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A COMPARISON THEOREM AND OSCILLATION CRITERIA
FOR SECOND ORDER DIFFERENTIAL SYSTEMS

GARRET J. ETGEN AND JAMES F. PAWLOWSKI

Let %? be a Hubert space and let & = ^(^T, &f) be the
J3*-algebra of bounded linear operators from < ^ t o ^ w i t h
the uniform operator topology. Let S? be the subset of
& consisting of the selfadjoint operators. This paper is
concerned with second order, selfadjoint differential equa-
tions of the form

(1) [P(x)Y'Y + Q(x)Y^0

on ^ + = [0, oo), where P and Q are continuous mappings of
^ + into S? with P(x) positive definite for all xeέ&+. Let
& be the set of positive linear functionals on έ%. Positive
functionals are used in deriving a generalization of Sturm's
comparison theorem, and, in turn, the comparison theorem
is used to obtain oscillation criteria for equation (1). These
criteria are shown to include a large number of well-known
oscillation criteria for (1) in the matrix and scalar case.
Extensions of the results to nonlinear differential equations
and differential inequalities are also discussed.

Appropriate discussions of the concepts of differentiation and
integration of ^-valued functions, as well as treatments of the
existence and uniqueness of solutions Y: &+ ~> & of (1), can be
found in a variety of texts. See, for example, E. Hille [8, Chapters
4, 6, and 9]. Studies of the behavior of solutions of second order
equations in a I?*-algebra have been done by several authors, in-
cluding Hille [8, Chapter 9], T. L. Hayden and H. C. Howard [7]
and C. M. Williams [18]. Of course, if £έf = ^ , Euclidean w-space,
then & is the i?*-algebra of n x n matrices, and equation (1) is the
familiar second order, selfadjoint matrix differential equation which
has been investigated in great detail by a large number of authors.
In this regard we refer to the texts by A. Coppel [2], P. Hartman
[6], Hille [8], W. T. Reid [13], and C. A. Swanson [15], all of which
provide comprehensive bibliographies and extensive references to the
research literature.

It is easy to verify by differentiation that if 7 = Y(x) is a
solution of equation (1), then

(2) Y*(x)[P(x)Y\x)] - [P(x)Y'(x)]* Y(x) = C

on <^?+, Ce& a constant. The solution Y is conjoined (or prepared)
if the constant operator C in (2) is 0, the zero operator. The term
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"conjoined" has its origins in the calculus of variations, and for
amplifications of this concept, the reader is referred to Reid [13].
Conjoined solutions of (1) can be obtained by choosing conjoined
initial conditions. In fact, it is easy to show that Y is a conjoined
solution of (1) if and only if there is at least one point ae&+ such
that

Y*(a)[P(a)T(a)] - [P(a)Y'(a)]*Y(a) .

As noted by Noussair and Swanson [12], the conjoined hypothesis on
solutions of (1) is needed in order that an analog of the classical
theory of oscillation of (1) in the scalar case can be developed.

A solution Y — Y{x) of equation (1) is nonsingular at x = c,
c 6 ̂ ? + , provided Y~\c) e &. This is equivalent to the two conditions:

(i ) the range of Y(c) is 2ίf9 and
(ii) Y(c) has a bounded inverse.

If either of these conditions fails to hold at x = c, then Y is singular
at x = c. We note that in the special case Sίf = &n9 conditions (i)
and (ii) are equivalent, and that the nonsingularity of Y(c) can be
also be expressed in other terms, e.g., det Y(c) Φ 0. Hayden and
Howard [7, p. 384] give an example which illustrates why conditions
(i) and (ii) are required in the definition of nonsingularity in the
general J3*-algebra case.

A solution Y = Y(x) of equation (i) is nontrivial if there exists
at least one point c e ^ + such that Y(c) is nonsingular. In the
finite dimensional case £ίf = &n it is known that the condition
Γ * Γ + [PY']*[PYf] > 0 (i.e., positive definite) on &+ is equivalent
to the nontriviality of Y (see, e.g., Etgen [4]). However, like non-
singularity, there are difficulties with this characterization in the
general J3*-algebra case. The following example, communicated to
us by R. T. Lewis and S. C. Tefteller, relates to both nonsingularity
and nontriviality.

