Q) V.I, J .
We shall simply define: |

= 3 gz A dz, A 7€ D,,(Q)

1 0%,

where the derivatives oy, ;/0Z, are taken in the sense of distribution
of 2 27'(2). We can verify that d¢ satisfies all the obvious formal
properties.

We shall use the notation C;,(K) where K is a closed subset of
C" to indicate the space of (p, ¢) forms defined and smooth in some
Nhd of K.

Together with the above spaces of forms we shall need to
consider spaces of forms on 027, the boundary of a strongly
pseudoconvex domain <. e.g., we shall need to consider the spaces
Cy(02) (resp. BMO, (0B), L; (0B)). These are not spaces of forms
on the differential manifold 0<; they are spaces of forms in C”
(this is why we are allowed to talk about the type (p, q) which
comes about from the 9, 0 decomposition), but the coefficients are
only defined on 0= and are C~(dB) (resp. BMO(dB), L*(3B)) functions
on 9B, using the editoriolizing language of the topologists C; ,(0B)
is a C* section of 4,,T*(C") over 0.2.

Before we can state our main theorem we shall need to introduce
the following definition. Let

=3 trader A dZ; M, (D)

where &7 = {p < 0} is as in §1.1. We shall say that z satisfies the
Carleson condition if the measure g = 3, ,|#;,,;| and the measure
Yy = 3.7 |V;.s] are Carleson measures in &, where we denote

Y = IEJ v;,42; A\ dZ; = | |2 N 9p eM,,,q+l(,@°) .
We have then:

THEOREM 3.1.1.

(i) Let p eMM(Q) (¢ = 1) satisfy the Carleson condition and
be such that 3t = 0 in <. Then there exists some g € BMO, , (3.2)
such that
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(.1.1) Sa gA P = S A

for all 4 eCs_, ., (D) that satisfy o4 = 0 in some Nhd of

(ii) Conversely let us suppose that g€ BMO, , ,(0=2). Then
there exists reM, () a form that satisfies the Carleson conawrion
in & and fe L*(G2) such that:

| onv=1.env+| rrv

3.,

for all Q/IGC;_,,,,“‘Q(‘_@_) that satisfies oyr = 0 in some Nhd of =Z.

Equation (8.1.1) is, of course, a global formulation of the so-
called 9,-problem.

When the dimension of the space n =1, Theorem 3.1.1 (i) can
be improved and we can choose g € L™(0=2) cf. [2], [9], and this is
crucial for the proof of the Corona theorem.

THEOREM 3.1.2. Let B be the unit ball in C*. Then there exists
some feC(B) such that of = 0 and such that the form f satisfies
the Carleson condition and such that whenever w e L'(0B) satisfies
the equation

S.Bu/\cp=SBf/\§0
for all e Cy(B) that are d-closed in some Nhd of B then
esssup |u| = +co .

Another way to express the above theorem is to say that the d,u = g
problem for x satisfying the Carleson condition is not always solvable
in L”(oB).

3.2. The Henkin construction. In this paragraph we shall
content ourselves in recalling and explicitating some of Henkin’s
notations and theorems from [7]. They will be basic for the proof
of Theorem 3.1.1 (i).

Let 2 cC" and p be as before and (following Henkin) let us
suppose for simplicity that < is in fact strictly convex.

We shall denote then

PG 2) = 3 2C A — 2 p = (Py o -+, P}

P*(, 2) = kEZl (&, 2)(C — z); »* = {pf, 0¥, -+, Di}
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where

(G, 2) = —S%(C); i, 2) = (3, 0) .

We set w({) = AL, d{, and we orient C* by

|, (—re@ A w© >0.

Let 7 = (s My +++, B.) = D&, 2, \) be a smooth vector valued function
of {, ze C™ and the real parameter . We set then

@'0) = 3 (~ 177 A d..

The differential form '(n) A w({) A w(z) = 6 may be decomposed
then as the sum.

