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CENTRAL MOMENTS FOR ARITHMETIC FUNCTIONS

JOSEPH E. COLLISON

The only central moment considered in probabilistic
number theory up until now has been the "variance" of an
arithmetic function. This paper considers the case of higher
central moments for such functions. It will be shown that
if / is an additive complex valued arithmetic function then

-2 Σ \f(pa)\2Kp-")

where K is a positive integer and

A(n) = Σ f(pa)p'a .
paSn

It will also be shown that if / is an additive real valued
arithmetic function and K is an odd positive integer, then

Σ (/(m) - A(n))κ -= O(n(\og log n ) κ ~ 2 + 1 / κ Σ \f(pa)\κP~a) .

1Φ Preliminaries* Given a fixed positive integer K let X be a
i£-tuple of prime powers pa, where the primes need not be distinct.
Y is defined similarly. Next we define

| |X| | = Max{pα:pα is a component of X)

and \X\ — Π Pa where the product is over those pa which are com-
ponents of X. By Xj we shall mean the i-tuple consisting of the
first j components of X, and Xd shall denote the K — i-tuple con-
sisting of the last K — j components of X. Xό Yk shall denote the
first j components of X followed by the first k components of Y.
By Xj\\m we shall mean that pa\\m for all the components of Xά.
If / is an arithmetic function, then we define F(X) to be Π f(Pa)
where the product is over all the components pa of X.

LEMMA 1. Given the M distinct prime powers Pt — p"\ i — 1,
•••, M, and the positive integer n,

W{M, n) = n~ι Σ 1 = Π iV( l - Pϊ1) + O^n"1)
Pi\\k,ίύM

where \O(n~ι)\ ̂  (3-2* - l)^" 1.

Proof. Let N = L Π*=i Pi f° r a n y positive integer L. We will
now show by induction on M that for all such N

(1.1) W(M, N) = U iV(l - Pϊ')
1 = 1
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where lOCiST1)! ^ 3(2* - l)N~ι. We have

W(l, N) = N-KIN/P,] - [NJPj>$ = Pf1 - N-"[NIPlPl}

so that the result holds for M = 1. Letting

J + l)fί Pi
< = 2

we see that for

we have

W(M, N) = P?W'(M, N/PJ - (K/N)W'(M, K) + R

where

lNlP{]kύK <=2

Using* estimates provided by the induction hypothesis we see

P^W\M, NIP,) = Pr 1 Π PΓX(1 - VT1) + Vi(iSΓ)

where |7 t(i^)| ^ 3(23f"1 - 1)/^, and

(KIN)W'(M, K) = (P7ιprι + KN~ι - P^pr1) Π Pτ\l - V71) + V2(N)
i=2

where |F2(i\Γ)| ^ 3(2 l f-1 - 1)/JV. Since

0 ύ (KN-1 - P?prι) Π PΐXl - PT1) £ L-ΨT1 Π Pi1 = N->
i=2 i=2

(1.1) now follows.
Let N = {[n Πf=i P71] + 1) ϊlti P» so that the first part of the

proof applies to W(M, N). Then

\W(M, n) - W(M, N)\ ^ Σ\W(M, j) - W(M, j + 1)|

3 3 + 1
M

Σ
k^Pj!IM>0 •* "" PiUkfi

+ Σ rι

P<lli,ί>0

- ( δ P ί Γ l ) l o g {Nln) + ^ ( [ ^ S p > r l ] ~ [n π Pr

( if \ % π i L i p r l

1 + Λ"1 Π Λj + «"1 ^ 2w-'
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which provides the desired result.

LEMMA 2. For M ^ 2 and letting P = pa represent the power
of a prime

for some absolute constant Cλ.