EXAMPLE. Consider the differential equation

Y" + i Γ = 0

on ^ + , where A is the infinite diagonal matrix A = diag [1,1/4,1/9,- ]f

It is easy to show that Y(x) = diag[sin#, sinα?/2, sinα /3, •] is a
conjoined solution of the equation, and that Y*Y + Y*ΫY' > 0 on
&+. For any c 6 ̂ ? + , c Φ nπ, n a nonnegative integer, Y(c) is one-
to-one, but it does not have a bounded inverse because 0 is a limit
point of the eigenvalues of Y{c)9 or, equivalently, there does not exist
a positive number m such that 11 Y{c)a \ \ ^ m 11 a \ \ for all a e Sίf. When
c is an integral multiple of π9 Y(e) is not one-to-one. Thus we can



A COMPARISON THEOREM AND OSCILLATION CRITERIA 61

conclude that Y is identically singular on &+, and so Y is not a
nontrivial solution of the equation. The solution Z(x) = diag [cos x,
cos x/2, cos x/3, ] is a nontrivial solution of the equation.

Let Y = Y{x) be a nontrivial conjoined solution of equation (1).
The solution Y is oscillatory if for each ae&+ there is a point
b, b ^ a, such that Y(6) is singular. The solution Y is nonoscillatory
if it is not oscillatory. Equivalently, Y is nonoscillatory if there is
a point C G ^ + such that F is nonsingular on [c, oo). The differential
equation (1) is oscillatory if it has at least one nontrivial conjoined
oscillatory solution, otherwise equation (1) is nonoscillatory.

The following lemma and camparison theorem have been establish-
ed by K. Kreith [10, Lemmas 1 and 2] in the finite dimensional case.
His proofs of these results extend without modification to the general
i?*-algebra case.

LEMMA 1.1. Given the differential equations (1) and

(3) [F(x)Y'Y + G(x)Y = 0

where F, G: &+ —•> &* are continuous and F(x) > 0 for each x e ^ + .
Let Y = Y(x) be a conjoined solution of (1) such that Y is non-
singular on some interval [a, b]a&+, and let S(x) = [P(x)Y\x)]Y'\x)
on [a, b]. If V = V(x) is a solution of (3), then

( 4 )
[V*FV - V*SV]:zl = [ V*(Q - G)Vdx + \" V*'(F - P)V'dx

Ja Ja

+ \\v - YΎ^VTPiV - YΎ~ιV)dx .
J &

LEMMA 1.2. Let [a, b] c &+ and suppose V = V{x) is a solution
of equation (3), V ^ 0, which satisfies

( i ) V*(x)[Q(x) - G(x)]V(x) ^ 0 (i.e., nonnegative definite) on
[a, b],

(ii) V*'(x)[F(x) - P(x)]V(x) ^ 0 on [a, b],
(iii) V(a) = V(b) = 0.

If Y = Y(x) is a conjoined solution of equation (1), then Y(x) is
singular for at least one x e [α, δ].

2* The comparison theorem* In this section we introduce the
set of positive functionals on &, and use them to obtain a com-
parison theorem which generalizes Lemma 1.2.

A linear functional g on & is a positive functional if g(A*A) ^ 0
for all i e j ί Equivalently, the linear functional g is a positive
functional if g(β) ^ 0 for all ΰ e y such that B ^ 0. C. E. Rickart
[14] has shown that each positive functional g on & is bounded
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(i.e., continuous) with \\g\\ — g(I) (I denotes the identity operator in
&). Also, each positive functional g satisfies a generalized Cauchy-
Schwarz inequality

(5) [g(A*B)Y^g(A*A)g(B*B)

for all A, B e ^ . It follows from (5) that the positive functional g
is the zero functional if and only if g(I) == 0. If ίy is not the zero
functional, then g(I) > 0 and, in general, g(A) > 0 whenever AeSζ
A > 0. Finally, since a positive functional g is continuous,

whenever A:&^—>& is integrable, and

9[B'(x)] = {g[B(x)]Y

whenever B: &+ —> & is differentiable.
Let Ŝ  be the set of positive functionals on ^ . The fact that

& contains elements in addition to the zero functional can be verified
by associating with each nonzero vector a e 3ίf the functional ga

defined on & by

(6) ga(A) = (Aa, a), 4 G ^ ,

where ( , ) is the inner product on £ίf. It is easy to show that ga

is a positive functional on &, with ga{ΐ) — | | ^ | | 2 > 0 . In fact, it
can be verified that & is a positive cone in the space of continuous
linear functionals on &.

