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WEAKLY ORTHOGONALLY ADDITIVE FUNCTIONALS,
WHITE NOISE INTEGRALS AND LINEAR

GAUSSIAN STOCHASTIC PROCESSES

JAN ROSINSKI AND WOJBOR A. WOYCZYNSKI

Let E be a Banach space. We prove a representation
theorem for functional on L2(E) that are additive on weakly
orthogonal elements (as defind by Beck and Warren in Pacific
J. Math, in 1972) and utilize the theorem to obtain a charac-
terization theorem for linear Gaussian stochastic processes
on L2 (E) that take independent values on weakly orthogonal
functions. This enables us give a new and very natural
interpretation of the notion of weak orthogonality.

1. Introduction and notation* Investigation of orthogonally
additive functionals (and operators) i.e., functionals on linear spaces
that are additive on orthogonal (in a certain sense) elements, has a
relatively long tradition. The first paper we could find was by
Pinsker [11] who in 1938 gave the representation of orthogonally
additive functionals on the Hubert space equipped with the usual
Pythagorean ortnogonality relation. Then there was a series of
papers by Friedman, Katz, Batt, Chacon, Sundaresan, Mizel, Drew-
nowski, Orlicz and Woyczynski (cf. e.g., [3], [9], [12] and references
quoted therein) dealing with orthogonally additive functionals and
operators on various, both concrete and abstract, vector lattices where
orthogonality ment disjoitness (of supports). With the same orthog-
onality relation, orthogonally additive functionals on the Schwartz'
spaces 3ί were shown by Gelfand-Vilenkin [4] to be crucial in the
theory of generalized stochastic processes with independent values at
each point (the latter being of utmost importance in the quantum
field theory) and that direction of research was later pursued for
general linear processes in [12]. At last Gudder and Strawther ([6])
introduced an axiomatic notion of orthogonality in linear spaces that,
in particular, included James orthogonality. In the same paper they
also gave a representation formula for orthogonally additive func-
tionals in that situation.

We remind that they call the relation l in a real vector space
V of dimension ^ 2 an orthogonality if

(01) x JL 0, 0 ± x f or all x e V;
(02) if x l y and x, y Φ 0, then x, y are linearly independent;
(03) if x l y then ax _L by for all a,beR;
(04) if P is a two-dimensional subspace of V then for every

xeP there exists 0 Φ y e P such that x 1 y;
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(05) if P is a two-dimensional subspace of V then there exist
nonzero vectors u, v eP such that u ± v and u + v 1 u — v.

In the present paper we shall work with the weak orthogonality
relation as introduced by Beck and Warren [2] who used it, in a
subsequent paper published in Annals of Probability, to get certain
strong laws of large numbers for random vectors.

DEFINITION 1. Let (Γ, Σ, μ) be a measure space with μ(T) = 1,
E — a separable real Banach space with dual E*f and L2(Γ, Σ, μ; E) =
L\E) — the Banach space of strongly J-measurable unvalued func-
tions / o n Γ for which

Two functions /, g e L\E) are said to be weakly orthogonal
(denoted / j_ * g) if for each x* e E*

' x*f(t).χ*g(t)μ(dt) = 0 .
JT

Weak orthogonality is not included in the general framework
of Gudder and Strawther. The relation ±* satisfies axioms (01),
(02), (03) but it does not satisfy (04) and (05), except in trivial cases.
That (01) and (03) are fulfilled is obvious. We prove (02). Assume,
a contrario, that / J_ * g, f, g Ψ 0 and g = af, a Φ 0. Let Ϊ7* be a
countable and weak* dense subset of E*. Then for each #* e Z7*

( [x*f(t)]2μ(dt) - a'1 \ x*f(t)x*g(t)μ(dt) = 0 .