0= ga};(v) A o) A of2)

where w,(7) is a form of degree q¢ with respect to dz and, corres-
pondingly of degree (n — q — 1) with respect to dZ and dn. We
shall further write

o€ +2) = pé_ow,,(c + 2)

where w,( + 2) is a form of type (p, 0) in 2z and of type (n — p, 0)
in {. We shall now introduce the following definition. We shall say
that feCs,(0) satisfies 3,f = 0 if f admits some C* extension f
in some Nhd of & such that

(8.2.1) of =30 A\ h + pk

in some Nhd of 07 where h and k are forms defined in some Nhd
of 07 (observe that the above definition is independent of the
particular extension f cf. [13]). We shall also introduce the follow-
ing condition which is stronger than the condition 4,f =0. Let
felLl (0=2). We shall say that H,(f) =0 if

(3.2.2) Smf Ag=0

forall peCz_,,,_,,(0) such that d,» = 0. (Notice that we do not
attempt to give an intrinsic meaning to H,(f) or to 3,1, as far as
we are concerned 0,f = 0 and H,(f) = 0 are just abbreviations for
(8.2.1) and (3.2.2).)

G. M. Henkin has proved in [7] the following basic:
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THEOREM (Henkin). Let feCy(0=) be such that H,f = 0, and
q < n. Let us define

(3.2.3)

= ’ BN (S ) BN M (S%))
9= S(C,X)Ea.@x[o,l]f(C) /\ wq_l|:(1 )’)¢(C, Z) + X@*(C, Z)] /\ w;u((: + Z) .

Then ge L., (02) and g satisfies the equation:

(3.2.4) Sa g Adp=C Sa‘ﬂf A p

for all peC,_,._s (D), wherc C+# 0 is a constant that depends
only on n, p, q.

We shall specialise now the above formulas to n =2, p =2,
q = 1. We have then

@'(9) = 0.7, — NAN,
from which it readily follows that
* * *
w"’i:(l — ) (&, 2) + 7\,p ¢, z)} — DDy — P an +
‘2,2 9*(C, 2) pp*

where 3 is a form that involves d{. On the other hand w,(z + () is
equal to dz, A dz,. If we substitute the above expressions in the
formula (3.2.3) of Henkin’s theorem we obtain:

= .G, 2)pF(C, 2) — pAE, 2)pF(, 2)
g Sw 2, 2)p*(C, 2) f(Q)dz, N dz,

where of course:

We shall now specialise further and suppose that < = B, the interior
of the unit ball, and that o({) = |{,* + |{,]* — 1. We have then:

P, 2) =[P =Lz 9" 2) =72 — [z
with the wusual notation .z =z + T2, and C-L =|{ We
deduce that:

DP; — DT Zl—z-z _ 3221

pp* (CF=C-a)E-C— 2P

let us then set:
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K(z, C) — Elzz _ —z—za ;

11— C-2f
K2, )= -2 =% . g - &G —2Z
&0 =T 7oF RS
which are all well defined for z, { € B except when z = { €dB.
have then:
DY = PP Kig 6) Ve CedB,  z#C
PP
K(Z, C) =%, cz — % z : _~ZI > lel(z7 C) - 221{2(2’ Q) .

[1—CzP 1 —-Cez

and by an easy computation we obtain that for { €oB:

oK, _ ¢ g, — %
0z, 1 —Cez (L — C-2)
aKx :C zz_gz
0z, |1 —C-z[Q1—C-2)
8K1 :Z Zz'—gz
0z, 11— Tz — C-2)
oK, _ ¢ zZ, — G
0%, 11— CezPA — C-7)

and the analogous expressions for K,. From the above we conclude that

l.‘Z

0K, op _ 0K, dp _ ™ C-z— |z .
Liz L — - -1 i = 5 -
0z, 0%, 0z, 0%, (=1 1 —C-zM(1 — (-?)
and
L:a_‘_l.{"“a__g‘_@I:{"an:zzK1+z1K2+§1Ll_EZL2
azl azz azz azl
_ Coz — |2
=zK + 2 K,+ z- = —
“T—terd-¢9
T 11—z —(-2)
_ Cz—1
+2:C = =
1 —C-zM(1 —C-?)
:M1+MZ+M3
where

M, = z,K, + z2,K,

g L-lsf
S G )

G =1,2)
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M, = _—%%
(z-¢ -1y
Let us now denote by
(8.2.6) T: L} ,(3B) — C=(B)

the linear mapping:
_ -1
Tfe) = =+, K 00

where C is the constant of equation (8.2.4). If we take the deriva-
tives of Tf with respect to 2z we see that the coordinates of FTf
can be expressed as a linear combination (with coefficient functions
in C*(B), i.e., C* up to the boundary) of following ten integrals

620 | K@0r: | L 000: | e 070

with 4,7 =1, 2.
Let us now denote by A.(z, () (k =1, 2, 8, 4) the following four
kernels:

(5.2.8) L~ |2()7G —C) (= |2[)"E —T)
1= 2lfA—20 " [1-2C@—270

for j =1,2. It follows then from the expressions of the derivatives
obtained above that the last two integrals in (3.2.7) can be expressed
as linear combinations with constant coefficients of integral of the
form:

(3.2.9) 1T — |z SaB Az, O)a(0)f(©) k=1,234

where a({) € C*(6B) (in fact a({) is any of the four functions {, ¢,
Z, C, restricted to 0B). We also have

LEMMA 8.2.1. Let fe L., (0B). Let us suppose that H,(f) =0
and let us define I'(z) e C(B) by the equation

o(Tf) A dp = I'(z)dz, A dZ, .

I'(2) is then o linear combination with coefficients in C=(B) (in fact
the coeffictents are polynomials in z and Z and are C= in the whole
of C? of the following four integrals.

K 070; | Beour©:  ii=12
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where:

___ 1-ep
et STt

Proof. The proof is an immediate consequence of the expres-
sion of L in (3.2.5) and the fact that our hypothesis H,(f) =0
implies that:

|, Mz OFQ) =0 vieB

3.3. Estimates on the kernels. In this paragraph we shall
make a number of estimates on the kernels that were introduced in
the previous paragraph.

LEMMA 3.3.1. The two kernels K, (1 =1,2) defined in §3.2
satisfy the following conditions:

supg supllKi(rC, §ldo(§) < + oo

1€dB JEeoaB 0<r<

sup|  sup| KL, §)do(Q) < +eo .
£€dB J{edB 0<r<1

Proof. The two kornels K,, K, taken together, are rotation
invariant in the sense that if g € SU(2) is a complex rotation of C*
then we have

Ki(gz, 90) = a;"K\(2, {) + b"K,(2, )

where a}”, b’ are constants that only depend on g. From this we
see that it suffices to show that:

(3.3.1) [, sup |KG1,0)1do@) < +oo

B 0<r<1

(3.3.2) S sup | K(rC, 1)|do(Z) < + o .
dB 0<r<1

Introducing then the coordinates of §2.1 { =1 — a, + 8, @, + 15,)

in some Nhd of 1. We see that (8.3.1) and (3.3.2) are both con-

sequences of the following two inequalities.

1 [l

7= (ffow |

dleldazdﬁz < o0

dﬂldazdlgz < + o

where the integration is taken in some fixed cube of (8, @, 5.)
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centered at the origin. Now we have:
2 2 2\1/2 '
7= [| BB _ggdads, < +-
@+t Gy 4

as an easy calculation readily shows. The change of variables
Bi+al+B=R, B, =Rcosp and then the change of variables
R cos ¢ = g shows that:

(t + R)R

I< S dRS _(+ EYR |,
—Rqg os<1tl£ t + R + o ?
(44
S RdR S—Ro f?;?z{az + az}da
0 £ Rdo S’"’ do
< —_— _ oo
=Cgo RdR{SoR2+gZ+ R a}<+

and this completes the proof of the lemma.

As an immediate corollary of the above lemma we obtain the
following:

LEMMA 3.3.2. Let feC;(0B). Then there exists some constant
C such that:

(8.3.3) ITf(z) < C  vzeB
we also have:

(3.3.4) Tf(rd) e T ) vl eoB
and the convergence in (3.8.4) is uniform with respect to { €dB.

Proof. (3.3.3) is an immediate consequence of the provious

lemma.
The convergence in (3.3.4) follows from the fact that:

| K (rE, &) — Ki(C, &) |lz1epiaoien _'rjl’ 0

uniformly in {. The uniformity follows once more from the rotation
properties of the K,’s that allow us to bring any { to the point 1.

In what follows we shall denote by S(z, {) any of the following
12 kernels:

(3.3.5) Kz, ¢) = _—_l ZC.I i=1,2
(L= |zl ReIm (¢, — z)ReIm (1= C8)  ;_;,
11—z ’

(3.3.6)
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3.7 A — [z )ReIm {1 — (-2}
.30 11—z

where ReIm{ } means that either the real or the imaginary part
in { } has to be taken. Let us now take as before the local
coordinates { = (1 — @, + 98, @, + i8;) in some Nhd of 1 on 0B.
S(z, £) becomes then S(z; 8, a,, B,) a function of z and of the local
coordinates (B, «,, 8,). We have then:

LemMmA 3.3.3. Let S be as above, then there exists two positive
constants C and ¢ such that:

(i) {I1se0ldo0)=c  veeB
(ii) For all h > 0 we hawve:

(3.3.8) ;@' < __C
Bl |1 —1-2f
(3.3.9) o8| S| C
el " 3B, =1 —1-21"

for all (z,{) in the range
{eB,1);zeB |1 —1-z| > ch.