THEOREM 2.1. Suppose there is a g e & and a solution V = V(x)
of (3) such that:

( i ) g[V*(Q-G)V]^0 on [a, b],
(ii) g[V*\F - P)V\ ^ 0 on [α, 6],
(iii) glV*(a)V(a)] = g[V*(Jb)V(b)] = 0,
(iv) for any ce[a, 6], g[V*(c)V(c)] — 0 implies that

g[V*'(c)P(c)V'(c)]>0.

If Y = Y(x) is a conjoined solution of (1), then Y(x) is singular for
at least one x e [a, &].

Proof. Suppose that Y is a conjoined solution of (1) which is
nonsingular on [a, b]. Then S = PY' Y~ι exists on [a, b] and (4)
holds. By applying the functional g to (4), and using the linearity
and continuity of g, we get the equation
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g[V*FV'](b) - g[V*SV](b) - g[V*FV](a) + g[V*SV](a)

{ Ί ) = j g[ V*(Q - G) V]dx + I* flf[ V*'(F - P) V']dx

+ Γg[(V - Y'Y-'VyPiV - YΎ~ιV)]dx .

It follows from the generalized Cauchy-Schwarz inequality (5) that

{g[ V*(x)F(x) V'(x)W ^ g[ V*(x) V(x))g[(F(x) V\x))*F(x) V'(x)]

and

{g[V*(x)S(x)V(x)]Y <Ξ g[V*(x)V(x)]g[(S(x)V(x)rS(x)V(x)} .

Thus, by hypothesis (iii), g[V*(x)F(x)V'(x)] = g[V*(x)S(x)V(x)] = 0
when x = a, or x = b. Therefore equation (7) reduces to

0 = \bg[V*(Q - G)V]dx + [g[V*\F - P)V']dx
{ } f»f

+ g[(V - YΎ-'v
Jα

From hypotheses (i) and (ii), and from the fact that

(V - YΎ-ιV)*P{V - YΎ~ιV)

is nonnegative definite on [a, 6], the integrand in each term on the
right side of (8) is nonnegative and, consequently, each term on the
right side of (8) is nonnegative. Thus it suffices to show that at
least one term is positive in order to obtain the desired contradiction.

We expand the integrand in the third term on the right side of
(8) to obtain

g[(V - Y'Y-'VTPiV - YΎ'XV)]

= g[V*'PV] + gKYΎ-'V

- g[{YΎ-γV)*PV*r] - g[VfP(YΎ-ιV)\ .

By evaluating this expression at x = a, and by using hypothesis (iii)
and the generalized Cauchy-Schwarz inequality (5) in the manner
suggested above, we have

g[(V - Γ'Γ-1F)*P(F' - YΎ-'V^a) - g[V*'(a)P(a)V'(a)] .

Thus, by hypothesis (iv) there is a subinterval [a, a') of [a, b] on
which g[(V - F'F- 1 F)*P(F' - YΎ^V)] > 0. (The same reasoning
shows that there is also a subinterval (6', b] of [α, b] such that
g[(V - YΎ'Ύ^PiV' - YfY~ιV)\ > 0 on (&', 6].) It now follows
that
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\bg[{V - YΎ-ΎTPiV - YΎ-'V^dx
Ja

^ ("' g[(V - YΎ-'vyPiV - γrγ-ιV)\dx > o
Ja

which contradicts (8) and completes the proof of the theorem.

3* Oscillation criteria. In this section we use Theorem 2.1 to
develop oscillation criteria for equation (1), and we show how our
criteria include a number of well-known oscillation criteria as special
cases.

Our oscillation criteria will be developed by "comparing" equa-
tion (1) with second order scalar equations of the form

(9) (P(X)V'Y + Q(x)V = 0

on ^ + , where p, q: &+ —+& (the reals) are continuous and p{x) > 0
for all xe&+. We assume that the reader is familiar with the
appropriate definitions concerning the oscillation of solutions of (9).