Theorefore, for each #* e Z7*, x*f — 0 ^-almost everywhere so that
there exists T o c T, μ{T0) = 1 such that for all 16 % and #* e Z7*,
#*/(£) — o, which in view of weak* density of Ϊ7* in E* and Hahn-
Banach theorem implies | |/(ί) | | = 0 for each t e TQ. That means / = 0
in L2(E), a contradiction. Now, we disprove (04) αwcί (05) in the
case when dim E ^ 2. Let x, y eE be linearly independent. Put
/ = xlΓ, # = ylτ (1A is the indicator function of the set A) and P —
{af + bg: a,beR}a L\E). Assume the existence of h, 0 Φ h e P such
that f ±*h,h = af + bg. Choose x*, y* ei?* such that #*# = y*y =
1,0?*̂ / = #*# = 0. Then we have

0 = \ x*foχ*hdμ = α

0 = ( (x* + y*)fo(x* + y*)hdμ = α + 6

so that h = af + bg = 0, a contradiction.



WEAKLY ORTHOGONALLY ADDITIVE FUNCTIONALS 161

Thus, what we are going to prove below about weakly ortho-
gonally additive functionals is not covered by the results of [6].

2* Representation of weakly orthogonally additive functionals*

DEFINITION 2. We say that a function Φ: L\E) —> R is a weakly
orthogonally additive functional if for each /, g e L\E) such that
f 1* 9 we have

Φ(f + g) = Φ(f) + Φ(g).

We say that Φ is odd if Φ(-/) = -Φ(f), f eL2(E), and even if
Φ(-/) = φ(f), for all feL\E).

In what follows we shall always assume that the measure space
T does not consist of a single atom i.e. that there exists AeΣ such
that 0 < μ(A) < 1. Otherwise / j_ * g if and only if / = 0 or g = 0
so that any function Φ: L2(J5) —> J? vanishing at 0 would be a weakly
orthogonally additive functional.

THEOREM 1. If Φ: L\E)—*R is a continuous weakly orthogonally
additive functional then there exists a linear, continuous, symmetric
bilinear form K(x, y) on E x E and an le {L\E))* such that

φ(f) = l(f) + \ K{f{t\ f(t))μ(dt) , / G L\E) .

In the proof of the above representation theorem we shall have
need of the following

LEMMA 1. Let Φ: L\E)—+R be a continuous, weakly orthogonally
additive functional.

(a) If Φ is odd then it is a linear functional on L\E).
(b) If Φ is even then Φ(af) = a2Φ(f), aeR,fe L\E).

Proof, (a) Let x,yeE and AeΣ with μ(A) < 1. Put a =
(μ(A)/μ(T - A))ιJ\ It is easy to check that if

/i = xlA + α#lΓ_A , f2 = ylA + aylτ.A

g, = xlA + aylτ_A , g2 = ylA - axlτ_A

then f 1 */2 and & 1 * #2 so that

+ φ(a(x

A) - Φ(aylT-A)

and
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Φ((X + V)1Λ) ~

ft) =

Adding up the above equalities we get that

Φ((x + V)1A) =

If μ(A) = 1, then, by our assumption, we can find A0eΣ,0 < μ(Ao) <
1, so that, in view of the above reasoning we also get that

Φ((x + V)1A) = Φ((x

- Φ(xlA) + Φ(ylA) .

Thus for any simple function in L\E), and eventually, by con-
tinuity of Φ, for any /, g e L\E) (simple functions Σx^LAt are dense
in L\E))Φ{f + g) = Φ(f) + Φ(ff). On the other hand, by the classical
theorem due to Sierpiήski, every continuous additive functional on
a Banach space is necessarily linear.

(b) Because of continuity of Φ and of its additivity on functions
with disjoint supports it is sufficient to prove that

Φ(nxlA) = n2Φ(xlA) , xeE, AeΣ , neN.

As in part (a) the proof may be reduced to the case where 0 < μ{A) < 1
and we make this restriction. The above equality is evident for
n = 0 and n = 1 and we prove it in full generality by induction.
Assume, it is valid for k, 0 <ί k ^ n. Put a = [μ(A)/μ(T - A)m and

/Λ = xlA + naxlτ_A , gn = nxlA — ax\τ_A , n = 1, 2, .

