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MULTIPLICATIVE LINEAR FUNCTIONALS
OF STEIN ALGEBRAS

ROBERT EPHRAIM

Let (X,Z%) be a Stein analytic space, and let Z(X)
denote the space of global sections of & endowed with its
usual Frechet topology. The question of the continuity of
complex valued multiplicative linear functionals of Z(X)
will be studied. The main result can be stated as follows:
Theorem: Let (X, %) be a Stein space, and let a:2(X)—C
be a multiplicative linear functional. Suppose one can find
an analytic subset YC X such that all the connected com-
ponents of both Y and X—Y are finite dimensional. Then
a must be continuous. More generally, suppose that one can
find a sequence of analytic subsets of X, X=Y,0Y,D---D
Y,=@,such that for any %,0=i<n,all the connected compo-
nents of Y,—Y,,, are finite dimensional. Then « must be
continuous.

This paper resulted from an attempt to understand the claim
made without proof in [5] that if (X, #7x) is a Stein space, and if
A (X, &%) — Spee (#(X)) is the natural morphism, then the pair
(X, Z%), v) is an analytic C-cover of Spec (”(X)). (See [5] for
definitions.) In particular, all multiplicative linear functionals of
2 (X) would have to be continuous for this to be true. Michael
proved the continuity of such functionals in case X is a domain of
holomorphy in C* [7]. (He in fact conjectured the continuity of all
multiplicative linear functionals on any Frechet algebra [7].) A
result of Arens [1] guarantees the desired continuity in case X can
be embedded as a closed subspace of some C". Forster [3] proved
the desired continuity in case X is finite dimensional. My result is
a generalization of Forster’s. Markoe [6] gave a weaker extension
of Forster’s result. He showed continuity under the assumption
that Sg(X), the singular locus of X, is finite dimensional. This
follows from my result with Y, = Sg(X) and » = 2. Finally, let
me note that an advantage of the techniques of this paper is that
they expose the elementary nature of Forster’s theorem. They
provide a proof which, unlike those in [3] and [6], does not depend
on the deep existence of a proper map from a finite dimensional
Stein space to some Euclidean space.

1. Preliminaries. Let X be a Stein space. (In what follows
I will write X rather than (X, %) for analytic spaces as long as
this leads to no ambiguity.) If & is a coherent analytic sheaf on

89



90 ROBERT EPHRAIM

X then & (X), the space of global sections of %, has a naturally
defined Frechet space topology. I will not repeat the definition of
that topology here, but I will mention some basic facts about it.
(For more details see [2].)

(1.1) If & — & is a homomorphism of coherent analytic sheaves,
then the induced map . (X) — £ (X) is continuous.

(1.2) If X is reduced, then the topology on £7(X) is the topo-
logy of uniform convergence on compact subsets of X.

We get:

ProPOSITION 1.3. Let X be a Stein space, let Y be any analytic
subspace of X, and let ryy: P(X)— (YY) be the canonical restric-
tion map. Then 7y 15 a surjective, continuous, open map.

Proof. The surjectivity follows from Cartan’s Theorem B; the
continuity follows from (1.1). The openness then follows from the
Frechet open mapping theorem.

COROLLARY 1.4. Let X be a Stein space, and let Y be an
analytic subspace of X. Suppose a:7(X)—C and B 7(Y)—C
satisfy & = Boryy. Then a is continuous tf and only if B is con-
tinuous.

PROPOSITION 1.5. Let X be a Stein space and let X,., be its
reduction. Then if a: 7(X)— C is any multiplicative linear func-
tional, then there is a multiplicative linear functional B: (X, ..)—
C satisfying & = Bory x,,,-

Proof. We only need to show that for any fe(X) which is
also a section of the nilpotent ideal sheaf of X we have a(f) = 0.
If not, then g=f—a(f) would be a unit in £(X) satisfying a(g)=
0. But this would imply @ = 0, a contradiction.

As an immediate consequence of Corollary 1.4 and Proposition
1.5 we get

COROLLARY 1.6. Let X be a Stain space. Ewvery multiplicative
linear fumctional on (X) is continuous +f and only if every
multiplicative linear functional on 7(X,.;) 18 continuous.

This allows for a convenient simplification of the problem. The
next result is useful for inductive arguments.