Proof. (i) Using, as in the proof of Lemma 3.3.1, the rota-
tion properties of the above kernels we see that if we may suppose
in (i) that 2z =(r,0) 0 <»r <1l. When in (i) S is as in (3.3.5) our
assertion is already contained in Lemma 3.3.1. When it is one other
kernels an easy culculation shows that the integral in (i) is dominated
by a linear combination of the following two integrals:

(=7 m @ —r+ éﬁffédfi)ﬁz)? + B

1 — 7y m (8 + a3 + B3)*dB,da,dB,
[A —» + B+ ai + BY)* + B2

where the integration range is some fixed cube in (8, @, B;). And
using the changes of variables B2 + a? + B2 = R?, (B, = Rcos @ and
then Rcos @ = a. We can verify readily that the above two integrals
are uniformly bounded in 0 < » < 1 as required by the lemma.

(ii) Proof of (3.3.8): For S as in (3.3.5), (3.3.6), and (3.3.7)
we have respectively.

<[ 1, le=¢

oS
0 <o g=ear AT e

3B,
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(3.3.11) ]gg

IRV S S I R4 I
=C1 lz))/[‘l_z.zis_{_ll_g-z]‘}

(3.3.12) ’is_‘ <o Ll— 2
e 3:81 - 11 - 3'214

and if we use the inequality:
(8.3.13) I —2|<C|1—C-z* zeB, (edB
and the inequality:

(3.3.14) AL—-12P)=01 - |2P)=C|L — 2|
=Cl1-12]=2CJ|1 -2

which is valid in our range of { and z provided that ¢ is large
enough. We obtain the inequality (3.3.8) in all three cases (3.3.10),
(3.3.11), and (3.3.12).

Proof of (3.3.9). For S as in (3.8.5), (3.3.6), and (3.3.7), we have
respectively:

(3.3.15) 98
oa,

1 |z — (|
= C[[l — -z + 11— 52[3]

_ 2y1/2] 1 lz — (| / o,
<o }zl)/[ll—i-z'la_l_ll—Z-zl‘\lzzH_la—a;

)

(3.3.16) |.g§_
2

(3.3.17) |g§
2

S 00 — |z (Bl IGAPR] ],

To obtain the inequalities (3.3.16), and (3.3.17) we use the same
calculation as in the proof of Lemma 2.2.1 (ii).

Using then (3.3.13), (3.3.14), and the same inequalities as in the
proof of Lemma 2.2.1 (ii), we see that we obtain (3.3.9) in all three
cases (3.3.15), (3.3.16), and (3.3.17). 0S/0B, behaves exactly as 0S/oa,.
We have finally:

LEMMA 3.3.4. Let S(z,() be any one of the 12 kermels as in
(3.3.5), (3.3.6) or (3.3.7), and let tte M(B) be a bounded measure in
B, then the integral

=\ St 0due)

converges absolutely for almost all {€oB and feL'0B). If in
addition p is a Carleson measure then f({) e BMO (6B).
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Proof. Let us denote by

0 = |15 0ld|xE@

we have then

|, 2@de@ = | {186 0ldix @do

CedB

=\ _dlel@| _ 1S@ 0ldo@) < +o
zeB LedB
by Lemma 3.3.3 (i). This proves the first part of our lemma.

To prove the second part we first observe that it suffices to
verify the BMO condition on the balls B,(1) centered at 1. Indeed
as we have already observed twice before, the kernel S(z, {) trans-
form into linear combinations of themselves under complex rotations,
and by an appropriate rotation we can bring any point {,€0B to
the north pole 1.

