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ON A THEOREM OF S. BERNSTEIN

A. GRANAS, R. B. GUENTHER AND J. W. LEE

In 1912, S. Bernstein, in the first part of his memoir [2]
devoted to the boundary value problems arising in calculus
of variations, established sufficient conditions for the unique
solvability of the Dirichlet problem for the equation y" =
f(t,y,yf). Our aim is to present a result which extends the
scope of the Bernstein theorem and to show that the generali-
zation obtained can be carried over (with only minor adjust-
ments in the proof) to the case of all important boundary
value problems which arise in applications.

1* Introduction* In this paper we study the existence and uni-
queness problems for a second order differential equation of the form

(*) y " = fit, y , y ' ) , o ^ t ^ l ,

subject to certain boundary conditions, labeled (I)-(VII) below. These
boundary conditions include the Dirichlet, Neumann, and periodic
ones as well as the so-called elastic or Sturm-Liouville boundary
conditions. We only treat in detail homogeneous boundary condi-
tions; however, the case of inhomogeneous boundary conditions can
be treated similarly to the homogeneous case. See 7(d).

The Dirichlet, Neumann, and periodic boundary conditions are,
respectively,

( I ) y(0) = 0, y ( l ) - 0 ;

(II) irtO) = O, lrtl) = 0;
(III) 2/(0) = y(X) , /(O) = y'(l) .

The problem of solving the differential equation (*) subject to the
boundary conditions (I) will be referred to as problem (I). Similar
notation is used for«the other problems.

We always assume that f(t, y, p) is defined and continuous on
[0, 1] x R x R. By a solution to problem (I), we mean a function
y e C2[0,1] which satisfies the differential equation and boundary
conditions. Likewise, we seek C2[0,1] solutions to the other
problems.

In 1912, S. Bernstein established the following theorem in [2]
for problem (I):

Assume / = f(t, y, p) is continuous, has continuous partial de-
rivatives /„ and fp9 and satisfies

( i ) /f2>.fc>0
(iϊ) \M V, P)\ £ Mt, y)P2 + B(t, y),
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where A, B are functions bounded on each compact subset of
[0,1] x R and k is a constant. Then there exists exactly one solu-
tion y 6 C2[0, 1] to problem (I).

The purpose of this note is to present a generalization of the
Bernstein theorem (which permits the treatment of equations such
as y" = yz + yn + 1 to which the original result does not apply) and
to show that Bernstein's result can be extended to many other im-
portant boundary value problems. For purposes of comparison, we
state the following extension of Bernstein's theorem (see Theorems
(4.1), (5.2), and (5.3)).

Assume / = f(t, y, p) is continuous and satisfies:
( i ) There is a constant M ^ 0 such that yf(t, y,Q) > 0 for

\y\ > M;
(ii) \f(t,y, p)\ ύ A(t, y)p2 + B(t, y) with A, B as above.
Then:
(a ) there exists a solution y e C2[0, 1] to problem (I);
(b) there exists a solution y e C2[0, 1] to problems (II) and (III);
( c ) moreover, if the partial derivatives fy and fp exist, are

bounded, and fy ^ 0, then the solution in (a) is unique and any two
solutions in (b) differ by a constant.

In §5 uniqueness theorems for problems (I>-(III) are established
under a monotonicity requirement on / rather than the differenti-
ability assumptions in (c) above. Also, existence and uniqueness
results are established for boundary value problems with Sturm-
Liouville boundary conditions in §6.

Our discussion of existence and uniqueness questions proceeds as
follows: The existence discussion falls into three parts. First
sufficient conditions on / are given which imply an a priori bound
on a solution y to one of the above problems. Next, assuming an
a priori bound on y, an a priori bound on yf is obtained. Finally,
the existence of a solution is obtained by applying a topological
technique. Uniqueness is treated as a separate* issue.