Proof. Separating the two largest prime powers from the rest
we see

Σ PT1 Pi1 S M(M - l) ( Σ P-YΛRI +

where

•tCi — ZJL

is known to be bounded [2; P. 35], and

#2= Σ 2>~* Σ

With regard to i?2, we note that for np~a ^ SM the second sum is
equal to

log log [n/pa] - log log [(n/paY/ιM'l)] + 0(1)

^ log log (n/p") - log log (n/p«Y/2M + 0(1)

= log2M+O(l) .

For wp-α < 3^ we have qβ < 3^ and so the second sum in R2 is bounded
by log M + 0(1) in this case. In a similar manner it can be shown
that

Σ

Thus there are constants Cz and C4 for which

R. + R,^ (log 2Mf + C3 log 2ikΓ + C,

^ M2 + C3M + C 4 .

Letting Cί = 1 + CJ2 + C4/4 we obtain the desired result.

2* Even central moments* Now we shall show that
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Σ A(n)\*κ = θ(n(\og\ogn)2K-2 Σ I f(Pa)12KP~a)

THEOREM 1. Let f be an additive complex valued arithmetic
function and let K be a fixed positive integer. Then for n ^ 4

(2.1) / X2K-2

^ (2iQ! 1024*K6KC2n( Σ P"β) Σ I/ΦΌI'V"

Proof. First we will show that

(2.2) M2K{n) ^n Σ F{X)F{Y)T{X, Y, n)
\\X\\S\Y\\^

where

T(X, Y, n) = £ Σ (-ly^ί^Vf ilX-nr^-1 Σ i

M2K(n) = Σ i ( - l ) m ( ^

• Σ / Σ

Σ ^(Γ^IΓfcl-1) Σ F(Xd)F(Yk) Σ

which equals the right side of (2.2).
Now let M2K(n9 t) denote the restriction of the sum in (2.2) to

those X and Y such that exactly t distinct primes occur in the
factorization of \XY\. By virtue of the fact that

Xj\\m~Yk\\m

where P(XJ9 Yk) is a product of the distinct prime powers pa in Xs Yk

with a being the highest power of p in XjYk, an examination of
T(X, Y, n) reveals the fact that in an upper bound of the (j, k) term
either \XY\ appears in the denominator or at least one prime is
repeated in XjYk. In the latter case, in order for the (j, k) term
to be nonzero, a repeated prime must have the same power everywhere
it occurs in X3 Yk. So if rίf , rt, where rx + + rt — 2K, provide
the respective number of times the distinct primes p19 , pt are
repeated in 1 7 , and s(i9 1), , s(i9 u)9 where s(i9 1) + + s(i9 u) =
ri9 provide the respective number of times the distinct powers a(i, 1),
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• , a(i, u) of pt occur in XY, then as a result of the above discussion
we see that

\F(X)F(Y)T(Xf Y,n)\

S ( Σ ( ^ ) ) 2 Π Π |/(Pf^oi s ( M )PΓ ( ί ' f e ).

Thus we see from (2.2) and the last result that for t < 2K

Σ

Π Σ Σ Σ , r < ! , Π Σ I/(P")| * P - .
g J

Since Σ P a summed over all positive a is bounded by 1, it follows
by induction on u that

Π (β ioΣ io f fp]l/(pβ)lβ*p"β) ̂  ^^^JfiP'W'P'*

Hence

\M2K{n, t)\ £ (2K)\ 4*n^ Σ _^ Π ( Σ 1/(^)1^^1

y, l .Σ

Using Holder's inequality and the fact that the last sum is bounded
by r?, we see

I M2K(n, t) I ̂  (2JBΓ) Uκn Σ Π 2^r?
8^ ί

- ί + iyκ+un( Σ ί>"α) Σ l/(p")Γjrβ .