Let & > 0 be arbitrary but fixed and let us denote by:

0=\
£0 =

, S D)dp(z)

|1—1ez|sc

Sz Dince)

[1—-1-2|>¢c

where ¢ is as in the Lemma 3.3.3.
We have then by our hypothesis on ¢ and by Lemma 3.3.3 (i):

6318 | 10140 = Clulle e B L — 12| < oh) < Gt

By Lemma 3.3.3 (ii) we also have:

319 186:,0 =S 1S O[T+ ]

for all
CeBy(l); zeB, |1—1-z|>ch.
We conclude therefore from (3.3.19) that:

#3200 150 - fwl=cr | O L ope|” 240

ch ch t‘” 2
where, as before, we denote:

F@) = |plze B |1 — 12| < ¢}
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and if we integrate by parts in (8.8.20) and use the fact that
F(t) < ct?, which is a consequence of our hypothesis, we conclude
that:

S8 = (DI =C v{eB,(Q1)
which together with (3.3.18) implies that

Sma 1f(C) - fz(lﬂdO'(C) < Ch?

and completes the proof of the lemma.

3.4. Proof of the first half of Theorem 3.1.1. Let
Z = {p <0} be as before and let us denote by >, ,C M, (=) the
space of forms pe M, (<) that satisfy

lo[%00 N pre M, (2) .

We can then identify C,,, the space of (p, ¢)-forms that satisfy
the Carleson condition with a subspace of 3>),,. The two spaces
S»e and C,, have a natural norm.

For arbitrary feC:,(0B) we shall denote

Qf(2) = 3(Tf) A dz, A dz.€ Cs\(B)
where T is the mapping defined in (3.2.5). We have then

PROPOSITION 3.4.1. There exists
/I(Z, C) = (Al(z; C)dz + Az(z’ C)d—z-z) A dz, N\ dz,

a vector kernel of type (2, 1) that is defined and smooth for z¢€ B and
{ € 0B that has the following properties.
The integral:

A = |, 1) A 462, 0)

18 absolutely convergent for all pe 3, and almost all L€oB and
it satisfies

(1) [&lloen = Cllplls ,

(ii) If peG,, then fiec BMO (0B) and ||f||sxows = |[2t]lc

i) | uner=\ pr
Jor all feC;,(0B) that satisfies H,(f) = 0.

Proof. Using a simple argment involving a partition of unity
we see that it suffices to prove the proposition locally.
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‘More explicitly it suffices to show that for all {, € B there exists
2 some Nhd of {, in C® and a kernel A(z, () = 4y(z,{) as in the
proposition such that the conclusion of the proposition holds for that
A4, and all ¢ as above that satisfy the additional hypothesis

(3.4.1) supppucC 2.

Let us fix therefore some {,€ B and let us choose w e Cy(2) a
normalised (i.e., of length 1) differential form in a small enough
Nhd 2 of , such that

a0, 0p, w, &

form a basis of the complexified cotangent space at every point of
2 (here of course p(z) = |2* — 1 but we prefer to keep the general
notation). :

Let also €3>, be arbitrary but satisfying (3.4.1):

1= phdz, + pdz, = ﬂlép + 0 .
By our hypothesis we have then:
(3.4.2) ARV ARFIRC ALY (:)

and if we suppose in addition that pgeC,,; (satisfying the Carleson
condition) then the measures (3.4.2) are Carleson measures.
Let now f be as in part (iii) of our proposition. We have then:

oTf = Xop + Y& .
Using now (3.2.7), (3.2.8), and (3.2.9) we see that

(3.4.3) X@) = 0@ 3, 8@) Sw S(z, )Of Q)

where the summation extends over a finite number of kernels S(z, {)
taken out of the 12 kernels (3.3.5), (3.3.6), (3.3.7), and also a finite
number of @({) that are polynomials in { and  and a finite number

of B(z) e C*(B) that are bounded and continuous in B.
Using Lemma 3.2.1 we also see that

Yo = 3 60| S e 050

where the summation is as in (3.4.8).
We conclude therefore that for x¢ and f as above we have:

AT = (BY - BX)ip A& = | 6 OO

where
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6 0 = [A() 5 6@ ()

(3.4.4) .
— (=) [T f1(2) g;.s B(2)S(z, Ha@)op N @ .

If we express f#,, [, 00, and @ in terms of e, #, dz, and dz, in
(3.4.4) we obtain

@(Z: C) = (#1/12 - #2/11)d§1 VAN d§2

where A4,(z, () and 4,(z, §) (ze B, {eoB) are two well determined
kernels.
Let us then set:

A!)(zr C) = (Al(z7 C)dgx + /12(2, C)d—z—z) AN dzl A dz, .
We have then
(3.4.5) Oz, 0) N dz, A\ dzy, = p(2) N\ Ao(z, 0)

and 4, satisfies the conditions of (i) and (ii) in our proposition. To
see that, we observe that all the kernels in the summations of
(3.4.4) satisfy the conditions of Lemma 3.3.3. It suffices then to
use (3.4.2) to obtain our result.

