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OPERATOR CALCULUS

PHILIP FEINSILVER

To an analytic function L(z) we associate the differential
operator L(D), D denoting differentiation with respect to a
real variable x. We interpret L as the generator of a pro-
cess with independent increments having exponential mar-
tingale m(x(t), t)= exp (22(t) — tL(z)). Observing that m(zx,
—t)=¢*°1 where C=c¢'“xe %, we study the operator calculus
for C and an associated generalization of the operator
2D, A=CD. We find what functions f have the property
that u,=C"f satisfy the evolution equation u,=Lu and the
eigenvalue equations Au,=nu,, thus generalizing the powers
z*. We consider processes on R” as well as R' and discuss
various examples and extensions of the theory.

In the case that L generates a Markov semigroup, we have
transparent probabilistic interpretations. In case L may not gene-
rate a probability semigroup, the general theory gives some insight
into what properties any associated “processes with independent
increments” should have. That is, the purpose is to elucidate the
Markov case but in such a way that hopefully will lead to practi-
cable definitions and will present useful ideas for defining more
general processes—involving, say, signed and/or singular measures.

II. Probabilistic basis. Let »,x) be the transition kernel for a
process o(t) with stationary independent increments. That is,

| P@) = Prob (o(t) e 4]0(0) = 0).
The Lévy-Khinchine formula says that, generally:
g e p, (1) = ettio
R

where L(i&) = ait — 0*2¥/2 + SR_( o — 1 — ignu)- M(du) with

7(uw) = u(lu| = 1) + sgnw(u| = 1) and Sl_f?M(dux co .

Denoting d/dx by D, this states that L(D) is the generator of the
process o(t). It follows that

m(t) = eV ® is a martingale
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for every zeC, Rez=0. And this is clearly equivalent to the
condition that L generates p. We define h,(z, t) by

oo k
e(z) = et = 3 2 pe 1)
o k!

Observe that o0e/oz = (x + tL'(z))e(z) which is the basis for §IV.
Note that this expansion is good only in case the distribution of
o(t) has all moments finite. In fact, define moment functions

hk(x: t) = g (x + y)"pt(y) = etLDigk |
R
And check that,
oo zk ‘
Z‘—“hk(x, t) — ezacg ezypt(y) = grottlin) |
o k! R

Thus if p,(x) has only moments up to order «, then define h, for
0<Fk<a say. Also, &k need not be restricted to integer values,
but generally ke R, k= 0. We set H,(x, t) = h,(x, — ©).

Note that since for ¢t > 0, s < ¢,

E(ezp(t}—-tL(z) lO S p(u) S s) — ezp(s)—sL(z)

then E(H,(o(t),t)]|0 = p(w) = s) = H,(0(s), s). That is, Hy(o(t), t) is
a martingale for every k. From the above remarks it follows:

(1) hyx, t) = Elx + o)), t = 0.

(2) Ehy x + o), s) = hy(x, t + 8), t,s = 0.

(8) Ehyx + o), —t)=x*, t=0.
In the following we develop an operator calculus associated with
these h, and study various properties and extensions based upon
the above preliminaries.

III. Notations.

(1) d/dx will be denoted by D.

(2) L(D) will be “any” function of D that is thought of as
the generator of a process with independent increments. L is
assumed to have constant coefficients (independent of z and £); and
generally L(0) = 0.

(8) EX or {(X) will be used to denote expected value.

(4) t, the “time”, is independent of all z and D variables.
Generally ¢t = 0.

Other notations are standard or will be explained as they arise.
The funectional calculus for D will be implemented by Fourier trans-
form as needed to facilitate and clarify computations.
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IV. Algebraic structure. Assume given an operator C such
that

[D,C]=DC—CD=1.