REMARK. For problem (I) we are seeking solutions y e C2[0,1].
It is more natural to seek solutions y e C2(0,1) Π C[0,1]. However,
the a priori bounds derived below, together with the assumptions
on f(t, y, p) imply, a priori, that y must be in C2[0,1]. Thus no
generality is gained by considering solutions in the class C2(0,1) Π
C[0,1], This comment also applies to the other problems. A similar
remark is also pertinent in the uniqueness discussion.

2* A priori bounds on solutions* In this section a priori
bounds are established for solutions of problems (I), (II), and (III).
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Let y be a solution to (*) and r(t) = [y(t)f. If r has a positive
maximum at t0 in [0,1] where, y(tQ) > 0 say, then

0 ^ r"(ίo) - 23/(O/(£0, y{Q, 0) .

This motivates (2.1).

LEMMA 2.1. Suppose there is a constant M ^ 0

, 0) > 0 for \y\ > M.

If y is a solution to the differential equation (*) and \y\ does not
achieve its maximum value at t = 0 or 1,

|»(t)| SM for t in [0,1] .

Proof Under the conditions of the lemma \y\ must achieve a
positive maximum at a point tQ in (0, 1). Suppose y(t0) > 0. Then

0 ^ y'U) - /(£o, y'(tQ), 0) ,

0 ^ y(t0) = /(£0, V'(ίo), 0) ,

and the last inequality also holds if y(t0) < 0. By our basic assump-
tion on / it follows that \y(to)\ <; M. The lemma is proved*

LEMMA 2.2. // / and M satisfy the hypothesis of Lemma 1,
then any solution y to problem (I), (II) or (III) satisfies

\y(t)\ ̂  M , tin [0, 1] .

Proof. For the Dirichlet problem (I) the assertion follows direct-
ly from (2.1).

Let y be a solution to either problem (II) or (III). We claim:
( i ) If \y\ assumes its maximum for tQ = 0 or t0 = 1, then

MWI ^ M.
Clearly, (2.1) and (i) imply that \y(t)\ ̂  M for t in [0, 1]. It remains
to prove (i) for problems (II) and (III).

Let y be a solution to problem (II) for which y(fi) is the maximum
value of y. We show that y(0) > M is impossible. Indeed, if y(0) > M,
then

tf(O)0"(O) = ί/(0)/K0, 2/(0), 0) > 0 .

If #(0) > 0 then #"(0) > 0 and so y'(t) is strictly increasing near
t = 0. Then y'(έ) > #'(0) = 0 for έ > 0 near zero, y is strictly in-
creasing near 0, and y(0) = \y(0)\ is not the maximum of \y\ on [0,1],
a contradiction. Likewise, if y(0) < 0 a similar contradiction arises.
Thus, |y(0)| <£ ikΓ. The corresponding assertion for y(l) is proved
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similarly. This proves (i) for the Neumann problem.
Consider the periodic problem (III). If j/'(0) = y'(l) Φ 0 it follows

from 2/(0) = y(l) that \y\ cannot achieve its maximum at t0 = 0 or 1.
Since by (i), \y\ is assumed to achieve its maximum for t0 = 0 or
tQ = 1, we must have j/'(0) = 0. Then y satisfies problem (II) and,
hence, \y(0)\ = \y(l)\ ̂  M. This completes the proof.

The following corollaries are special cases of (2.2). They give
conditions on / which are easily checked in practice and imply that

y,0)>0 for \y\ > M.

COROLLARY 2.3. Suppose n is an odd integer,

| ^ ( i f W , 0 ) , fc = 0, . . . , n ,
3uh

exist and are continuous, and that there is a constant M ^ 0 such
that

dnf
—z-(t, u, 0) ^ k for \u\ > M , k > 0 a constant.

dun

Then any solution y to one of problems (I), (II) or (III) satisfies

\y(t)\ ̂  M for t in [0, 1] .

REMARK. These conditions are satisfied in particular when

ftt, u,P) = Σ «*
k=0

,k

n is odd, and an(tf 0) > 0 for t in [0, 1], and ak(t, p) is continuous
for k = 0,1, , n.