Then, we have that fn 1 * gn and that

= Φ(fJ2)

for every xe£7. Utilizing the above identity and the inductive
assumption we get that

Φ((n + 1 ) ^ ) + {n- l)2Φ(xlA)

= Φ((n + 1)*1J + Φ((n -

A) + Φ{axlτ-A)
= 2(1 +

which was to be proved.
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Proof of the Theorem 1. The formula

Φ(f) = \( ±
Δ

gives a decomposition of the orthogonally additive functional into
odd and even parts. Both are continuous and weakly orthogonally
additive. Because of Lemma l(a) it is now sufficient to show that
every continuous, even and weakly orthogonally additive functional
can be represented in the form

Φ(f) - \ K(f(t), f(t))μ(dt)

for some continuous, symmetric bilinear form K on E x E.
In the first step we shall show that

(1) Φ{xlA) = Φ(xlτ)μ(A) , x e E , A e Σ .

For A, B e Σ, A n B = 0 we define

f =
g =

Then f L*g and the application of Lemma 1 (b) yields that

±μ{B)Φ(xlA) = Φ(f + g) = Φ(f) + Φ(g)

= 2μ(B)Φ(xlA) + 2μ(A)Φ(xlB)

so that

μ(B)Φ(xlA) - μ(A)Φ(xlB) .

In the case B = T - A

(1 - μ(A))Φ(xlA) = μ(A)(Φ(xlτ) - Φ(xlA))

which gives (1).
In the second step, we shall check that the function φ:E—>R

defined by the formula φ(x) = Φ(xlτ) satisfies the functional equation

( 2 ) φ + y) + φ(x -y)^ 2φ(x) + 2φ(y) .

Indeed, if we take AeΣ,0< μ(A) < 1, x, y e E and put

a = [μ(A)/μ(T - A)1/2, / - xlA + αa;lΓ_A , g = ylA - aylτ,A ,

then f ±*g so that, by step one and Lemma 1 (b)

[φ + V) + Φ - y)MA) = Φ((x + y)lA) + Φ(a(x - y)lτ-A)

- Φ(f + 9) = Φ(f) + Φ(g) = 2φ(x)μ(A) + 2φ(y)μ(A) .
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To conclude the proof of the Theorem 1 we shall show that

( 3 ) K(x, y) dd A-\φ(x + y)-φ(χ-y))f χ9 y 6 E ,

is the continuonus, symmetric, bilinear form on E x E we are looking
for.

The continuity of K is implied by the continuity of φ and the
symmetry of K by evenness of φ. Bilinearity is immediate from (2).
In fact, if x, y, zeE then

A[K(x, z) + K(y, z)) = <p(x + z) - φ(x - z) + φ(y + s) - φ(y - z)

= 2-χ[φ{x + y + 2z)- <p(x + y - 2z)] = 2K(x + y, 2z),

and, in particular, for y = 0, we get that 2ϋΓ(α;, «) - JSΓ(a5, 2«), x, zeE,
from which the bilinearity is obvious. The continuity and bilinearity
together imply the existence of a constant C > 0 such that

(4) \K(x,y)\£C\\x\\ \\y\\, x,yeE.

Now, let feL2(E) and let /» = Σ< ̂ i,*!^,* be a sequence of
simple functions tending to / in L\E). Then the continuity of
<p, (1), (4) and the fact that K(x, x) = <£>(&) imply that

Φ(f) - lim Φ(/J - lim

= lim

= lim \ K(fn,fn)dμ = \ K(f, f)dμ

which ends the proof of the Theorem 1.

REMARK 1. The method of proof employed in Theorem 1 makes
it possible to prove an analogous representation theorem for weakly
orthogonally additive operators taking values in another Banach space.

As far as the converse to the Theorem 1 is concerned we can
prove it only in the case when E has the bounded approximation
property i.e. if there exists a sequence of finite dimesional operators
An:E—>E with uniformly bounded norms and approximating the
identity operator on E uniformly on compacta.

THEOREM 2. Let E be a real, separable Banach space with the
bounded approximation property, K(x, y) a continuous, symmetric
bilinear form on E x E, and I e (L\E)). Then

Φ(f) = l{f) + t K(f(t), f(t))μ(dt) , f e L\E),
JT
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is a continuous weakly orthogonally additive functional on L\E).