For example, C = 2 as a multiplication operator. By induction it
follows readily that

(D", C] = »D
and
[D,Cl=2C™, r>0.
Thus for any polynomial or analytic function ¢(D),
[6(D), C] = ¢'(D) ,
¢' denoting the derivative of ¢. So, even for nondifferentiable g,
denote [¢(D), 2] by ¢'.
PROPOSITION. Set C = x + t[¢(D), x]. Then [D, C] = 1.

Proof.

DC = Dx + tD¢(D)x — tDxg(D)

xD + 1 + t¢(D)Dx — tag(D)D — ta(D)

2D + 1 + t¢(D)xD + t¢(D) — tag(D)D — té(D)
= (x + t[s(D), «)D + 1.

Il

i

Since [D, ] = 1, this checks that [D, ¢'] = [4, '] = 0. Denote by 4
the operator CD. Then the following hold (by induction).

[4, C*¥] = kC*

[4% C]=C((4 + 1) — AY) .

Similarly,
[D*, A] = kD*
and
[D, A4¥] = (A + 1) — AMD .

Given a function ¢(D), such that ¢(D)L = 0, set C = & + ¢¢’. Assume
Al = 0. Define h,(x, t) = C*1. Then the following properties hold:
( 1 ) Chk = h’k-}-l'
(2) Dh, = khy_,.
(8) Ah, = CDh, = kh,.
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(4) Ohifot = ¢(D)hy.
(5) hyzx, 0) = x*.
The generating funetion e(z) = 3.7 (2*/k!1)h, has these properties:
(6) o0ejoz = Ce, e(0) = 1.
(7) Cte(z) = e*°h,,.
The above are easy to check using the commutation relations noted
previously. It is worthwhile to check #4 explicitly:
For k=0, h, =1 and 0h,/0t = 0 = ¢(D)1.
For k=n+1, h, = Ch, and

oy _ 9C p, | Ok
ot ot S
= ¢'h, + Cgh,
= (¢C — Cg)h, + Cgh,
= ¢Chn = ¢hk ’

since

= [¢, 2] = [4, C] .

The condition ¢1 = 0 comes only in proving #4; the condition A1=0
for #2. #3 follows from #1 and #2. These h, thus generalize the
powers x*.

REMARK. In case ¢ is analytic, ¢(D) = 3.7 a,D,/p!, the h, are
the determinants of a family of matrices of dimension k. This is
seen as follows. Set C =z — t¢'. Hyx, t) = h(x, — t) = C*1. Then,

vH, = t¢'H, + H,,, = tZap — 1)' H, + H,,,
=1 P H 1
% =Dk —p g D e T e
k k
=13 a’p+1l_ JHk—p + Hy,, .
0 LD
Thus, H, = det (x — 4,) where the matrix A4, has entries:
1 s=r+1
0 1
A, = s>1r+
r—1
t [ }a,_ms <r+1.
s —1

In the probabilistic case, ¢ is chosen to be the generator L. Then
the moment polynomials %, can be computed as C*¥1. The relations

(hi(o(®), — t)y = 0 yield the moments p, = Sy"Pt(y) and, conversely,
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the original definition yields the h, in terms of the g, h, =

> [ f ]mk“’-

EXAMPLES.

1. L=D.C=2+1t. A= (x+t)D. h, = (x + t)".

2. Brownian motion. L = (1/2)D*. C=a + tL' = ¢ +tD. A=
aD + tD?.

6._:,,2/2t

h:S : d
' R(x + %) o

and H, are the Hermite polynomials.
3. Poisson process. L =¢” — 1. C=1x + te”. The first few

polynomials are:

hy=1. h, =2 +t.

hy=2o"+ 2 + 1)t + t*.

hy =2 + (32* + 32 + 1)t + Bz + 3)t* + ¢°.

4. Singular case. L =logD. Then C=2a +tD™* A= 2D -+ t.
The equations Ah, = kh, become:
ah' + th = kh

yielding

hk = axk—t B

Choosing h, = 27t gives:

_ k!xk—t — (____ t)!k!xk—t
A—=t)2—1t)-(k—1) (k — t)!

defining ¢! = I'(q¢ + 1).

