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INTEGER MULTIPLES OF PERIODIC
CONTINUED FRACTIONS

T. W. CuUSsICK

This paper contains much simpler proofs of the results
of Henri Cohen (Acta Arithmetica 26 (1974-75), 129-148) on
the period length of the continued fraction for Na, where
N is a positive integer and a is a quadratic irrational.

1. Introduction. We let [a,, a,, ---] denote the simple continued
fraction whose partial quotients are the integers a, (a; >0 for 7> 0).
If @ is a quadratic irrational, so that a has a periodic continued
fraction, then we put

Q& = [b(» bu Yy bm Ay =y am] 3

where b, b, -+, b, is the nonperiodic part of the continued fraction
and a,, ---, a, is the period. We let P(@) = n denote the length of
the period of the expansion of a.

H. Cohen [2] defined the functions

S(N, n) = sup P(Nea)
(a)=n

for each pair of integers N >1, » =1. The fact that S(N, n) is
always finite was already known (see Schinzel [4]).

Let A denote the set of all real quadratic irrationals. Cohen
defined the function

R(N) = sup (S(N, n)/n) = sup (P(Nex)/ P(e))

for each integer N > 1, and proved that R(N) is always finite. The
paper of Cohen [2] is devoted to proving various results about S(N, n)
and R(N). In particular, Cohen [2, pp. 141-147] obtained the exact
value of R(N) for infinitely many N and gave a conjecture for the
value of R(N) in all the remaining cases.

Cohen made use of an algorithm given by Mendés France [3] for
computing the continued fraction expansion of Na from the expan-
sion of @, where a is any real number. Cohen [2, §§3 and 4, pp.
132-137] devotes considerable space to showing that if one wants to
use the algorithm of Mendés France [3] in order to study P(Na) for
quadratic irrationals «, then one needs various facts about 2 by 2
matrices with integer entries taken mod N.

It turns out that the algorithm of Mendés France [3] was already
given by A. Chatelet [1] in a different but equivalent form. The
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Chatelet formulation of the algorithm has a great advantage as far
as the application to the problems considered by Cohen is concerned;
namely, in the Chatelet version the algorithm is defined in terms of
2 by 2 matrices with integer entries, so the relevance of these
matrices is immediately apparent. We show below that the results
of Cohen concerning the functions S(N, #) and R(N) can all be
obtained much more simply by using the approach of Chatelet [1].

2. The Chatelet algorithm. For the convenience of the reader,
we give an exposition of the algorithm of Chatelet [1]. Proofs (all
of which are elementary) are omitted; they are given by Chitelet
[1].

We suppose that a = [a,, a,, @, --+] is a real number and that
N > 1 is an integer. We wish to determine the partial quotients of
the continued fraction for Na. We suppose for simplicity that
infinitely many of the a; are >N (Chatelet [1, p. 12] considers only
this situation). We may make this supposition with no loss of
generality because S(N, n) depends only on the a, taken mod N (this
is easily verified; see Cohen [2, p. 132]).

We first need the following lemma of Chatelet [1, p. 7] on
matrix factorization. We use the abbreviated notation (a) defined

for each integer a = 0 by
@ [a l:’
a) = ;
10

this notation was also employed by Chitelet.

LeMMA 1. Any matrix
P Q
, PS — QR = +1
s O
with nonnegative integer entries at least three of which are positive
can be written in one of the four forms
A, @A, A0, (0A0)

where the matrix A is given by
A—:ﬁl(ui), w, =1 for 1<4i1=<n.
If P>Q>S8 and P> R > S, then the integers u, in the

factorization of Lemma 1 are just the successive partial quotients
in the continued fraction for P/R (we need only take care that the
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number of partial quotients is even or odd, as required, by letting
the last partial quotient be 1 if necessary). For example,

[27 19
10 7

} = (2)(1)(2)(2)(1) .

The same kind of calculation applies if P>Q >SS and P> R > S
do not both hold.

Before continuing, we need the following lemma of Chatelet [1,
pp. 12-15].