Proof. By Pelczyάski's theorem ([10]) any separable Banach space
with the bounded approximation property is (isomorphic to) a comple-
mented subspace of a Banach space with a Schauder basis. So we
may assume that EaF, B:F—+E is a bounded projection onto E
and that {e%) is a basis in F with (eΐ)aF*Q<zE* being a bi-orthogonal
sequence. Take /, g e L\E)

/ = -B/ = Σ (eϊfiBβt , g = Bg = Σ (etg)Bei
ί = l 1=1

which are weakly orthogonal. Notice that if

are the finite rank operators generated by the basis then | |AJ| are
uniformly bounded by a constant, say λ, so that

\K(BAJ(t), BAng{t)\ £ C||J?||W||/(t)| | ||fir(ί)|| eU(R).

Therefore, by continuity of K, Lebesgue dominated convergence
theorem, bilinearity and symmetry of K (in that order) we get that

ί K(f, g)dμ - lim t K{BAJ, BAng)dμ
J T n^oo J T

= Σ K(Bβi,Bei)[ eff-efgdμ

= Σ K(Beu Be,) [ eff-efgdμ
ι=l JT

+ Σ K{Bet, Be,) \ (eff-efg + βff βfg)dμ
i,j=l JT
t<3

= ±K(Bei,Bej)\ [(e* + ef)f
i<3

• (eΐ + ef)g - eff-efg - eff-efg]dμ = 0

which, obviously, implies the weak orthogonal additivity of Φ.

REMARK 2. An additional light on the interrelations between
weak orthogonality, bounded approximation property, and bilinear
functionals (tensor products) is shed by the result due to Grothendieck
(cf. Prop. 40 p. 180 of [5]) which characterizes the bounded approx-
imation property of E* (implying the same for E) by the fact that
for any Banach space F the protective tensor product E*®F* (i.e.,
all continuous bilinear forms on E x F) is isomorphic to the space
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of all integral bilinear forms on E x F, i.e., forms K of the shape

x*x y*yvί(dx*)v2(dy*), xeE,yeF,
*

= I
JB

where vlf v2 are certain positive measures on the unit balls BE*, BF*,
rospectively.

REMARK 3. For any separable Banach space E there exist con-
tinuous, weakly orthogonally additive functionals Φ on L\E) that
are strictly positive, i.e., such that Φ(f) > 0 for every 0 Φ f eL2(E).
Indeed, take a sequence (xt) dense in E and (xf)aE* such that
11 a?* 11 + 1, x*Xt = \\Xi\\. Let v be a probabilistic measure on {x* eE*:
II a* II ^ 1} such that v({xf}) = 2~\ i = 1, 2, . Define

K(x, y) = \ x*xx*yv(dx*) .

Then Φ(/) = \ K(f, f)dμ is a continuous, weakly orthogonally additive
functional on L\E) (cf. Th. 2) and, moreover, if | | / | | 2 > 0 and
to£{t \\f(t)\\ > 0} then one can find an i such that x*f(t0) ^ ||/(<<>)11/2
so that

[
JBE*

and

•w = J, \x*f{t)Yv{dx*)μ{dt) > 0

3* A characterization of certain linear Gaussian stochastic pro-
cesses* In this section we shall sketch a few probabilistic applications
of the notion of weak orthogonality.

DEFINITION 3. Let (Ω, ̂ 7 P) b e a probability space and let
L°(Ω, ^ 7 P) be a linear space of all real random variables on (Ω, ̂  P)
equipped with the topology of convergence in probability. Any
linear continuous map

X:L\E) >L°(Ω, j ^ P )

is said to be a linear stochastic process on L\E). We say that it
is independently scattered (on weakly orthogonal functions) if X(f)
and X(g) are independent random variables whenever / l *g. In
the case when X(L\E)) c L2

0(Ω, &] P) (the Hubert space of zero mean
and finite variance random variables) we shall say that X is ortho-
gonally scattered if it takes orthogonal values on weakly orthogonal
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functions (cf. e.g., [1], [4], [12] for general theory of linear stochastic
processes).

