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INVOLUTIONS FIXING CODIMENSION TWO KNOTS

CHAO-CHU LIANG

1. Involution. An m-knot (X™*, M™) consists of an (m + 2)-
homotopy sphere 3™ and an m-homotopy sphere M™ differentiably
(or piecewise linearly) embedded in it. A (2n — 1)-knot is callsd simple
if 72 — M) =7y (8" for j <m. It is well known that each knot
cobordism class contains a simple knot, [5] or [7].

Associated to each (2n — 1)-knot, we have Seifert matrices B,
with B + ¢B’ unimodular, where ¢ = (—1)* and B’ denotes the trans-
pose of B. For m = 2, the isotopy class of simple knot is completely
determined by its Seifert matrices [8].

In [1, §11], Cappell and Shaneson used their algebraic K-theoretic
obstruction groups to determine which knot cobordism classes admit
semifree Z, actions fixing the knots. In §3 below, we will prove
the following theorem from the viewpoint of [5] and [8].

THEOREM 1. A simple knot (2**, M***), n = 3, admits a p. 1.
involution T fixing M* if and only if it has an associated Seifert
matriz B of the form B = A(A — cA") A for some matrix A with
both A + c¢A’ and A — A’ being unimodular.

We will also discuss the differentiable case in the last section.
2. A technical lemma. Recall that ¢ = (—1)".
LEMMA 2. Let A be an (r X r)-matriz with both A + ¢A’ and

A — A’ being unimodular. Then the following system of equations
has a unique solution for the pair of (r X r)-matrices C, and C,.

(1) CA+eCA =A+ed

(2) eC A" +CA=0.
Proof.

(38) 1)+@2)C(A +cA")+Cy(A +cA)= A+ €4’
Since A + €A’ is unimodular, (3) becomes

(4) C, + C, = I, the identity

(5) LD)—@2)C(A —cA') —C(A—cA)= A+ eA'.

Since A — €A’ is unimodular, (5) becomes
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(6) C,—C,= (A + eAA — A,
From (4) and (6), we have
C,=A(A—¢cA)* and C,= —cA'(A —cA).

3. Proof of Theorem 1. If a simple knot (2!, M*™), n = 3,
admits a p.l. (or differentiable) involution 7T fixing M**~!, then it
is easy to see that X, = 3/T is a (2n + 1)-homotopy sphere, and
(2, M) is again a simple knot. Let Y be the closure of (X, — M x D?,
and V** CY be an (n — l)-connected Seifert manifold for (X, M)
with V' = M X e®, (we consider S* = {¢*}), [5], [7]. Lifting V to %,
we have two equivariant Seifert manifolds V, and V, with TV, =
Vy oV, =M X €°, and 0V, = M X ¢'*, [9]. We then cut X = closure
of (¥} — M x D?) along V, to get a manifold W.

(") Vie w, V. w, V.

w

We see immediately that W, is the manifold obtained from Y (in X))
by cutting it along V and W, = TW,. Let {e, ---, ¢,} be a basis for
H,V,,, and {f,, --+, f,} a basis for H,W determined by the Alexander
duality (in ). Similarly, viewing {e,} as a basis for H,V, we have
a basis {d;} for H,W, by using the Alexander duality in ¥,. Let A
and B be the Seifert matrices associated to (2,, M) and (¥, M) respec-
tively (with respect to the basis {¢;}) [5], [7].

From [5], we know that A represents the map H,V, — H,W,
with respect to the bases {¢;} and {d}, also the map H,V,— H,W,
with respect to the bases {T,.e} and {T.d;}. The matrix —cA’ repre-
sents the map H,V,— H,W, with respect to the bases {T.e;} and
{d;}, also the map H,V, — H,W, with respect to the bases {e;} and
{T.d;}. The matrix B represents H,V,, — H,W with respect to the
bases {¢;} and {f;}, and —eB’ represents H,V,_— H,W with respect
to the bases {¢,} and {f;}. All the maps here are induced by inclusions.
Finally, let C, and C, denote the matrices represent the maps H, W, —
H,W and H,W,— H,W with respect to the appropriate bases respec-
tively. From (*), we have the following equation:

B = C,A, —eB' = Cy(—¢A"), C(—cA") =C,A.

These, together with the fact that A + ¢A’ = B + ¢B’ = intersection
form on H,V, [5], give us the two equations in Lemma 2. Also,
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we have proved in [9] that both A +¢A’ and A — ¢4’ are unimodular.
Thus it follows from Lemma 2 that B = C, A = A(4 — cA')'A.