LEMMA 2. Suppose 0 and d are any positive integers such that
od = N, and suppose k is any integer such that 0 < k< d. Given
any matrie

P @ P Q
, PS—QR=+*1, =—==N-1, 2X=N-1
[R SJ © R S

with momnegative integer entries, there exist unique nonmegative
integers A, B, C, D, 6, and d, with é,d, = N and a unique integer
k. with 0 < k, < d,, such that the following matrixz identity holds:

(1) [5 — [P Q:’ _ [A B:l[&l —k,
0 dJ|R S| |c plo 4]
The integers A, B, C, D are determined by

A = 67%(6P — kR) , B = N"*(0P — kR)k, + (6@ — kS)d)) ,
C = dRo;*, D = dN*(k,R + 0,S) .

The integers 6,, d, and k, are determined by the conditions 6,d, = N,
0=k, <d, and

0, = (0P — kR, dyt) where p = (0, R),
ER+06S=0 modsd,
k(0P — kR) + 0,(0@ — kS) =0 mod N .

Later on we shall mainly be interested in the following corollary,
which is proved by taking P=a, Q =R =1, S =0 in Lemma 2.

COROLLARY. Suppose 6 and d are any positive integers such
that 0d = N, and suppose k is any integer such that 0 <k < d.
Given any integer a = N — 1, there exist unique nonnegative integers
A, B, C, D, 6, and d, with 6,d, = N and a unique integer k, with
0 =k, < d, such that the following matrixz identity holds:
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[3 —k [a 1 [A BJFL —k,

0 dj1 0] [C Do 4]

The integers A, B, C, D are determined by
A = 67(0a — k), B = N *(éa — k)k, + 09,) ,
C =ddé*, D =dNk, .

The integers 0,, d, and k, are determined by the conditions d,d, = N,
0=k <d, and

0, = (6a — k, d)
k,=0 modod
_._l;_l( 5_“‘; k) =1 mod <3i;:—> .

Now we can describe the algorithm for finding the partial
quotients of Nea, as follows: We divide the partial quotients
a, a, -+- of a into blocks, each of which begins with an a, > N
followed by other a,’s which are <N (we can assume a, > N with-
out loss of generality). We denote the ith block by

b, by, eee, 0y, so B >N and P =N for 2=j7=n@®).

For each block, we compute the matrix product (b{®)(b) --- (b))
and define

; . P, Q .
GOYAHDY o un (B.) — @ @ (t=12 --+).
(B7)(B:") -+ (ba) [ R, SJ v )

Starting with 6 = N, d =1, k=0 in Lemma 2, we use (1) to
define successively integers A,;, B;, C;, D;, 0;,d; and k; (1 = 1,2, ---),

as follows:
[N 0}{P1 Ql] _ [Al B,}[&l —k,
0 1R S| |C Do 4,

(2) [51 ——k,][PZ Q] [Az BZJFZ —k,
0 d|R S, |C D0 d
FH —ki-l}[ﬂ Qi] ~ [Ai B][a#c
0 d.| R S) LC. DJo 4]

In this way we obtain a sequence of matrices M, with entries

A, B, C,, D,. By Lemma 1, we can factor each of these matrices
M, as follows:

(3) M= (u")(w”) -+ () » w20, w?>0 if 1<j<n).
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Thus we obtain a sequence of nonnegative integers
( 4 ) ui”) ) u;:.l()l)y uiz), *t %y u;tg()z)’ M) uii): M) u;ti()i); e

We modify this sequence, if necessary, by replacing every triple
a, 0, b by the single integer a + b, and repeating this until a se-
quence of only positive integers is obtained. This new sequence is
precisely the sequence of partial quotients for Nea.

REMARK. In the discussion of this algorithm given by Mendés
France [3], the sequence corresponding to (4) may contain some
members equal to —1 in addition to some members equal to 0. This
is because Mendés France does not make the simplifying assumption
that infinitely many of the partial quotients a; of a are >N, as we
did at the beginning of this section.