THEOREM 3.1. Suppose equation (9) is oscillatory. If there is
a g 6 & such that

( i )
(ii)

on [c, oo) for some c e ^ + , then equation (1) is oscillatory.

Proof. Let Y = Y(x) be a nontrivial conjoined solution of (1),
and let v = v(x) be a nontrivial solution of (9). Since (9) is oscilla-
tory, for each point d, d^ c, there are points a and 6, d 5g a < 6,
such that v(a) = v(b) = 0. Let V = V(x) be the ^-valued function
on &+ defined by V(x) = v(x)I. Then it is clear that V is a solution
of the ^-valued equation.

(3') (F(x)Ty + G(x)Y = 0

where F(x) = p(x)I and G(x) = q(x)I. By using the hypotheses of
this theorem, it is easy to verify that the positive functional g and
the solution V satisfy the hypotheses of Theorem 2.1. Thus Y(x) is
singular for at least one xe[a, b], and equation (1) is oscillatory.

The following three corollaries list some oscillation criteria for
(1) in the finite dimensional case, i.e., in the case where P and Q
are n x n continuous, symmetric matrices on &+ with P positive
definite. These criteria are well-known, and they are demonstrated
to be special cases of Theorem 3.1.

COROLLARY 1 (cf. Kreith [10, Theorem 1]). Let J be an n x n
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nonzero matrix with zeros and ones on the main diagonal and zeros
elsewhere. If equation (9) is oscillatory, and if

( a ) J[Q- q(x)I]J ^ 0

( b) J[p(x)I - P]J ̂  0

on [c, oo) for some c e ^ + , then equation (1) is oscillatory.

Proof. Let a be the vector whose ith component is j i i f the ith
entry on the main diagonal of J, i — 1, 2, , n. Let ga be the
positive functional defined by ga(A) = a*Aa (here* denotes transpose)
for all n x n matrices A (see (6)). Since a*J — α* and Ja — a,

- g*[J{Q -

and

ga(p(x)I - P) = ga[J(p(x)I - P)J] .

Therefore hypotheses (a) and (b) imply that ga satisfies (i) and (ii) of
the theorem, and we can conclude that (1) is oscillatory.

COROLLARY 2 (cf. E. S. Noussair and C. A. Swanson [12, Theorem
2]). If there exist diagonal elements pu and qu of P and Q, respec-
tively, such that

0 2>ti(aO J°

equation (1) is oscillatory.

Proof. By letting j)(a?) = ί>w(α?), and g(a?) = qu{x) in (9), it follows
that hypothesis (c) implies (9) is oscillatory. Let εt be the vector
whose ith component is 1 with all other components being zero.
Let gH be the positive functional associated with the vector εt as
defined by (6). Then gH[Q - q(x)I] - g£.[p(χ)I - P] = 0 on ̂ + . Thus
the hypotheses of the theorem are satisfied and (1) is oscillatory.

Before stating the next corollary, it is necessary to introduce
some notation. Let Sk,n denote the collection of strictly increasing
sequences of k integers chosen from the set {1, 2, •••, n). For any
n x n matr ix A and any σ(k).= (ilf i2, •••, in)^Sk>nf let ΣσA denote

the sum of the entr ies of the k x k s u b m a t r i x of A obtained by

deleting all rows and columns of A except the i h j = 1, 2, •••,&,

rows and columns.
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COROLLARY 3 (cf. W. Allegretto and L. Erbe [1, Corollary 1]).
If there exists an element σ{k) 6 Sk,n such that the equation

(d) {[Σ P(*WY + [ Σ <K*)\v - 0
a a

is oscillatory, then equation (1) is oscillatory.

Proof. Let a be the ^-component vector with ones in the
h> i2> "*>% positions and zeros elsewhere, and let ga be the positive
functional associated with a as defined by (6). Put g = (lfk)ga.
Then g is a positive functional, and

g[P(x)] = (1/AO Σ P(*), 9lQ(x)) = d/Λ) Σ «(*), and ?(/) = 1 .