P

,

V. The operator C. As in §1IV, given a generator L(D),
define C = x + tL'. For general functions L(D), L(0) = 0, set

(%) = ELS e ¢! whenever this
7T JR

may be defined; e.g., if necessary, as a distribution.
PROPOSITION. The solutions to Cf = \Nf are of the form
S = k) — ) .

Proof.
xf + tL'f = Af becomes by Fourier transformation

d 3 arrimd s P
%—Ef + tLGEf = \f
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which has the solution f = k(t)e ¥t §inids = f(p)g-ivsgrrun

REMARK. Recall from IV that as long as Ak, =0, Ah, = kh,.
This indicates that there is a 2nd series, besides C*1, formed as
follows. Take h,= D7 'p,(— x), D™ denoting indefinite integral.
Then by the above proposition with » =0, Ah, = CDh, = 0. Now
define h, = C*h,. Then h,_, is actually k! times the kth indefinite
integral of p,(— x) and Ah, = kh,.

Now proceed to study in more detail the operator C acting on
functions in general.

DEFINITION. A function f(z, t) is harmonic by definition when

of _
%—_Lf.

Then it will be seen that:

THEOREM. If f 1s harmonic, then u = €°f 1s harmonic.
Defining f, = C*f, then

COROLLARY. If f is harmonic, then f, ts harmonic for all
k=0. In fact, e°f harmonic means

-gt—ech = Le*°f and to conclude that f, s

harmonic note that differentiating with respect to z commutes with
both 8/ot and L.

First compute e*°f.

LEMMA 1. Set A(D) = L(D + z) — L(D). Then
e°f = e”e'f .

Proof. Let o = L'. For u = ¢*°f,

ai:Cuzxu—Ft«ﬁu.
oz

Apply Fourier transformation to yield, for v = 4:

ov 6_1) .
== %65 + tp(eé)v

which has for solution

v = fA(E + iz)et%we—sm
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as is readily seen, say, by applying Feynman-Kac for the deter-
ministic process o(z) = iz. Thus,

"W = SeiEzf(g + iz)et%'llf(ié-ﬂds
— ez:cSei51f<5)etsgqﬁ(i$+s)ds
— ezxetsg',k(D-i—s)dsf .
&mevzyW%w+@@=Lw+@~LwL
0
The theorem will require the aid of the following.

LEMMA 2. For any ¢(D),
$(D)e*f = e“¢(D + 2)f .

Proof. Utilizing Fourier transformation for the left-hand side,
¢(D)ezzf — gezexqs(if) Se—ifaezafza)
= {esiaf e + i)

= [ewestiz + &7 (©
= ¢¢(D + 2)f .

Finally the proof of the theorem:
Let df/ot = Lf. Then, for u = ¢*°f,

aa?: — gt (ezxet f) — ez:cet Af + ezxet lLf

= ¢”¢' (L(D + z) — L(D) + L(D))f = e*e¢"'L(D + 2)f
= Lu by Lemma 2.

REMARKS. 1. Particularly, when L1 = 0, ¢(z) = ¢*“1 is harmoniec.
In fact,
ezCl — ezxet(L(l)-{—z)-—L(I)))l — elxetL{LH—z)l
= e!tMeg] , by Lemma 2,
= e!®e¢** which is the required result.
q

2. Note that by Lemma 2, generally,

ech — 6zacetEL(IH—z)e—i,‘Lf‘

— etngxe——th
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Differentiating with respeet to ¢ yields an alternative proof of
the theorem. See §IX.

3. In the probabilistic case, the theorem implies that if f is
harmonie, u=e¢*°f, then f,(o(t), — t) and u(o(t), — t) are martingales.

EXAMPLES.
1. Brownian motion.

A:L(D+z)—L(D)=_;_z2+zD.

So
eCf = ee" f(w + 2t) .
2. Poisson process.
A=¢e"e —1).
So
ef = e“Zo:‘, ﬂ?—zn—_!—]xf(x +n).
3. Singular process.