LEMMA 1.7. Let X be a Stein space, and let a: 7(X)— C be
a nonzero multiplicative linear functional. Let fckera. Then
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the coherent ideal sheaf genmerated by f defines a nomempty Stein
subspace V(f)c X. Moreover, there is a wmultiplicative linear
Sunctional B: Z(V(f)) — C satisfying & = Borx yis-

Proof. If V(f) were empty then the germ of f at every point
would be a unit, and this would imply that f is a unit in Z&(X).
But then we would have @ = 0, a contradiction.

To prove the existence of B we need only show that every
section of the coherent ideal sheaf generated by f is an element of
ker . But by Cartan’s Theorem B every such section is a multiple
of fin ~(X), and the result follows.

COROLLARY 1.8. Let X be a Stein space. Suppose X = 1 X,
the disjoint union of a family {X}ic; of open Stein subspaces of
X. Then if a:(X)—C is a multiplicative linear functional
there is a j el and a multiplicative linear functional B: 7(X;)— C
satisfying & = Bory x,.

Proof. Since X is second countable we may assume that I is
a set of integers. We may also assume that « = 0 since for a = 0
the result is trivial.

Define fe (X) by flx, =1. We have a(f)€ I since otherwise
we would have V(f — a(f)) = @ contradicting Lemma 1.7. Setting
j = a(f) it is clear that X; = V(f — a(f)) and the result follows
from Lemma 1.7.

From Corollary 1.4 and Corollary 1.8 we get

COROLLARY 1.9. Let X be a Stein space. Suppose X = 1 X,,
the disjoint union of a family {X;};c - of open Stein subspaces of
X. Then every multiplicative linear functional of <(X) is con-
tinuous f and only 1f every multiplicative linear functional of
7(X,) 1s continuous for all 1€ 7.

2. Continuity of multiplicative linear functionals. I begin
this section by proving Forster’s theorem.

THEOREM 2.1. Let X be a finite dimensional Stein space. Then
every multiplicative linear functional of (X) is continuous.

Proof. The proof proceeds by induction on dim X. If dim X=
0 we use Corollary 1.9 and Corollary 1.6 to reduce to the case X is
connected and reduced. But then X is the reduced point and
?(X) = C. The result is trivial in this case (since the only multi-
plicative linear functionals on C are the identity and the zero map).
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Now suppose dim X > 0 and that the result has been established
for all Stein spaces of dimension < dim X. Again we may assume
that 'X is connected and reduced. By Cartan’s Theorem B we may
find an f e 2(X) which is constant on no irreducible component of
X. Let a: 2(X)— C be a nonzero multiplicative linear functional.
Then f — a(f) is not constant on any irreducible component of X
so that dim V(f — a(f)) < dim X. Applying Lemma 1.7 we get £&:
O(V(f — a(f)) — C satisfying & = Lo’z ps—airn. It follows from
Proposition 1.3 and from the induction hypothesis that a is con-
tinuous. This completes the induction step.

From Theorem 2.1 and Corollary 1.9 we get

COROLLARY 2.2. Let X be a Stein space and suppose every
connected component of X is finite dimensional, then every multi-
plicative linear funmctional is continuous.

I now prove my generalization of Forster’s theorem.

THEOREM 2.3. Let X be a Stein space. Suppose that ome can
Jfind a sequence of analytic subsets of X, X=Y, DY, D---DY,=0Q,
such that for any ¢, 0 <1 <mn, all the connected components of
Y, — Y, are finite dimensional. Then every multiplicative linear
Junctional a: 7(X)-— C is continuous.

Proof. The proof proceeds by induction on n. If » =1 then
all the connected components of X are finite dimensional and the
result follows from Corollary 2.2.

Now suppose # > 1 and that the result has been established for
all Stein spaces admitting the desired type of sequence of analytic
subsets, but of length < n.

By Corollary 1.6 we may suppose that X and all of the Y,’s
have the structure of reduced Stein spaces. If a(f) =0 for all
feO(X) which vanish on Y, then one can find a B: (YY) —C
satisfying @ = Bory,y,. It follows from the induction hypothesis and
from Proposition 1.3 that « is continuous in this case.

Otherwise, we can find an fe 2(X) vanishing on Y, for which
a(f) = 0. Then V(f — a(f)) is disjoint from Y,. Thus, every con-
nected component of V(f — a(f)) is contained in a connected com-
ponent of Y, — Y,, and thus is finite dimensional. By Lemma 1.7
we may find a multiplicative linear functional 8: Z(V(f — a(f)))—C
satisfying @ = Borx yis—aisn. It now follows from Corollary 2.2 and
Proposition 1.3 that a is continuous in this case as well. This
completes the induction step.
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