Notice, that if X is a linear process on L\E) the random function
M(x, A) = X(xlA) on E x Σ has the following properties: for fixed
xQ 6 E, M(x0, •) is contably additive, and for fixed AoeΣ, M"( , Ao) is
linear stochastic process on E. So for any simple function / =
ΣxίlM 6 L\E) we can define the linear random integral

M(f{t), dt) = Σ M(xi9 A%)
T

which by continuity may be extended to the whole L\E). Therefore
every stochastic linear process on U(E) has the "generalized" random
integral representation

X(t) = \ M(f(t), dt) .

Especially interesting examples of such linear processes are given
by random integrals. This is exactly the case when the scalarly
concentrated cylindrical measure on E* generated for each Ao e Σ by
the linear process M( , AQ) is cylindrically concentrated and can be
extended to the Borel probability on E*. Then M is of the form

M(x, A) = M*{A)x , x e E ,

where M* is a random vector measure with values in E* i.e. for
each A e Σ, M*(A) is an i?*-valued random vector and the mapping
M*:Σ-+L°(Ω, J^P; #*) is countably additive (If it is into

we always assume that it is continuous in the L2 norm). When the
linear process X is independently scattered then the corresponding
random measure ikf* takes independent values on disjoint sets. If X
is orthogonally scattered then the random measure M* takes weak*
orthogonal values on disjoint sets, i.e., for disjoint A, S e J a n d any
x,yeE, EM*{A)xM*{B)y = 0. (Notice that in L2

0(Ω, jη P; E*) inde-
pendence of elements implies the weak* orthogonality.) In the above
case we shall also write

X(t) = JM(/(ί), dt) =

and the latter integral (appearing only formally above) may be
regarded as a Banach space analogue of the Wiener white noise
integral.

What is of interest to us is that, conversely, if itf* is any (random
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vector (measure with values in L2

0(Ω, ^ 7 P) E*) that takes weak* or-
thogonal (and in particular independent) values on disjoint sets then

we can define the random "white noise" integral \fdM* for all fe

L2(T, Σ, μ; E), where μ ^ 0 is any measure satisfying ||Λf*(-4)||J ^
const μ{A), AeΣ. (The existence of such a measure is guaranteed by
a theorem on the existence of a control measure for general vector
measures, see e.g., Dunford and Schwartz, Linear Operators, Part I,

Ch. IV. 10.) Indeed, for / = ΣxtlAi put \fdM* = ΣM*(At)xt and

notice the inequality

tf ^ ΣE\\M*(AiW\\xi\\2 ^ const

which permits the extension to all of L2(E).
We have the following neat characterization of random integrals

that are orthogonally scattered linear processes.

THEOREM 3. Let the random measure Λf * takes values in
Ll(Ω, ̂ 7 P; E*) . Then the linear process

X(f) = ί f(t)M*(dt), / e L\T, Σ, μ; E)
JT

is orthogonally scattered if and only if ikf* takes weak* orthogonal
values on disjoint sets and

( 5 ) E(M*(A)xf - E{M*{T)x2-μ(R) .

for every xeE and AeΣ.

Proof. Assume that X is orthogonally scattered. Then Φ(f) =
EX\f) is an orthogonally additive functional and by Theorem 1 there
exists K(x, y) such that

EX\f) - ( K(f, f)dμ .

Then

E{M*{A)x)2 = EX\xlA) = K{x, x)μ(A)

so that putting A = T we get that K(x, x) = E(M*(T)xf which
yields (5). The weak* orthogonality of ikf* is obvious because if
A Π B = 0 then for any x,yeE, xlA _l_ * ylB.

To prove the converse suppose Λf* is weak* orthogonal on disjoint
sets and satisfies (5). Then
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EM*{A)xM*{A)y = EM*(T)x-M*(T)yμ{A) , x,yeE,AeΣ.