COROLLARY 2.4. Suppose f(t, u, p) = ua(t, u, p) + β(t, u, p) and
that there is a constant M ^ 0 such that for \u\ > M,

a{t, u, 0 ) > 0 and β^ u> 0 )

< 1 .

ί, w, 0)

solution to problems (I), (II) or (III) satisfies

\y(t)\ ̂ M for t in [0, 1] .
3* A priori bounds for derivatives* In this section a priori

bounds are established for the derivatives of solutions.

LEMMA 3.1. ( i ) Suppose there is a constant M > 0 such that
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\y{t)\ ^ M for O^t^l and for each solution yeC2[Q, 1] to the
differential equation (*).

(ii) Suppose there exist constants A, B > 0 such that

\f(t, u, p)\

for all (t, u) in [0, 1] x [—ikf, M]. Then there is a constant M
depending only on M, A, B such that

\y'(t)\£M, tin [0,1],

for each solution y of (*) whose derivative vanishes at least once in
[0, 1].

Proof. Since y' vanishes at least once in [0, 1], each point t in
[0,1] for which y'(t) Φ 0 belongs to an interval [μ, v] such that y'
maintains a fixed sign on [μ, v] and y'(μ) and/or y'(v) is zero. To
be definite, assume that y'(μ) = 0 and y' ^ 0 on [μ, y]. Then from

+• B

and integrating from μ to t yields

l ° g - 5 ^

\y'(t)\ <: Άe"

where M is defined by the last equality. The other possibilities that
might occur are treated similarly and the same bound on \y'(t)\ is
obtained.

The boundary conditions for problems (I)-(III) imply that the
derivative of each solution to one of these problems must vanish at
least once in [0, 1]. Thus, (2.2) and (3.1) imply:

PROPOSITION 3.2. Suppose there is a constant M ̂  0 such that
uf(t, u, 0) > 0 for \u\ > M and that there are functions A(t, u),
B(t, u) > 0, bounded on compact subsets in [0, 1] x R, such that

\f(t, u, p)\ ̂  A(t, u)p2 + B(t, u) .

Then there is a constant M > 0 such that for any solution to
problems (I), (II) or (III)

\y(t)\ ̂  M , \y\t)\ ^ M for t in [0, 1] .
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We will treat other types of growth conditions in a subsequent
paper. Here we simply indicate one result in this direction.

PROPOSITION 3.3. ( i ) Suppose there is a constant M ^ 0 such
that for any solution y to problem (II),

\y(t)\ ̂  M for t in [0, 1] .

(ii) Suppose there is a constant M1 such that

\f(t, u, p)\ > 0 for \p\ > M1 .

Then there is a constant M such that

\y'{t)\ ^M for t in [0, 1] .

Next suppose (i) holds for solutions to problem (III), / satisfies
(ii) and

(iii) /(0, u, p) = /(I, u, p) for all (u, p). Then there is a constant
M such that

\y\t)\ ^M for t in [0, 1] ,

for each solution y to poblem (III).

Proof Let y be a solution to the Neumann problem. If y' has
a nonzero maximum or minimum value at t0, then t0 is in (0, 1) and

0 = y'\Q = f(t0, y(t0), y\t0))

which implies \y\Q\ S M1 = M. This establishes the result for
problem (II).

Let y be a solution to the periodic problem (III). In view of
the boundary conditions, the form of the differential equation (*),
and the periodicity of / in t, each solution y e C2[0, 1] can be extend-
ed to a 1-periodic, C2-solution to (*) on (— oo, oo). Now the proof
can be completed as for the Neumann problem.

REMARK. Suppose f{t, u, p) = ua(t, u, p) + β{t, u, p) satisfies the
hypothesis of (2.4). Then (i) of (3.3) holds, and (ii) will hold if

O as I p l - ^ o o
β(t, u, p)

uniformly for (t, u) in [0, 1] x [ — M, M].