A=1log(D+2) —logD=1g(1+2D™").
ef = e*(1 + zD™)if

t
= ¢*° |: sz"D""f .

t k!mk—-r .
fk:Z[ ]WD f.

r r

And

4. L(D)= Dl6. A= (1/2)zD* + (1/2)2*D + (1/6)z°.
2 . —y2/2
ef = e’”‘e"‘”"if (x + _Z_zt___ +1v zty)————f/szy .

VI. The operator A. Given C, define A = CD.
This section continues the previous one to analyze the eigenvalue
equations Af, = kf.

PROPOSITION. Af = 0 if and only if Af, = kf, for k= 0.

Proof. Set u = e*°f.
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Ay = CDe*etif
= C(zu + ¢*°Df)
= 20u + e*“Af
= 2Cu
0

=z—U.
0%

103

Thus, 2(0/02)z* = kz* implies AC* = kC*f. This follows also from

the commutation relation [A, C*] = kC*.

To see how A acts on functions in general, solve the equation

thus computing e*f.

PROPOSITION.
eaAf — 6a:cDeth
where

G = L(De*) — L(D) .

This is analogous to the result for C, replacing translation by

2 with multiplication, exponential translation.

Proof. Apply Fourier transformation to

ou ou ou
U _ e O% g OU
s Tow W%

yielding, for » = 4,

ov

9 "
2 3% (16v) + ty(18)1éw

= —& 9% 4 (yig)ic — 1o .

0§

The solution is seen to be

v = f(ée"“)e‘SS‘«/f(iee"snee—adae_a

by applying, say, Feynman-Kac for the deterministic process p(a)=

Ze~®. Thus,



104 PHILIP FEINSILVER

U = Seiezf(ge—a)etSgr![r(iee—s)ife“sdse——ads
— geise“zf(é)etqub(ieea_s)ife“"sds

— etsgqp(DeS)DeSdsf(xea) .
Setting t = 0 yields ¢**°f(x) = f(we®).
Substituting = L/,
SHL’(De")De"ds = L(De*) — L(D) .
0

Combining these two propositions gives

THEOREM. Af =0 if and only if
e PeCf, = e*f, for all k=0,

where G = L(De*) — L(D).

EXAMPLES.

1. L=D. A= (x+¢t)D. And

Ga"{f — et(ea—l)Df(xea) — f(xe”‘ + te® — t) .

Eigenfunctions are (x + t)*.

2. Brownian motion. A = aD + tD".

G = —;—Dz(e“ —1).

And

e-..yZ/Z
Vorn
Eigenfunctions are h,(x, ¢t) where h,(x, — t) are Hermite polynomials.

This is essentially the Ornstein-Uhlenbeck process.
3. Poission process. A = xD + te®’D.

— pDe®* __ ,D
G=c¢ ev .

e f = &f (we* + YVt — 1)) dy .

And

P

o ¢k k
=59 S Lo}(— D*2f(pe” + & — p + we") .

4. Singular process. A = aD + t.
G =1logDe¢* —logD =« .
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And
6aAf — eatf(xea) .

Eigenfunctions are xz*7¢, as seen previously.

5. Cauchy process. L = — |D|.
G=—|D|(e—-1).
And
adf — L a @ dy
e*Af - Sf(we + t(e l)y)l ek

For example, set

_1(,—— dy
h(@) = ﬂng+ytl+yz-

Then

—]'-Sh(xe“ +ot(er — Dy)—Y_ — gy, forall @=0.
T 1+ 9

VII. Multidimensional theory, In the case where xz e RY and
D= (D, D, ---, Dy) the exponential martingale is

6z.p—tL(z)

The natural extension of the one-dimensional operator C is the
vector operator

C=(C, -, Cy
with components

oL
Cj:xj+t[L,xj]:xj+t—aFExj+tLj-

i
The generating function

k
g o) — Zk“ %hk(x, t)

where the usual indexing notations, e.g., 2 = zf1...z2k¥, are em-
ployed, is again represented as ¢*°l. The corresponding basic
theorem of §V will be the main topic of this section.

