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CONSTRUCTING NEW R-SEQUENCES

MARK RAMRAS

R-sequences play an important role in modern commuta-
tive algebra. The purpose of this paper is to show how new
R-sequences may be constructed from a given ome. In the
first section we give some general results, which are ap-
plied in the second section to obtain an explicit method of
construction.

Recall that a sequence of elements z, ---, 2, in B is an R-
sequence if (¢, ----,x,) R+ R, x, is a nonzero divisor on R, and
for 2< 1 < m, x, is a nonzero divisor on R/(%, ---, x,_)R.

Throughout this paper R will be a commutative noetherian ring
which contains a field K. Moreover, R will either be local or
graded.

I wish to thank Melvin Hochster for showing me Proposition
1.5, which simplified this paper considerably.

1. It is easy to see that if =z, .--,2,6R and X, ---, X, are
independent indeterminates over K, and if ¢:K[X, .-, X,]—R
by o(f( X, +--, X,)) = f(x, +++,x,) is a flat monomorphism, then
@, +++, %, is an R-sequence. The converse, when R is local, is due
to Hartshorne [3].

ProposiTION 1.1 (Hartshorne). Suppose R is local. If x, +«-,
x,.eR form an R-sequence then ¢:K[X, -+, X,]—R is o fat
monomorphism, where @ is the map determined by p(X,) = x, for
each 1 and @(a) = a for all ac K.

REMARK. Saying that ¢ is a monomorphism is the same as
saying that =z, ---, z, are algebraically independent over K.

COROLLARY 1.2. Assume R s local. Suppose f, «+-,f, s @
K[X, ---, X,]-sequence, and each f,e(X, ---, X)K[X,, ---, X,].
Suppose also that z, ---, x, 1s an R-sequence. Then

f1(x11 0y xn)’ ”')f'n(xn M) x'n)

is an R-sequence.

Proof. By Proposition 1.1 the map ¢ is a flat monomorphism. By
flatness, since f, -+, f, is a K[X,, ---, X,]-sequence, o(f), -, o(f.)
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is an R-sequence. (The assumption that each f;e(X, ---, X,) guar-
antees that the o(f;) generate a proper ideal of R.)

REMARK. It is well-known (e.g., [4, Theorem 119]) that for
any local noetherian ring R, a permutation of an R-sequence is
again an R-sequence. However, if R contains a field, the preceding
result yields a very simple proof of this fact. For it is clear that
for any permutation ¢ of {1, ---, n}, X,u, ++-, Xy is 2 K[X, +--,
X,]-sequence. Letting f, = X,,, we have fi(z, +-+, ,) = %,;,, and
so by Corollary 1.2, x,,, *--, %, 1S an R-sequence.

We now give a graded analogue of Proposition 1.1. For in
order to use Corollary 1.2 we need K[X,, ---, X,]-sequences.

ProposITION 1.3. Assume R is graded, and let x, -+, %, be
homogeneous elements of R of positive degree. Then %, ++-, %, 18
an R-sequence = (i) x,, ---, %, are algebraically independent over K,
and (ii) R is a free Klz, +--, x,]-module.

Proof. Let A = K|z, ---, z,].

(=) Assume (i) and (ii). Hence A4 is a polynomial ring in =
variables and thus z, ---, 2, is an A-sequence. Since R is A-free,
any A-sequence is an R-sequence.

(=) (i) follows from [5, p. 199].

(ii) A is a graded subring of R, with grading induced by that
of R. That is, if R=@ IR, let A, =ANR,. Then J4, is a
direct sum, which we claim equals A. Since each x;, is homogene-
ous, »;€ A, for some integer m, = 1. Also, KC R and R is graded,
so Kc R,, and therefore K = A,. Since every element g of 4 is a
polynomial in the z,’s with coefficients in K, it follows that ge @
JA,. Hence A = @IA,. Thus, with the grading on A induced by
that of R, and with the original grading on R, R is a graded A-
module. Now by [2, Ch. VIII, Thm. 6.1] since 4, is a field and R
is a graded A-module, if Tor#(R, 4) = 0 then R is A-free. Thus
to prove (ii) it suffices to show that Tor#(R, K) = 0.