The existence proof in § 4 requires a priori bounds for the follow-
ing family of problems
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V" -y = λ[/(ί, y, y') - y) ,

depending on the parameter λ, 0 5̂  λ <; 1. Here & denotes the
class of functions in C2[0,1] satisfying either boundary conditions
(I), (II), or (III). Notice that the family Sίfi joins either problem
(I), (II), or (III) to the corresponding problem y" — y = 0, y e έ%
whose (unique) solution is y Ξ 0.

LEMMA 3.4. ( i ) Suppose f(t, y, p) is continuous on [0,1] x
R x R and that M > 0 is such that yf(t, y, 0) > 0 for \y\ > M.

(ii) Suppose that there are constants A> B > 0 such that

\Λt, V, P)\ ̂ Ap* + B

for all (t, y) in [0, 1] x [-Λf, M].

Then there are constants Mo = M, Mlf M2 such that for each
λ, 0 <; λ ^ 1, and each solution y to

\y(t)\ £ MQ , \y\t)\ ^ Mx , \y"{t)\ ^ M%,

for t in [0, 1].

Proof. The bounds for y and yr are established using (2.1) and
(3.1). The bound on y" follows from the continuity of / on
[0, 1] x [—MOf Mo] x [ — M, ΛfJ. The proof is complete.

4* Existence* Let (C, | |0) be the Banach space of continuous
functions on [0,1] with the sup norm, | |0. By (Cn, | | J we denote
the Banach space of w-times continuously differentiable functions
ueC with the norm,

Denote by & any one of the boundary conditions (I), (II), or (III)
and let C\ = {u e C2: u e &}. Consider the linear operator L:C*-*C
given by u~»u" — u, the family of maps

Tλ: C
1 > C , 0 £ λ ^ 1 ,

defined by

(Tλv)(t) = X[f(t, v(t), v\t)) - v(t)] ,

and the completely continuous embedding j: Gl —• C\
Let
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r = 1 + max {Mo, Mlf M2}

where M09 Ml9 M2 are the constants of (3.4), and let

Kr = {ueC2

0:\u\2^ r) .

Assume below that /(£, y, p) satisfies (i) and (ii) of (3.4).
The existence of solutions to problems (I), (II), and (III) will

be established by means of a topological transversality theorem.
For the definitions of compact homotopy, essential map, and for the
full statements of the topological results used in this section, see

[3].
Since the operator L: GI-+C is invertible, we can define a

homotopy Hλ: Kr —> Co by,

It is easily seen that the fixed points of Hλ are precisely the solu-
tions of the problem (βtfj)\ therefore, by the choice of r and (3.4)
the homotopy Hx is fixed point free on the boundary of Kr. More-
over, (because of the complete continuity of j) the homotopy Hλ is
compact. Hence, HQ is homotopic to Hu Ho ~ H^ Since Ho is a
constant map (Ho is the zero map) it is essential, and, because
Ht ~ Ho, H^ is also essential (cf. [3], Theorem 3). In particular J3Ί
has a fixed point. This fixed point is a solution to (^t), i.e., a
solution to problem (I), (II), or (III) depending on the choice of &.
Thus, we have proven:

THEOREM 4.1. ( i ) Suppose that f(t, y, p) is continuous on
[0,1] x R x R and that there is a constant M > 0 such that
yf(t, V, 0) > 0 for \y\ > M.

X ii) Suppose that,

\f(t, y, p)\ ̂  A(t, y)p> + B(t, y) ,

where A(t, y), B(t, y) > 0 are functions bounded for {t, y) in [0, 1] x
[—ikf, Λf].

Then each of problems (I), (II), and (III) has at least one solution
y in C2[0, 1].

5* Uniqueness* We discuss uniqueness theorems for problems
(I), (II), and (III) under certain differentiability assumptions, and also
under a monotonicity assumption on /.