THEOREM. Given L(D) = L(D,, ---, Dy). For C as defined above,
f harmonic implies e¢*°f is harmonic.
The proof will follow from the explicit form of u = e*°f.
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PROPOSITION. The operators C; commute.

Proof.
Let C, =2 + tL, and C, =y + tL, be two C;’s. Then

0102 = (.’L‘ + th)(y + tLy)
= oy + tel, + tL,y + tL,L,

oL,
oD,

=gay + toL, + tyL, + tL,, + tL.L,

=y + teL, + tyL, + t +tL,L,

which is symmetric in « and % since L,, = L,,.
By the proposition,

e °f = I] ¢*i°if (independently of the order of the product)

and by the results of §V,
¢ Cf = e 1ig" 167272¢" 2+« « @FNTNQHINS
where
A; = LDy «++, D; + zj, +++, Dy) — L(D) .
Similarly, the operators A; = «x;D; + tL;D; commute and
eAf = gunDigloy . . . gaNTNDN GION f

where
G;=L(D, -++, D;e”, -+, Dy) — L(D) .

Proof of the harmonicity theorem. For u = e*°f,

ﬂ_ — Z eitight o .. g’j’jet41’/1].e’j+1‘°j+1g"‘1‘+1 e e’N’Ne”Nf
ot 7

25%] f‘iif_
+Ij[e e PR

While, using Lemma 2 of §V sequentially (i.e., by induction),

Lu = Le*®ett « . . g*¥*ngtINf
— 6’1"16‘41(/11 + L)ew2 - - - e f
= ezlwletﬁfl/]lezzw cee f + e%igti [ g%e2pt 2 o . o eMNf
= S\ et L ... g?i%igtlif; < o . NNV f
J

+ H ez]':vjet/lef
J
ou

at
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REMARKS 1. Using Remark 2 of §V, it is clear that
ez-Cf — H etLez_.,'zje—-th —_— etLez-xe-—th .
i

2. As before, check that, for L1 = 0, the exponential generat-
ing function satisfies

ez~x+tL(z) —_ ez-Cl .

Note the general formula as for one dimension:

etL(D)ez-x — etL(z)ez~z .

By the above remarks,

ez~01 — etLez-a:e—tLl — etLez~:c — etL(z)ez-z

as required.

ExampLES. Here (z, @) = (2, %), (2, 2,) = (2, w).
1. L=D,D, A4, =2z2D, 4,=wD,

and
6" °f = e""e'" e f(x, y + 2t)
= ¥t f(x + wit, y + 2t) .
2. L=D,— (1/2)D;. 4, =2 4,= —(w*2)— wD,
and

ez.(;f — ezz+wyezt~wzt/2f(x’ Yy — wt)
= =TT R (g gy — wi) .

VIII. Further examples and remarks.

A. Homogeneity.
If the generator L has homogeneity such that aL(D) = L(a°D),

then

62'01 — ez'z+tL(z)

becomes, substituting z — a’z,

Ga¢z-x+tL(a‘z) — ez-a‘x-}—atL(z)

Thus,
hi(a‘z, at) = a*h,(z, t)

or equivalently t*h,(x, 1) = h,(xt°, t), for every k.
On R”, aL(D) = L(a°D) means
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L(@D,, - -+, a*"Dy) = al{D,, - -+, Dy) ,

and a* = a*°.
B. Higher Order Operators. Extensions.
Consider the equation

—au——wu—l——t-u

0% 2

This is of the type

_ou = Cu with L = D .
oz 6

So the solution is
—y2/2

Vor

On the other hand, for convenience setting ¢ = 1, the Feynman-Kac
formula gives for Brownian motion b(z),

ay .

u = e°f = e*e' f = e”ﬂat/ss,f‘(ﬂ? + 7 + y1/zt>

u = <f(x =+ b(Z))esg(x‘*’b(’))ds > .