Conversely, given a knot (2*"*, M*') with its Seifert matrix B
satisfying the condition in Theorem 1, we can construct a simple
knot (3, M) with an (n — 1)-connected Seifert manifold V and associ
ated Seifert matrix A, [5]. Then we construct the 2-fold branched
covering of (2,, M) to obtain a simple knot (3, M) as in [4], [9],
[12]. If we are in the p.l. category, then both 3 and X, are the
standard sphere S*>**:. Both (X, M) and (X,, M) have the same
Seifert matrix, hence they are actually equivalent, [8]. The in-
volution T is given by the covering translation for the branched
covering.

4. Free involutions. Since the study of knots invariant under
free involutions on spheres is very similar to that of knots fixed under
involutions, [9], [10], the following theorem can be proved in a
similar fashion.

THEOREM 1. A stmple knot (2*", M**), n = 3, admits a free
o.l. tnvolution T leaving M invarient t+f and only if it has an
associated Seifert matrixz B of the form B = A(A — c¢A’)'A for some
matriz A with both A + cA’ and A — A’ being unimodular.

5. The differentiable case. Let T denote a differentiable involu-
tion on JX**! fixing M*™ ', n=3. We want to study the relation
between the differentiable structure of 3 and 3, = 3/T. If 3, =S,
then we may view (Y, M) as the connected sum of (S***, M) and
Y, along a disk disjoint from the Seifert manifold V and M. We
then construct the 2-fold branched covering (2,, M) of (S*', M)
with branched point set M. By the uniqueness of differentiable
structure of the cyclic branched covering ([2] or [4]), it is easy to
see that X = 2Y, + X,, where the sum denotes the connected sum
in the group of homotopy spheres [',,.,, [6].

In the case n is odd, we let X, denote the generator of bP, =
{y e I'y,_,|y bounds parallelizable manifolds}. Then we have the
following proposition.

PRrROPOSITION 3. 5 = 1/8(index (A + A)X, + 2%..

Proof. We first note that A + A’ is a unimodular, symmetric,
even matrix, hence its index is divided by 8, [6]. According to the
remark in the preceeding paragraphs, we only have to determine the
differentiable structure of ¥, the 2-fold branched covering of (S*~, M).
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We push the Seifert manifold V into D*, a disk having S*! as its
boundary; then use V as the branched point set to construct a 2-fold
branched covering N of D* with oN = 3,, [4, §4]. Proposition 5.6
in [4] tells us that the intersection form on H,(N) is given by
A+ A’. All we have to do now is to show that N is parallelizable.
The Seifert manifold V*~* has the homotopy type of a wedge of 7
copies of S*7!, hence we may represent each of the basis element of
H,, (V)= r copies of Z by an embedded (2k — 1)-sphere S,. Each
S, bounds a 2k-disk D, in D*. Let x denote the covering translation
in the 2-fold branched covering N over D*. Then @, = zD,U (—D,)
represent a basis for H,,(N), [4, p. 155]. N has the homotopy type
of a wedge of r copies of S*, represented by the Q,’s. Then the
argument used in Lemma 4 (i) of [12] shows that the normal bundle
of each Q, in N is stably trivial. Thus N is parallelizable, and it
follows that 3, = 1/8(index (4 + A4"))2,.

In particular, we see that ¥, does not admit an involution T
fixing a codimension 2 simple knot M with 1/8(index (A + A’)) = even
integer. In contrast, if G is a free differentiable involution acting
on XY*#*7! leaving M invariant, and A a Seifert matrix for the equi-
variant knot complement (¥ — M x D?)/G; then we proved in [10]
that 1/8(index (4 + A’)) = 0(G, ) = the Browder-Livesay index de-
suspension invariant, [11]. But we know that 37, the generator of
bP,, admits a free involution G with o(G, 37) = 0, [3], [11, p. 63].
Thus (G, X7) admits an unknotted invariant S° [11], which implies
1/8(index (A + A")) = 0.

In the case » is odd, we know that bP,,,, = Z,or 0, [6]. Recall
that ¥, = 3/T, where the involution 7T fixes a simple knot M in
4+ Then we have the following proposition.

PropoSITION 4. 3 = 22X,

Proof. As in Proposition 3, we only have to determine the
differentiable structure of %,, the 2-fold branched cover of (S**!, M).
The proof of Proposition 3 shows that X, bounds a 2k-connected
parallelizable manifold N**? with intersection form A — A’. Then
the argument in [5, p. 256-257] enables us to embed N in S**® in
such a way that (S**3 J%,) is a simple knot with Seifert manifold N
and Seifert matrix A (see [4, p. 153] and [5, p. 256]). We know
from [7, p. 544] that the Kervaire invariant of N is the Arf invariant
of A. Since A + A’ is a symmetric, even, unimodular matrix, Lemma
2 in [11, p. 36] shows that the Arf invariant of A is zero. Hence
%Y, is the standard sphere.

The author wishes to thank the referee for pointing out Proposi-
tion 4 to him.
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