First assume f(t, y, p) is continuous, has bounded first partial
derivatives with respect to y and p, and satisfies fy ^ 0 for {t, y, p)
in [0, l ] x δ x f i .
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Let yt and y2 both be solutions to problem (I) or (II) or (III).
Then their difference y = yt — y2 satisfies the same boundary condi-
tions as y19 y2 as well as the linear differential equation

where the bar indicates that fy and fp are evaluated at intermediate
points (depending on y1 and y2).

The maximum principle (see [4]) implies:

LEMMA 5.1. The difference y = yt — y2 cannot achieve a posi-
tive (local) maximum or a negative (local) minimum in (0,1) unless
it is identically constant.

THEOREM 5.2. Suppose f(t, u, p) is continuous, has bounded first
partial derivatives with respect to y and p, and satisfies fy^0 for
(ί, y, p) in [0, 1] x R x R. Then problem (I) has at most one
solution.

Proof. The Dirichlet boundary conditions imply that y assumes
its extreme values in the interior of (0,1). If y -φ. 0, then (5.1)
implies that y is constant. This constant must be zero, a contradic-
tion. Thus, y ΞΞ 0 and uniqueness is proven.

Uniqueness need not hold for the Neumann and periodic boundary
value problems. We can prove:

THEOREM 5.3. Suppose f satisfies the conditions of (5.2). Then
any two solutions to problem (II) or problem (III) differ by a con-
stant. If, in addition, fy(t0, y, p) > 0 for a fixed t0 in [0,1], then
problems (II) and (III) have at most one solution.

The proof of (5.3) is based on the following lemma, a result of
independent interest which is also used to obtain uniqueness theorems
for special cases of problems (IV)-(VΠ) formulated in §6.

LEMMA 5.4. If the difference y = y1 — y2 satisfies either the
boundary conditions y(0) = 0, y'(l) = 0 or the conditions y'(G) = 0,
y(l) = 0, then y = 0.

It is evidently sufficient to consider the boundary conditions
2/(0) = 0» v'(l) = 0. The other case may be treated similarly. If
1/(1) = 0, y = 0 by the proof of (5.2). Assume y(l) Φ 0. Without
loss of generality y(ΐ) > 0. (If not replace y by — y.) By (5.1)
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either y{l) is the (positive) maximum value of y or y is constant.
In the latter case y = y(0) = 0 and the proof is complete. Thus, we
assume the former case to hold.

Furthermore, y cannot assume negative values by (5.1) because
2,(0) = 0 < y(ϊ). Thus, y ^ 0 in [0,1]. Since y(fi) < y(l) there is a
point tQ in (0, 1) with y'(Q > 0. By applying the maximum principle
to a subinterval of [t0, 1] it is easily seen that y* ̂  0 on [t0,1]. By
assumption there is a bound B such that \fp\^B on [0,1]. Since
2/ :> 0 and yf ^ 0 on [£0, 1], we have on [tQ, 1],

^ -By',

and since #'(1) = 0,

Another integration from ί to 1 yields

Since yf ^ 0 on [t0, 1], this implies yf = 0 on [tQ, 1]. Consequently,
y(t0) = y(l) the positive maximum of y on [0, 1]. Then (5.1) implies
that y is constant. Thus, y = y(0) = 0, and the lemma is proven.

Proof of 5.3. Let y = ^ — y2 be the difference of two solutions
to the Neumann problem (II). If y(0) = 0 or y(l) = 0 then by (5.4)
y = 0. Thus, we may assume #(0), y(ΐ) Φ 0 and without loss of
generality that y(0) > 0. If y(t0) = 0 for some £0 in (0,1), then y = 0
by (5.4) applied to the interval [0, t0]. This contradicts y(0) Φ 0;
hence, no such t0 exists and y > 0 on [0, 1]. Assume y(0) > y(ϊ).
Then there is a point tQ in (0,1) with y\t0) < 0. We must have
yf <; 0 on [0, £0J; otherwise the maximum principle in contradicted on
the subinterval of [0, ί0]. Starting with the inequality y" ^ By'
which holds on [0, t0] because fyy ^ 0 and arguing along the lines
used in the proof of (5.4) we obtain