This suggests considering operators C of the form +(x) + ta(D).
In case either + or ¢ generates a process, then the solution is of
(generalized) Feynman-Kac type. By Fourier duality,

d

for C = () + tg(D), set C = q;p(a;d_s) T tg(38)

Denote by p the process generated by ¢(D) and by ¢ the process
generated by r(i(d/d&))—assuming that these are well-defined in some
sense.

Set u = ¢*°f and v = e’ f.
o ov d
el = (2)u + te(D)u and = = = <1d—5>v + tp(i&)v .

Then with ( ) corresponding to expectation with respect to
the process indicated,

U= <f(x + p(zt))g%wu-msmds>
v = (F(& + qz))etSirustiamnasy

Applying Fourier transformation to v and w yields the dual
representations:
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w = <e—iq<z)xetSg¢w+i(q(s>)—qu)))ds>f

v = <ei5ﬂ(zt)eSg¢(iD5+p(st)—p(zt))ds>f .

The solution % is represented in terms of either the p or ¢ process.

In particular, then, if processes are defined for generators of,
say, polynomial type of degree < %, then any process generated by
a polynomial of degree n should satisfy the constraints imposed by
the above duality requirements. E.g. For deg ¢ = n, define »
implicitly by requiring u(p) = u(g), using ¢ as a potential for all
choices of +, deg < n.

In this way, inductively, a process and corresponding stochastic
calculus is built up for all polynomial generators L(D). By appro-
priate limiting procedures, extensions to operators with continuous
generators and variable coefficients would result.

For example, for ¢ = D6, 4 = — 2*/2, b(z) Brownian motion,

Sl + p(zt))e—uzSg(x+p<st))2ds> —_ <e—ib(z)zei/sSg(p+¢b(s)—ib(2)>3ds>f

for all suitable functions f.

C. Relation with field theory.

In case L is skew-adjoint, C will be self-adjoint and conversely
any set-up with Hermitian operators such that [D, C] =1 is essen-
tially of the above type by Stone-Von Neumann. C is the “creation
operator” and D the “annihilation operator”, A the “number ope-
rator”; h, are the Wick products. See, e.g., Simon [7] and references
there, Segal [5, 6] and Miller [3].

IX. Functional calculus for C. Fundamental operators 7,.

From §V,

Expanding in powers of 2z yields
C'n — eth'ne—-tL .
In particular
C = efge™t .
So ¢(C) is defined for any function ¢ for which
#(C) = etg(x)e " makes sense.

Note that in particular, ¢(C)f can be defined for harmonic f by
$(O)f = eg(x)f .
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Defining C directly, as above, yields an operator for any L
that generates a group; for general Markov semigroups, with
possibly variable-coefficient generators, ¢(C)f is defined for harmonic
f at least.

Before defining the fundamental operators, first recall Leibniz’
rule for differentiating a product. It yields the following:

LEMMA. (General Leibniz formula.)
As operators,

) = ._1.__.&&
Y(D)gp(x) % ol e oD

Consequently,

I
(D), o)) = 3 — T8 S

Note. Assumptions on + are ¢ are not stated explicitly, de-
pending on the domains involved. For the proof, it is assumed that
4 can be approximated by polynomials in some reasonable manner.
See, e.g., recent notes on pseudo-differential operators, Taylor [10]—
also references are there to papers by Kohn, Nirenberg, and Hor-
mander—for technical -clarifications concerning the generalized
Leibniz formula.

Proof.
T ot . e,
D7g = 3, —D"* by basic Leibniz’ rule .
k| ox
Or,
1 9% 0D
D=3 — .
=2 k! ox* oD*

For 4 ~ > ¢,Dr,

1 0% o* . 1 0% o
q' fond —_ —_— _D = — .
Vo= 22 o o P T 2T Gak oD

Using this formula,
C = e*xe ' = x + [e'f, x]e** = x + tL’ as previously defined.