If / 1 *g and fn, gneL\E) are simple and such that fn-*f, gn—>g
then

EX(f)X(g) = lim JE7 ϊ fn{t)M*(dt) \ gn{t)M*{dt)

= lim
n

= lim
n i

= lim
n

= lim E [ M*(T)fn-M*(T)g.dμ
n J T

= ^ ί M*(T)f M*(T)gdμ = 0

so that X is orthogonally scattered and the proof is over.
Now, consider a general linear stochastic process X on L2(E),

μ-atomless, which is independently scattered. Its characteristic func-
tional

φ(f) - E exp (iX(f)) , / G L\E) ,

enjoys the following property

g) = ψ(f)-f(g) .

On the other hand, log ψ always exists because X(f) has necessarily
infinitely divisible distributions by the Central Limit Theorem (here
the continuity of X, the fact that μ is atomless and that functions
with disjoint supports are weakly orthogonal come into play). So
we may define φ = log ψ, and, obviously φ is a complex weakly
orthogonally additive functional which, by Theorem 1, must be of
the form

φ(f) = l(f) + [K{f, f)dμ

so that the logarithm of the characteristic function of the random
variable X(f) is equal to

φ(tf) = tl(f) + ί2 \K(f, f)dμ ,

and we have proved the following

THEOREM 4. If X: L2(Γ, Σ, μ; E) -> L\Ω9 j r p), μ-atomless, is a
linear independently scattered stochastic process then it is necessarily
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Gaussian.

COROLLARY 1. The random integral

X(f)=\fdM*,feL\T,Σ,μ;E),

μ-atomless, is independently scattered as a linear process on L\E)
if and only if

( i ) ikf* is Gaussian)
(ii) if A19 , AneΣ are pairwise disjoint then M*^), •••,

M*(An) are stochastically independent;
(iii) for any AeΣ, the random vectors M*(A) and (μ(A))1/2M*(T)

are identically distributed.

Proof, (i) is a special case of Theorem 4 so that M* is necessarily
Gaussian and in this case the formula (5) determines its distribution
so that we get (ii) and (iii). Conversely, if M* is Gaussian then
#11 M*(T)||2 < oo and by Theorem 3 X is orthogonally scattered and,
as a Gaussian process also independently scattered.

REMARK 4. In the special case T = [0, 1] and μ is Lebesgue
measure the above Corollary provides a characterization of the (random
integral with respect to) unvalued Brownian motion as defined by
Kuelbs in [8]. Such random integrals give us a variety of examples
of independently scattered linear processes in which the notion of
weak orthogonality appears very naturally.

We conclude our, somewhat sketchy, discussion of probabilistic
applications of the notion of weak orthogonality by showing another
instance wherein it naturally arises.

Let E be a real, separable Banach space of type 2, i.e., such that
for any independent, zero mean Ylf , Yne L2(Ω, J^ P; E)

E IS

where C is a universal constant, independent also of n (cf. [7] for
more on spaces of type 2). Assume (Γ, Σ, μ) is a measure space
with μ(T) = 1 and M: Σ—+L°(Ω, ^ P) is a random measure such that
for any AeΣ, M(A) is a zero-mean Gaussian real random variable
with variance μ(A) and for disjoint Alf •••, AkeΣ, M(A^, •••, M(Ak)
are independent.

Define the linear continuous mapping

(6) J: L\T, Σ,μ;E)3f Λ f(t)M(dt) e L\(Ω9 S^ P; E)
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so that

That is possible because E is of type 2 which implies that for simple
functions in L\E) one has the inequality

E

for some C > 0.
We shall check that the, values of the random "white noise"

integral (6) are independent only if integrated functions are weakly
orthogonal. In fact, because M is Gaussian it is implied by the fact
that for each x* e £7*

Ex*\ fdM-xΛ gdM=E[ (x*f)dM \ {x*g)dM

= \x*f-x*gdμ

the penultimate equality being motivated by the fact that the mapping

L2(Γ, Σ, μ; R) 9 / -> ̂ fdM e L\Ω, j^7 P) is an isometry.

The above reasoning shows, in particular, that the integral I is a
linear, isometric isomorphism between L\T, Σ, μ; E) and I[L2, Σ, μ\ E)\ c
L\{Ω, J^, P; E) which preserves also weak orthogonality.
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