for te[Q,t0]. Since yf ^ 0 on [0, ί0], this implies / Ξ 0 on [0, ί0].
Then y(t0) = y(0) and y(0) must be the positive maximum of y
because y(fi) > y(l). This contradicts (5.1). So y(0) > y(£) is impos-
sible and, likewise, y(0) < y(ϊ) cannot hold. Thus, y(fi) = y(ϊ). Either
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y ΞΞ 2/(0) or y assumes a positive minimum value strictly less than
2/(0) at some point t0 in (0, 1). In the latter case, y(t0) < y(0) and
y'(tQ) = o = #'(0). This is impossible by the argument just used when
applied to the interval [0, t0]. Hence, y == y(0), a constant, and the
first part of (5.3) is established for problem II.

Next assume y = yγ — y2 where y1 and y2 satisfy the periodic
boundary conditions (III). If y'(0) Φ 0, then y must assume either
a positive maximum of a negative minimum in (0, 1). Then by (5.1)
y is constant. On the other hand, if y'(0) = 0, y satisfies problem
(II), and y is constant by what has just been proved. This completes
the proof of the first part of (5.3).

If y — 2/1 — y2 is formed for either problem (II) or (III), then
the differential equation satisfied by y reduces to 0 = fyy. The final
assertion in Theorem 3 follows at once and the proof is complete.

Next uniqueness is proven under a monotonicity condition.

THEOREM 5.5. Suppose that f(t, y, p) is continuous and strictly
increasing in y for each fixed (t, p). Then there is at most one
solution to each of problems (I), (II), and (III).

The proof is based on the following lemma, which also plays a
similar role in §6 as (5.4).

LEMMA 5.6. Let f satisfy the hypothesis of Theorem 4 and let
y — y1 — y2 be the difference of any two solutions to z" = f(t, z, zr).
Then y cannot assume a positive (local) maximum or a negative
(local) minimum at a point tQ in (0,1). The same assertion holds
when t0 = 0 or 1 provided that y\t0) — 0.

Proof Suppose y has a positive maximum at £0. Then,

V(h) = »i(*o) - VM > 0 ,
0 ^ y"(to) = /(to, VM, C) - (f(t0, y2(t0), C))> 0

where C = y[(t0) = yί(ίo) (The inequalities are reversed at a negative
minimum.) This contradiction proves the lemma.

Proof of 5.4. Suppose yίf y2 both satisfy problem (I) or (III),
and let y = yι — y2. Then the boundary conditions imply that y has
either a positive maximum or a negative minimum in (0,1) unless
y = 0. Thus, y = 0 by (5 6).

Next assume that yί9 y2 satisfy problem (II). If y & 0, then it
achieves either a positive maximum or negative minimum in [0,1].
This is incompatible with (5.6) under the Neumann conditions* Thus,
y = 0 and the lemma is proved.
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6. Other boundary value problems. In this section we indicate
how the preceding results can be obtained for other important
boundary value problems. Consider the following boundary condi-
tions. Conditions (IV)-(VI) are called elastic or Sturm-Liouville condi-
tions, and (VII) defines antiperiodic boundary conditions:

j -ay(fi) + βy'(0) = 0, a, β > 0 ,

I ay(X) + by'(l) = 0 , a, b > 0 .

ί(a) 2/(0) = 0, ay(l) + by'(l) = 0

l(b) 1/(1) = 0, -ay(0) + βy'(0) = 0 ;

ί(a) y'(0) = 0, ay(l) + by'(ϊ) = 0

l(b) 2/'(l) = 0, -ay(0) + βy'{0) = 0 ;

a
a

a

a

2 = 0 ,

2 = 0 ,

>o,
>o,

b>

β>

b^

β^

0 ,

0 .

o,
0.

evil) (
1 j ί y'(0) =-y'

The following results hold:

THEOREM 6.1. // the hypotheses (i) and (ii) of (4.1) feoίd, then
each of problems (IV), (V), (VI) and (VII) tos at least one solution
y in C2[0, 1].