And

#(C) = erpmpe* = 3~ 905 (D 1)
pz0 pl  0x”
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defining

7D, t) = e-ﬂa_aD"-;ew .

These are the fundamental operators.
In particular,

n
c =73 [ Jw”‘mp .
D
It is now seen that the moments

Y, = Sy’pt(w =n1.
This enables the formulation of the basic theorem as follows.

HARMONICITY THEOREM.

The following are equivalent:

(1) f is harmonic.

(2) e“°f is harmonic.

(3) #(C)f is harmonic for all suttable §.

(4) > Bﬂ x*n,f is harmonic for n = 0.

Proof.

1=2 and 3:

For u = ¢(C)f,

% = Lu + et g(x)e* <—a§t— —L)szu, as for Remark # 2 in §V.

3 =4: follows from the above formula for C* via the general
Leibniz lemma.
4=1: 7, = identity.

ExAMPLE. The gamma distributions.
Consider the case

_ yt—le—y
P(y) = T (y=0)

So L=—1log(l—D), '’ =(1—-D)". And

1 Dy 1 Dy (CDA=D g  prs
7, = (L= DYl = D)= A==l — D)

=tt+1)--t+p—-1A—-D)".
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C*= ({1 — D)'z"(1 — D)
and
C1l=Q1—D)y*x".

Now it is easy to see that setting ¢ = — n yields ¢,(x) =
(x — nL)"1l = (1 — D)*2™ an orthogonal system on [0, «) relative to
¢”*, l.e., they are essentially the Laguerre polynomials. Recall the
definition of C"1 in terms of moments of P,. This yields formally

¢.(@) = Sj(w + y)”?}-(n:;_;dy

with

— 1 ” r—n—1 —-yd
= oy goy e7'dy .

From the formula for 7,

_1)1'%! —r{ (—1)7'"/!
=1 = 2Dy pyg o (S
=17 = 7‘)1( ) n— )1
since (1 — D)™ = 1.
If the gamma function were defined for negative integers, the
first formula for g, would give

_I'r—mn)_ (=1)n!
I'(—n) (n—7)1"

s
This shows that it would be consistent to define

I'(—mn) = (—_—%1’—)1 if only ratios are computed .

That is, define I'(0) = £, with 0-{ = 0I'(0) = I"(1) = 1. Then setting
I(—mn) = =17
n!

also preserves the basic property zI'(x) = I'(x + 1) as indicated by
the computation of pg,. Note that I has simple poles at —n for
n = 0 with residue (— 1)"/n!.

Finally, note the difference between the Laguerre and Hermite
systems.

H,(x,t) = (x — tD)" 1 are orthogonal for ¢ > 0 for the measure
with density e™*** while L,(x) = (x — n(l — D)™)" 1 requires setting
t = —m to have an orthogonal system with respect to the single
density e *(x = 0).
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Generally, H, = (x — tL’)* 1 does satisfy a generalized three-term
recurrence relation,

«H, = tL'H, + H,,, .

IXa. Appendix to Section IX. Computing 7,. The following
formula for computing the %’s is convenient in the case L is analytic.

PROPOSITION.
tp1+o-~+pk

N
= [E— PP ... 2,
” Zi%?” II (k1) [ ORRE pJLI b b

where

0 7
L=[2]L.
oD

Proof. 7y = e **[0/oD]"e'*. Multiply by a”/N! in the formula
above and sum. The left-hand side becomes:
s aNLN}

HLD+a)~LID) — axy | ¢ Bt '8
APV

Expanding the exponential and collecting terms corresponding
to each a” yields the formula.

REMARK. Observe that, for ¢ = 1, the coefficient of L..-L}»
is the number of ways of grouping N elements to have p, groups
of k elements each.