Finally, let p(α?) = #[P(£)] and q(x) = έr[Q(α;)]. Then hypothesis (d)
implies that equation (9) (with this p and q) is oscillatory. Since
0[Q - g(α?)J] = flf[p(α)I - P] = 0 on ̂ + , the hypotheses of the theorem
are satisfied. Thus (1) is oscillatory.

Additional oscillation criteria have been obtained by H. C.
Howard [9], T. L. Hayden and H. C. Howard [7], and Etgen [5],
and since the results of these authors are included in the criteria
of Corollaries 1, 2, and 3, these results are also special cases of our
theorem.

The next result holds in the general ^-valued case.

THEOREM 3.2. If there exists a g e 2^ such that the scalar equa-
tion

(10) (9lP(χ)]YΎ + g[Q(χ)]y = o

is oscillatory, then equation (1) is oscillatory.

Proof. Suppose g e & satisfies the hypotheses of the theorem.
Let p(x) = g[P(x)] and q(x) = g[Q(x)]. Since (10) is oscillatory, g is
not the zero functional, i.e., \\g\\ = g{I) > 0. We can assume g(Γ) = 1,
for if g(I) Φ 1, then g = g/g(I) does have norm 1, and

(g[P(χ)]yrϊ + g[Q(χ)]v = o

is oscillatory if and only if (10) is. Now,

g[Q - q(x)I] = q(x)[l - g(I)] = 0 = p{x)[g{I) - 1] - g[p(x)I - P]

and the hypotheses of Theorem 3.1 are satisfied. Therefore equation
(1) is oscillatory, and the theorem is established.
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Theorem 3.2 enables one to consider the question of the oscilla-
tion of equation (1) in terms of the oscillation of a corresponding
second order selfadjoint scalar differential equation of the form (9).
Thus the very large number of well-known oscillation criteria for
equation (9) can be used to determine associated oscillation criteria
for (1) The following corollary is a simple example of the type of
oscillation criteria which can be obtained for equation (1) through
Theorem 3.2.

COROLLARY (cf. W. Leighton [11] and A. Wintner [19]). If there
exists a ge& such that

= \~g[Q(x)]dx =
Jo

then equation (1) is oscillatory.

4* Nonlinear systems. Let P, Q; &+ x & X & — Sf be con-
tinuous with P(x, Af B) > 0 for all xe&+, A,Be&. Let Γ denote
the collection of functions Y: ^ ? + -* & such that Y and P(χ, Y, Y')Y'
are differentiate and

Y*[P(x, Y, Y')Y'\ = [P(x, Y, Y')Y']*Y

on ^ + . Consider the second order "nonlinear" differential operator
L defined by

(11) L[Y] = [P(x, Y, Y')Y'Y + Q(x, Y, Yf)Y.

Nonlinear differential systems of the form

(12) L[Y] = 09

as well as nonlinear differential inequalities of the form

(13) Y*L[Y]^0

have been considered by a number of authors. See, for example,
ϊl]> [3], [5], [10], [12], [16], and [17]. An examination of these
results shows that the nonlinear systems are defined in a manner
such that the methods developed for linear differential systems of
the form (1) are applicable. In this sense, then, the results presented
in this paper can be extended to both (12) and (13).

We conclude this paper with the analogue of Theorem 2.1 for
the nonlinear differential system (12). The proof of this result
depends upon the fact that Lemma 1.1 also holds in the nonlinear
case. Since the proof is virtually identical to the proof of Theorem
2.1, it will be omitted.
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THEOREM 4.1. Suppose there is a ge^ and a solution V = V(x)
of

[F(x, Y, Y')Y']f + G[x, Y, Y']Y = 0

such that
( i ) ΰ{ V*[Q(x, Y, Y') - G(x, V, V')] V) ^ 0 on [a, b] for all YeΓ,
(ii) g{V*'[F(x, V, V) - P(x, Y, Γ')]V) ^ 0 on [a, b] for all YeΓ,
(iii) g[V*(a)V(a)] = g[V*(Jb)V{b)] = 0,
(iv) for any ce[a, b], g[V*(c)V(c)] = 0 implies

g[V*'(c)P(c, Y, Yf)V'(c)] > 0 for all YeΓ.
If Y = γ(χ) is solution of (12) and YeΓ, then Y(x) is singular
for at least one x e [a, 6].
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