THEOREM 6.2. If the hypothesis of (5.2) or of (5.4) fooίcϋs,
each of problems (IV), (V), (VI), and (VII) &αs α£ most one solution.

REMARK. The uniqueness assertion holds in each case for the
class of functions within which it is natural to seek a solution (cf.,
the Remark in §1.

The proofs for (6.1) and (6.2) follow closely those for (4.1), (5.2),
and (5.5). Thus, we only sketch the arguments.

(a) A priori bounds. For problems (IV) and (V) with a, a > 0
the boundary conditions force nonzero extreme values to be assumed
in (0,1). Thus, a priori bounds on y follow from (2.1). For problems
(V) with a — 0, a—Q, (VI), and (VII), the assertion (i) in the proof
of (2.2) holds by essentially the same argument. Then (i) and (2.1)
yield a priori bounds on y for these problems.

Each of the boundary conditions (IV)-(VII) imply that the deriva-
tive of any solution y to the corresponding boundary value problem
must vanish at least once in [0, 1]. A priori bounds on these deriva-
tives follow from (3.1).

The a priori bounds in (3.4) now hold for the family (Jgi), where
the boundary conditions & refer to (IV)-(VΠ).

(b) Existence. No change is needed in the existence proof.
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(c) Uniqueness. For problem (IV) and (V) when a, a > 0, the
argument used to prove (5.2) can be used. When a = 0, a = Ό in
problem (V), (5.4) applies. In problem (VI, a) the type of argument
used to prove (5.3) shows that y = y1 — #2 is constant. The boundary
condition at ί = 1 then gives y = y(l) == 0. Uniqueness follows
similarly for (VI, b). Finally, for the antiperiodic problem (VII),
y = yx — y2 must be constant just as for the periodic case; however,
this constant must be zero because y(0) = — y(l).

To establish uniqueness under the monotonicity condition in (5.5)
simply use (5.6).

7 Examples* In this section several examples are given to
illustrate the preceding results.

(a) Boundary value problems of the type considered above
occur frequently in mathematical physics. For instance, a steady
state temperature distribution, y, in a rod (identified with the closed
unit interval) is governed by the differential equation,

(W)' + ?(*, V) = 0

where k — k(t, y) > 0 is the thermal conductivity at position ί and
temperature y, and q(t, y) describes internal heat sources. The
differential equation may be expressed as y" = /(£, y, yf) where

Λt, y, y') = γ=^Λkty' + kyy
r* + q(t, y)]

and the subscripts denote partial derivatives. Assume that A; is a
continuously differentiable function of its arguments and that q is
continuous.

If vq(t, y)<0 for \y\ sufficiently large, then by (4.1) and (6.1)
a steady state solution exists for any choice of boundary conditions
(I)-(VI). A common choice for q(t, y) is,

Q(t, y) = r(t)y + s(t)

and which case

) = r(t)y2 + s(t)y .

Clearly, yq(t, y) < 0 for large \y\ if r(t) < 0. Physically this cor-
responds to a governing mechanism in the rod which prevents
arbitrarily large temperature extremes. Thus, a steady state solu-
tion is expected on physical grounds. If k is constant, then

Λ(t, y> P) = -qjk = -r(t)/k>0

assuming, as above, that r(t) < 0. In this case (5.3) and (6.2) show
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that the steady state solution is unique for each choice of boundary
conditions (I)-(VI).

(b.) The Dirichlet problem

ίv" - y* + vn + l
IlKO) = 0 , y(l) - 0

has a unique solution by (4.1) and (5.2). (The assumption (i) in (4.1)
holds by (2.3).) Note that fy — Zy2 here so Bernstein's theorem does
not apply.