X. The number operator. Vacuum functions. This section
continues § VI as a further study of the operator A. Recall that
in one dimension

A = CD = e*xe™tD = ¢'*xDe T,

In the multi-dimensional case, the vector operator A acts in
each coordinate. As seen in §VI, Af = 0 implies that A;f, = k;f
for each multi-index k. A scalar operator can be defined that acts
similarly.

DEFINITION. The number operator is the scalar operator defined
by
A. = C'D = ZCJ'.D]' = ZA_, .

In the following, A will denote this scalar operator; A; will
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denote components of the original vector operator.

PROPOSITION.
(1) A;f=0 for L <35 < N implies Af, = k| fi.
(2) In fact, Af =0 implies Af, = |k|fs

Proof.
(1) follows from above remarks.
( 2 ) Aez-of — e:Lx.Dez«xe-th
— eth.zezwe—th_!_ etLezw:x.De—th'
= z-D,etle "¢ S,
Since,

e'ter - De f = e#“Af = 0.

The conclusion follows as in the one-dimensional case.

DEFINITION. A wacuum function f(t, x) satisfies by definition:

(1) ofjot = Lf, i.e., f is harmonic.

(2) Af=0.

Thus, f, are harmonic functions and eigenfunctions of A as
well. The usual choice for the vacuum, as seen previously, is the
constant function 1. However, in singular cases, e.g., Example 4
of §IV, other choices may be necessary.

In the case f is independent of ¢, the vacuum conditions simplify.

PROPOSITION. When of/ot = 0, f is a vacuum function if and
only if

(1) Lf=0.

(2) xz-Df=0.

Proof. To verify (2). Note that since f is independent of ¢,
setting ¢ = 0 in the equation Af = 0 reduces to (2).
Conversely, assuming (1) and (2) yields:

Af = e’x-De *tf = et*x-Df = 0.
Regarding equation (2) of the above proposition, note the follow-
ing.
PROPOSITION. z-Df = 0 if and only if f is homogeneous of degree
zero, l.e.,
SOx) = f(x) for scalar N .

Proof. z-Df = 0 implies ¢ 2f = f(x) = f(e*x), for scalar a.
Differentiating f(Mx) = f(x) with respect to A yields the converse.
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A “general solution” is thus of the form
f@) = 3, Quatiag -+« og)

with a’s such that 3, a; = 0 and the @, functions of one variable.
Note that any analytic f homogeneous of degree zero must be
constant.

ExAMPLES.

1. Brownian notion. L =1/23,D: C;=2; + tD;.
A=C-D=73 (x;D; + tD3. Since any harmonic f is analytic, the
only vacuums are constant functions.

2. L=bD, C,=z+tD,, C,=y+tD,.

A =uD, + 2tD,D, + yD,. A harmonic function is of the form
f=F@)+ Gy) .
And z-Df = 0 yields
vF'(x) + yG'(y) = 0
or
xF’(x) = constant = — yG'(¥) .

Choosing the particular solutions

F=logx, G= —logy
yields

f:log—a-c—.

Y

So

x + wt

u = esz-f-wCyf — ewy+2x+t'wz log
Y+ 2t

is harmonic and Au = (2D, + wD,)u.

For h,, = CrC}f, Ah,w = (0 + M)y, -
E.g.,
hy = x(loge — logy) —t/ly, Ah,= hy.
hy = (xy + t)(logx — logy), Ah, = 2k, .
3. L=D,—D: C,=x+t. C,=y—2tD,.
A=uD, + tD, + yD, — 2tD;.

For f, homogeneous of degree zero, of the form

f= Q[%],
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to be harmonic yields the equation
v+ = le [2]e = 0.
Yy )

Thus, yQ' = 0 and @ must be constant.
In case f depends on ¢, the remark in §V regarding the 2nd
series indicates the canonical choice

f=0pi— =" pi~wiv =" pwiy.

Harmonicity follows immediately from

pt(- x) — _I__SeifxetL(if)
2r

and the commutativity of the operators 0/ot, L, and D™
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