We compute Tori(R, K) by taking a projective resolution of
K over A and tensoring it with RE. Since =z, ---, z, are algebrai-
cally independent over K, they form an A-sequence, and so the
Koszul complex of the z’s over A is exact and therefore yields a
free A-resolution of K. Tensoring it with R gives the Koszul com-
plex of the #’s over R. But since by hypothesis the #’s form an
R-sequence, this Koszul complex has zero homology ({1, Cor. 1.2] or
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[2, Ch. VIII, 4.3]). In particular, the first homology group,
Tor{(R, K), is 0, and we are done.

We have a graded analogue of Corollary 1.2. Its proof is
nearly identical to the latter’s and so we omit it.

COROLLARY 1.4. Suppose R is graded and 2z, +++, %, 1S an R-
sequence, where each x, 1s homogeneous of positive degree. Suppose
Jy oo fu 8 @ K[X,, +--, X,]-sequence with each f,e(X, -+, X,).
Then fi(@, «++, 2,), +=+, ful®, ++-, 2,) is an R-sequence.

We close this section with a proposition due to M. Hochster.

PROPOSITION 1.5. Let S be a graded Macaulay ring such that
S, s local. Let x, --,%, be homogeneous elements of S. If
rank (x, «++, ®,) = n then x, -+, 2, 1S an S-sequence.

Proof. Let M= M, + 3,5, S;, where M, is the maximal ideal
of S,. Then M is maximal in S and contains every proper homo-
geneous ideal of S. Let I= (%, --+, x,), and localize at M. Then
in the local Macaulay ring S,, rank(f,) ==n, so , :--,2, is an
Sy-sequence, by [4, Thms. 129 and 136]. Let .2 denote the Koszul
complex of the a’s over S. Then .27 @S, is acyclic since it is
the Koszul complex of the x’s over S,. Hence for each 7 =1, the
1th homology module H,(2%" ® Sy) = 0. Since S, is S-flat we have
H(2%#)® S, =0, so ann (H,(>¢)) & M. Since the x’s are homo-
geneous, .2~ is a complex of graded S-modules and hence H,(.5%")
is also graded. But the annihilator of a graded module is a homo-
geneous ideal. Thus ann (H,(%7) =S and so H(%% ) =0 for all
1 = 1. Therefore 2¢ is acyclic, and so by [1, Prop. 2.8], z, ---, 2,
is an S-sequence.

2. Any permutation ¢ in the symmetric group ., acts as an
automorphism on the polynomial ring K[X,, ---, X,] by

(af)(le ) Xn) = f(Xa(l)7 MR Xa(m) .

The next lemma is the key to our construection.

LEMMA 2.1. Let o be the cyclic permutation (1,2, ---,m), of
order m. Let K be a field, with ac K. Define a homogeneous
polynomial fe K[X, .-+, X,] by f(X, ---, X,) = X™ — ag, where
g=TI X7, 254, <1, <:+-< 1 £ m, each m, 21, and 3k, m,=m.

If a® + 1, then the only common zero of f, of, -+, 6"'f in K"
is (0, -+-, 0).
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Proof. We first treat a special case where the basic idea of
the proof is not obscured by details. Suppose that k =n — 1, i.e.,
that each X,, 2 <1 < n, divides the monomial g. Let (2, ---, 2,) €
K" be a common zero of f, of, ---,0"'f. We have the following
system of equations:

z:" = az;"z. . .z;"lti—lzl”:‘n

Ry = QR32e s s ZpnTIZPn

:
m m. My m,
W = QRTEe s e gMnzIZM

Equating the product of the left sides with the product of the right
sides, and using the fact that >»,m, = m, we obtain:

(=) = w(fle)e- (o) = o ()"

But e¢*+#1, so [[~.2, =0 and thus some z; =0. For all ¢ such
that © = j, 2; appears on the right side of the 4th equation of the
system above. Hence z, = 0. Thus (2, -+, 2,) = (0, -+, 0).

In the general case we shall break up the system of » equa-
tions into a number of subsystems, for each of which the preceding
argument can be used.