(c) Let έ% denote one of the boundary conditions (I)-(VII).
The problem

(»" = Σ »*(*, v')yk + Kt9 y')

has a solution provided n is odd, the ak and b are continuous,

α*(ί, p)\ ^ bkp
2 + ck , k = 0, , n ,

where bkf ckf d, e are constants, and

an{t, 0) > 0 , t in [0, 1] .

This follows from (4.1) and (6.1).
(d) The boundary value problem with inhomogeneous boundary

conditions,

= fit, y, y') ,

= C , ay(l) + by'(l) = D

where a, β, a, b ^ 0 and a2 > 0, α2 > 0 has a solution if:
( i ) ' There is a constant M ^ 0 such that #/(£, #, 0) > 0 for

\y\ > M.
(ii)' There are functions A(t, y), B(t, y) > 0 such that

\f(t, y, p)\ ̂  A(t, y)p* + B(t, y)

where A(t, y), B(t, y) are bounded on bounded (t, y) sets. This
follows as for (4.1) and (6.1) by means of the substitution u = y — l
where l(t) = At + B with A and B defined by

- (a + b)C
A B

aa + aβ + ccb act + aβ + aβ

The linear function ϊ satisfies the inhomogeneous boundary conditions
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and so the original boundary value problem is essentially equivalent
to the problem,

u" = F(t, u, nr)

-au(0) + βu'(0) = 0 , au(l) + bn\l) = 0

where F(t, u, v!) = /(£, u + l,u' + V). It is easily verified that (i)'
implies \u\ύ ̂  Mo — max{|C/α:|, \D/a\9 M} for any solution u to this
problem. Then, (ii)' implies (ii) of (4.1) for F. Thus, the problem
for u, and hence for y, has a solution by the argument of §4. If
fy ^ 0 the solution is unique.

Note that the inhomogeneous boundary conditions covered by
this example correspond to the homogeneous boundary conditions
(I), (IV), (V) with a and a > 0, and (VI).

(e) The condition yf>0 holds for \y\ > 0 in the following
example; however, a priori bounds are not available because y
achieves its extrema at 0 and 1 (cf., (2.1)). The problem,

(y(0) - y(X) , y'(0) - -»'(1)

has solutions

y(t) = A(e* + ee-*)

where A is any constant.
( f) (4.1) does not guarantee the existence of a solution for,

iy" = yn + l,

\v(0) - 0 , y(l) = 0 ,

however, this problem does have a solution, namely,

y(t) = log (cos 1/2) - log (cos (t - 1/2)) .

If the differential equation is changed to y" = yn + π2 then the
Dirichlet problem has no solution.

(g) It is easily checked that the Neumann problem

V" = yn + l

y(0) - 0 , y\l) = 0

does not have a solution.
(h) Consider,

iv" = W - V\y\ + sin ί ,

\y(0) = 0 , y(l) = 0 .
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The results above do not apply directly; however, the change of
variables y = eιu yields the essentially equivalent problem,

u" = v! + 2u - eΓωmV\ύ\ + β"* sin t ,

u(0) = 0 , u(X) = 0 ,

which is easily seen to have a solution by (4.1).
( i ) Consider

+ b(t)y' + <t)y = f(t, y, y')

y 6 &

where a(t) > 0, b(t) and c(t) are continuous on [0, 1]. Assume:
( i ) There is a constant M > 0 such that

y[f(t, V, 0) - c(t)y] > 0

for \y\ > M.
(ii) There are functions A(t, y), B(t, y) > 0 and bounded on

[0, 1] x [-M, M\ such that

\f(t, y, p)\ ^ A(t, y)p> + Bit, y) .

Then (1) has a solution y e C2[0, 1] for each set & of boundary
conditions (I)-(VII).

This assertion is proved by making minor adjustments to the
proofs in §§2-4.
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