That is, for ί < 2K

(2.3) I ikf2X(w, ί) I ̂  (2Z)! UκK2K(4:K2γn

Next we shall consider the case where ί = 2K. To do this we
shall first show that if px is the smallest prime in X then

(2.4) \T(X,Y,n)\£
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when all the primes in 1 7 are distinct. By Lemma 1 we see that

T{X, Y, n) = \XY\-1R(X)R(Y) + 0{n~ι)

where

3

and lOO"1)! <̂  2?κ+1n~~1. Now induction shows

Π (l - PΓ1) = l - Σ PΓ 1 Π (i - PΪ1)
£=1 8=1 i = s + l

and hence \R(X)\ <, K2KpxK A similar result holds for R(Y), and
hence we have (2.4). Therefore, keeping in mind all primes in XY
are distinct, and using Lemma 2 and Holder's inequality, we see

I M2K(n, 2K) I ̂  ^ Σ \ F{X)F{ Y)T{X, Y, n) \

+ n r ^ Σ F I JF{X)F{Y)T(X9 Y, n)\
\XY\>n

nK'4«( Σ \F(X)\p^\Xr)2 +

\F(X)F(Y)\\XY
)XΫ\>n

\F(x)nxr

* v -— — •— i ^ i i — \ — — / i x - ± i — — i i i —

- 1

\ 1/2

Σ i x r )
| | < Λ , I I | |
\XY\>n

( \2 / \ 2^-3+1/^

Σ p-"-1) ( Σ p-ή Σ

Z2K+1(2K)l

^ C5(2ί:)! 9xίr% ( Σ p~"fκ 2 Σ

where C5 = 4 + Cί/2.
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Combining this last result with (2.3) we now have

\M2K(n)\^(2K)l(Gδ9
κKi + (

( \2K-2

Σ p-") I

which yields (2.1) for C2 = 1/3 + 9C5/1024. This finishes the proof.

3. Odd central moments* If we wish to consider odd central
moments, then we must restrict ourselves to additive real valued
arithmetic functions. Using the proof of the previous theorem it
can be seen that this simplifies matters insofar as double summations
become single summations. For example, for odd K and such functions
(2.2) becomes

Mκ(n) = Σ (/(™) - A(n))κ = n Σ < F(X)T(X, n)

where

T(X, n) = t (~MK) l̂ l"1*"1 Σ i

If the rest of the proof of the theorem is carried out essentially as
it is with minor modifications, it can be seen that for t < K

Mκ(n, t) =

as before, and

\Mκ(n, K)\ ύ nW v
(3.1)

( \
n(log log n)κ~2 Σ \f(Pa)\κP~a)

Now Holder's inequality shows that

^iFmip^ixr ^ (^ΣjiTOHxr)1^

I V /n — K/lK—l)\ Y\—l\

\ 2LL PI | Λ | I

( \K-2+l/K

ΣΓ ΊL\f{pa)\κP~a

pa<*n ' paSn

since Σ P~a~1 ^ 1.3. Hence we have:

THEOREM 2. // / is an additive real valued function and K
is an odd integer, then
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mΣ (/(m) - A{n))κ = Bκ{n)n( Σ P"")*

where ϊϊm JB*(W) ^ 1.3^2^.

This increases the exponent of Σ P~a by 1/K relative to Theorem
1, but in general it cannot be avoided as the following argument
shows. It is known [3; p. 201] that

Σ Q(P) -

provided g(x)/log x for x ^ 9 is positive, nonincreasing, and has the
limit 0 as x —> °o,

S oo

g(x)(log xY^dx diverges ,
9

and

Γ^OXlog x)-ιe~{losx)lu converges .
J9

These conditions are satisfied by gx(p) = ^"^loglogpl"17^ and g2(p) =
p"11 log log p I"1. Hence, for f(p) = (log log p)~ι/κ and /(pα) = 0 for
a > 1, we see that

-2+i/js:

]Έι< I^X)!^- 1 !^!" 1^ C6(Σft(p))Z
 ^ ^ ( F Γ T ) 1 \log\ogn)κ

and

Σ I f(Pa) \κP~a = Σ g*(p) - log log log n .

In the light of (3.1) this shows the desired result.
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