Let H = (g™, -+-, 6%*) be the subgroup of the cyclic group (o)
generated by o', ..., 0%, Thus H is cyclic, of order dividing =.
In fact, H = {(06®) where b is the greatest common divisor of
Ny Ty o0 0y Do

We claim that if X, divides o¢°(g), then 7 =s (modbd). For
r = 0°(4,) for some ¢, 1 <¢<k. Thus r =s + 4, (mod ). Since b
is a common divisor of 7, and n, it follows that = = s (mod b).

Now consider []7.,o%(g). It is clearly invariant under o. But
if (I3, X&) = II7-, X%, then @, =@, = -+ =a, Now since deg
g = m, deg ([I7..0°9) = nm. Thus [I*,0°g = [I~. X". On the other
hand, for any 7,

Hog=(C II o9 II o9,

s=1 s=r(mod b) sF#r(mod b)

and if » = s(mod b) then X, does not divide o°g. Therefore
og= Il X =( II X)".

s=r(mod b) s=r(mod b) s=r(mod b)

Now suppose (2, ---,2,) is a common zero of f,of, ---, 0" 'f.
Then for all 1 < s <, 2" = a(o°g)(2, ++-, 2,). Hence

Zs)m = q"? H )(Jsg)(zu %y zn) = a“/b( H z“)m *

s=r(mod b) s=r(mod b s=r(mod b)
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Since a” = 1, it follows that ¢*?® = 1, and so 2z, = 0 for some s = r
(mod ). We shall show that z, = 0 for every ¢t = r(mod b).

For 1 = j <k, X, divides g: Thus X, = ¢'7%(X,,) divides ¢**(g),
say &b = 0'7%(g). Now ¢'7'(f) = o' 7%(X") — ao*'i(g) = X%, — aw;h.
If z,=0, then 2, = 0 since (2, -+, 2,) is a zero of ot7%(f), and so
%_;; = 0. Thus for all j and for all ¢ with ¢ = s(mod 4;), we have
2,=0. This implies 2z, =0 for all ¢ = r(modb). Since r was
arbitrary, (2, ---, 2,) = (0, ---, 0).

THEOREM 2.2. Let K, o, a, and f be as in the preceding
lemma. Then f, of, ---,0""'f is ¢ K[X,, ---, X,]-sequence.

Proof. Let I=(f,o0f,  --,0"'f) and let R = K[X, ---, X,].
Let S = K[X,, -+, X,], where K is the algebraic closure of K. By
Lemma 2.1 the variety of IS in K" contains only the origin. Hence
by the Nullstellensatz, the radical of IS is the maximal ideal
(X, -+, X,)S. Therefore rank(IS) = n, and so by Proposition 1.5
f,of, +++,0"'f is an S-sequence. Now S = R XK, so S is R-free.
Hence S is faithfully R-flat, and thus f,of, ---, 0" 'f is also an
R-sequence.

Combining Theorem 2.2 with Corollaries 1.2 and 1.4, we have:

COROLLARY 2.3. Suppose R contains o field K, and », -+, 2,
18 an R-sequence. Define fe K[X,, ---, X,] as in Lemma 2.1, and
assume a" = 1. If R s local, or +f R is graded and each x; is
homogeneous of positive degree, then

f(xu °t %y xn)3 (O-f)(mly ) xn)y tt (O'n_lf)(xlf ) wn)

18 an R-sequence.

REMARK. Since f is a homogeneous polynomial of positive
degree, when the original R-sequence consists of homogeneous ele-
ments of positive degree, the same is true for the resulting R-
sequence. Thus in the graded case as well as in the local case, the
procedure may be iterated.

ExaMPLE. Let R = K[X, Y, Z], where X, Y, Z are independent
indeterminates. By Theorem 2.2, if a*= 1, then X*— aYZ, Y* —
eXZ, Z* — aXY is an R-sequence, and if be K and b+ 1, then
X®—bY? Y® —0bZ% Z°®— bX?® is another. Hence by Corollary 2.3,
(X2~ aYZ)P —b(Y:— aXZ), (Y!—aXZ)—0(Z° —aXY) (Z°—
aXY)' — b(X®* — aYZ)® is again an R-sequence, as is (X® — bY?®)?® —
a(Y? — bZ%(Z° — bX?®), (Y?—bZ% — a{Z® — bX*)(X® —bY?), (Z°—
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bX®) — a(X?® — bY?)(Y® — bZ¥).
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