(8.4.5) on the other hand implies that

pAQD =\ ) A e O A FE) .
It therefore follows that:

Séﬂ AQSf = Szeé’ SCe
= ([ # A tete,0) A0 = | 0150)

R A Ag(z, ) A FE)

and this proves part (iii) of the proposition.
Before we give the proof of Theorem 3.1.1 (i) we shall need two
lemmas.

LEMMA 3.4.1. For every feC;(0B) that satisfies H,(f) =0 we
have:

|,.fA®=1lim S Qf Ap; VpeC(B)

where B, = {zeC% |z| £ r}.
Proof. We have by Stoker’s theorem

S Qf/\cp=—-8 Tf A 0p A dz, A\ dz, .
3B, aB,
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But by Lemma 3.3.2 we also have

r—1

lim SaB Tf A 0@ A dz, A\ dz, = SaB Tf A 0p A dz, A dz, .

We deduce therefore that:

lim LB QF A @ = —LB Tf A 3p A dz, A dz, .

=1

But by Henkin’s theorem in §3.2 we also have:
S Tf A 0@ A dz, A\ dz, = —S fAp.
oB 0B

From this our lemma follows.

LEMMA 3.4.2. Let f be as in Lemma 3.4.1. Then for all
u € C>(B) the integral S ou A\ Qf 1is absolutely convergent amd it
B
satisfies

(3.4.6) Swu Af= SB u A Qf .

Proof. The first part of the lemma follows from (3.2.7), (3.2.8),
and (3.2.9) which show that the behavior of Qf near the boundary
is controlled by | 0|72, To obtain (3.4.6) we use our previous lemma
and Stokes’s theorem in B, and then let » —1; we have

SBB u/\f=1imSaBru/\szlimSBr'a'u/\Qf=Séa‘u/\Qf_

The following theorem is essentially due to Henkin [14].

THEOREM (Henkin). For every (e, such that dpx=0. We
have:

SiﬂA’w: Saaﬁq{r

for all v e Cg(B) that satisfies 04 = 0 in some Nhd of B (# is the
function defined in Proposition 3.4.1).

We shall give a quick proof of the above result making the
additional hypothesis that peCy(B). Let peCy(B) and let us
suppose that 3¢t = 0 in some Nhd of B. Using then standard methods
we can find some % € C*(B) such that

ou =
in some Nhd of B.
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It follows therefore from Stokes’s theorem that

(3.4.7) Swu A= Ss"‘ A

for all 4 as in the statement of the theorem.
But by Lemma 38.4.2 and Proposition 3.4.1 we also have:

(3.4.8) Swu A g = Sg" A Qy = Sw fip

for the same class of +’s. From (3.4.7) and (3.4.8) therefore our
theorem follows. (Observe that the above +’s satisfy Hy(y) = 0.)

The difficulty in obtaing the general case from the above lies
in the fact that the condition that determines the space Y, has a
singularity at the boundary. It is therefore not trivial to regularise
in that space (say by convolution) and to approximate a general
element of 3>),, by one that satisfies our special conditions. It can
be done however, the interested reader should look, for example,
in Skoda [16]. (In [16] Skoda has obtained formulas that are
equivalent to Henkin’s and for the same purpose. Although I have
not gone through the details I am convinced that one could obtain
the BMO estimates from Skoda’s formulas as well.)

It should be observed, however, that the above special case
which gives the solution with a priori estimates is sufficient for
most practical purposes.

Proof of Theorem 3.1.1 (1). It now suffices to combine the
above theorem (of Henkin) with Proposition (3.4.1) (ii) to obtain our
theorem.

3.5. Proof of the second part of Theorem 3.1.1 and the
Corona problem.

Proof of Theorem 3.1.1 (ii). Let g € BMO (6B). Then by Theorem
1.1.1 there exists some F'€ C*(B) and fe L~(0B) such that

(3.5.1) gw (9= ) Ap=lim Sw FAp VpeCsy(B)
where B, = {z€C% |z| < 7}, and such that

| DF|d(Vol)

is a Carleson measure in B.
It follows therefore by Stokes’s theorem and a simple passage
to the limit as »—1 that
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Sw(-"“f) ANop= §§3’F/\ @  VpeC(B)

provided that dp = 0 in some Nhd of B.