From now on, it will be convenient to make the following even
stronger

ASSUMPTION. Suppose that all of the partial quotients of a =
[a,, a, ---] satisfy a;, = 2N.

As we remarked earlier, this assumption can be made with no
loss of generality in the study of the functions S(N, n) and R(N).

The assumption means that the blocks of partial quotients
mentioned above are all of length one, so in (2) we have P, = a,_,,
QR=R,=1,8,=0fori=12,---. Also, by Lemma 2 Corollary,
the integers d;, d;, k; in (2) are determined recursively as follows:

(5) d,= N, d, =1, k,=0;
(6) 0; = (04-1@icy — kiyy diy) for ¢ =1
(7) k,=0 modd,_, for 1=1;
k; (0,_a,_, — k;_ N .
8 i 1—1Wi—1 1—1 El d fI' Zl-
(8)  —H{fetg=Re) =1 medpte for

In view of (7), we can define integers ¢, (1 =1,2, +-+) by
(9) k@ = ai——lti .

Under our assumption, it is a simple matter to verify that the
algorithm described by Cohen [2, §2] is the same as the Chatelet
algorithm described above. The formulas (5), (6), (7), (8) above cor-
respond to Cohen [2, formulas (1), p. 130]. Cohen’s d, corresponds
to 0,,, above, Cohen’s d; corresponds to d; above, Cohen’s ¢; cor-
responds to d,a; — k; and Cohen’s (c,/d,)™* corresponds to —¢,,, defined
in (9).
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We close this section with the following lemma, which we need
later on.

LEMMA 3. In the sequence of identities (2), we have (0,_,,0,) =1
for each i =1,2, «--.

Proof. Suppose that for some ¢, a prime p divides (d,_,, 4,).
Then by (6) p divides 6, ,a0,_, — k,_,, so p divides k,_, = 0,_,t;_,.
Hence either p divides 6,_, or p divides ¢,_,. But in the latter case
we have p divides Né;%, = d,_, (from (6)) and (¢,—,, N(§;,-,0,_,)™) =1
(from (8) and (9)), so that p divides 6, , also. Hence if p divides
(0;-1, 0;), then p divides 0; for every j7 < ¢; but this is a contradie-
tion, since ¢, =1 by (5) and (6).

3. Upper bounds for S(N, n) and R(N). In this section we
use our previous work to give a much simpler proof of certain upper
bounds on S(N, n) and R(N) given by Cohen [2, Theorem 4.3, p.
136].

For each rational number z = [a, a, ***, @,], @, =2, We use
Cohen’s [2, p. 129] notation L(x) to denote the number of partial
quotients in that continued fraction expansion of x which has an
odd number of partial quotients; thus L(zx) = n + 1 if » is even and
L(x) =n + 2 if n is odd.

Now suppose N > 1 is a given integer and

(10) o = [b09 bl; *t %y bm: Cy ** % C,,,] = [ao; Qyy Agy ** ']

is a given quadratic irrational for which the Assumption of §2 holds.
It is easily verified that the Assumption implies that A, > B, > D,
and A, > C, > D, for each matrix M; (1=1,2, ---) in (2). Hence
(see the remarks after Lemma 1) in the factorization (3) of M, each
u{ is positive, so the unmodified sequence (4) is the sequence of
partial quotients of Na. In fact, the sequence (4) is just the
sequences of partial quotients of the rational numbers A,/C; (1 =
1,2, ---) taken in order, where the continued fraction expansion
used for each A4,/C;, is the one with an odd number of partial
quotients (this is because the determinant of each M; is —1, so the
corresponding factorization given by Lemma 1 has an odd number
of matrices).

In is clear from the work of §2 that the sequence of triples
(a;, ki, d) (1 =0,1, 2, --.) is eventually periodic, and thus the sequence
of rational numbers A4,/C; (:=1, 2, ---) is also eventually periodic. Say
Apis/Cuiis * 3y Apir/Crsrr is the period of the latter; then the length
of the period of Na is given by
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(an P(N@) = 3\ L(4p;i/Cur) -

Our next lemma shows that P(Nea) can also be expressed in terms
of L(k;/d;).