But by Lemma 2.5.1 and our hypothesis on F' it follows that
the form g = 0F satisfies the Carleson condition, and being trivially
o-closed we see that y satisfies all the conditions of Theorem 3.1.1
(ii). This completes the proof.

Let us now consider the Hopf mapping
i (24 22) — 2,2,

which is defined for all (z, z,)€0B, 2, + 0, and takes its values in
the complex plane C = R®. (We can in fact define = from the whole
of 6B into the compactified complex plane C U , i.e., the Riemann
sphere, but we shall not need to do that here.)

~ Using that mapping we can give the following coordinates on
{0B; z, + 0}.

610
T VIFup
2=
V1+ul

2

#¢elo0, 27), ueC.
We have then:

LemMA 3.5.1. Let f(u)e BMO (R?, f¢ L°(R’) and of compact
support, and let us define:

fN(zu zz) = f(zl/zz) V(Z,, zz) €oB 2#0
F@,00=0 V(z,0)eoB.

Then feBMO (B) and it cannot be decomposed in the form:
(3.5.2) Ff=¢p+4; peL (3B), +eHGB).

Proof. To test the BMO condition on f observe that the
vector field ¢, runs along the fibers of the Hopf mapping, and that
therefore B,((,), a ball in B centered at {,coB, is essentially the
cartesian product of a ball B,z(H({)) in C = R* centered at H(()
and of radius V't and of a segment of length ¢ centered at {, along
the fiber. Using the above the verification of the BMO condition
is immediate.

To see that the decomposition 8.5.2 is-impossible, let us suppose
by contradiction that we could write

fw) = ou, 6) + ¥(u, 0) ; @eL (@B), e HY@B)
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where we use the coordinates of the Hopf mapping introduced above.
It would then follow that:

(3.5.3) o fiu) = S o(u, 0)d6 + S W, 6)d6

but + being analytic it follows that S% J(u, 6)dd is at consant (in-
0

ciependent of u). The expression (3.5.3) implies therefore that
feL>@B) which is in contradiction with the hypothesis. We can
now give the:

Proof of Theorem 3.5.2. Let us suppose, by contradiction, that
Theorem 3.5.2 fails.

Let v € BMO (0B) be an arbitrary BMO function. Then we know
by Theorem 38.1.1 (ii) that there exists. some geC,, and some
we L*(0=) that satisfy

opr=0; S v/\gp=s,#/\¢>+s wA P
9B B B .

for all € Cy,(B) that is d-closed in some Nhd of B. By our con-
tradictory hypothesis it follows that there also exists some u € L*(6B)
such that:

S u/\<P=S,#/\sv
3B B

for the same class of ¢’s as above. We conclude therefore that

SaB(v——u——w)/\¢>=O

for the same @’s as above.
But from Proposition 2.5.1 it follows then that w + u — v is of
analytic type and that therefore we can write

v=u,+a; wucL?(0B), acHB)

and v being arbitrary, this contradicts Lemma 3.5.1 and proves our
theorem.

REMARK. If we choose v as in Lemma 3.5.1 we see that the
measure /¢ can be constructed without the use of Theorem 2.1.1.

Indeed to construct the function FeC‘”’(B) whose boundary
values are v and for which |DF|d(Vol) is a Carleson measure, it
suffices to construct the corresponding F in the interior of the
Riemann sphere (or in R%) and lift it up by the Hopf mapping
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(which readily extends to the interior of the ball). All one needs
then to do the above construction is the much easier Theorem 1.1.1
@).

The above considerations are not conclusive as far as the Corona
problem is concerned, they do show however that the classical ap-
proach breaks down at a very essential point!

In the positive direction we can use Theorem 3.1.1 (i) to prove
the following.

THEOREM. Let f,, f,€ H*(B) be two bounded analytic functions
in B such that

@)+ 1 fiz) =26>0 vzeB.
Then there exist two holomorphic functions p,, @, in B that satisfy:
f1¢1 + fz@z =1

S\}p {ll@(r0) {lsmotoms 1| PA1E))ero00m)} < + oo o

The same holds for general strictly pseudoconvex domains.

The proof which is a straightforward but lengthy adaptation of
L. Carleson’s one-dimensional proof (with the modifications of
L. Hormander) will be omitted.
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