LEMMA 4. Suppose p and q¢ are two relatively prime positive
wntegers. Define p*, 0 < p* < q, by pp* = —1modq. Then L(p/q) =
L(p*/q)-

Proof. We assume » < q with no loss of generality. Let p/q =
[Oy fv ) »], fn = 2, and define pi/qt = [0» fv ] fz] for 1=i = n.
First suppose that p/q < 1/2. We have p,4,_, — 9._.¢, = (—1)", so
¢u-, = (—1)"'*modq. Thus if » is even, then ¢,_, = p*. But

(12) %z[o»fmfn—n "”fl]

so L(p/q) = L(p*/q) if n is even.

Now define ', 0 < ' < q, by pp’ =1modgq (so »' + p* =4¢q). It
is easy to see that p’/g < 1/2 if and only if » is odd. Thus when
% is odd we have p’ = q,_,, so by (12)

*~
l)——=1—gu=[0, l’fn—lyfn—u "'7f1] .
q q

Hence L(p/q) = L(p*/q) = » + 2. Similar arguments take care of the
case p/q > 1/2, so the lemma is proved.

COROLLARY. For each i =1,2, ---, L(4,/C,) = L(k,/d,).
Proof. We take p = (6,_,a;_, — k;_)0;* = A, and ¢ = N(0,_,0,)"' =
C,. Then p* = k,07%, by (8) and p*/q = k,/d,, so the corollary follows

from the lemma.
It follows from Lemma 4 Corollary and (11) that

(13) P(N@) = 3, Lk /s -

We have from (8) and (9)

k 0, .t t N
14 oo Oty b here (t, ) =1.
ay = = gy vhere (tegoy)

Thus if we define sets T(m) for each positive integer m by T(m) =
{(m,, m,): m,, m, positive integers such that (m, m,) =1 and m,m, = m}

(so that if m has k = 0 distinct prime divisors, then T(m) has 2*
members), then (using Lemma 3 and (14)) we see that all possible
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values of k,/d;, one for each of the different pairs k,, d,, are con-
tained in the set

_ t b — - N\
C(N) = {N(a,b)"l < 1:ab = m divides N, (a, b) € T(m), (t, E) = 1} .

Note that C,(N) will contain repeated elements.

LEMMA 5. The set C(N) has f(N)=NI] (1 + p™') elements,
where the product is taken over all distinct primes p which divide
N.

Proof. Define W(m) for positive integers m by W) =1,
W(IIL, p¥) = 2*, where the p,’s are distinct primes and the @,’s are
positive integers. It follows from the principle of inclusion and
exclusion that

3 W((a, N) = NTLA + 57,

and the left-hand side is just the number of elements in C,(N).
It turns out that the set C,(N) is the same as the set

CyN) = {NL/IC.: ¢ divides N, 0 =< a’ < N/e, o’ = a mod (N/e),

where o lies exactly once in each residue class mod
(NJe) such that (a,c¢) =1 is possible} .

LEMMA 6. The sets C(N) and C,N) are identical for each
N> 1.

Proof. Cohen [2, Proposition 3.4, p. 134] proved that the number
of elements in G,(N) is the number f(N) of Lemma 5. It is easily
seen that the map from C,(N)— C,(N) given by

o’ af(@, NI6)  pere ¢ = @@ Nle)
Nle N(e(a’, Nfe))™ ab = ¢(a’, NJe)

is into and one-to-one. Since C(N) and C,(N) have the same number
of elements, this proves the lemma.

THEOREM 1. For each n =1 and each N > 1, we have

(15) S(Nynm)=mn > Lu), RN)= > L.

uweCy(N) ueCy(N)

If N=9p*, s=1, for a prime p, then the latter estimate becomes
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ooy , =1y .
(16) Ro) = '3 (L) + 5 L(-) -
1=0 p 1=0 p

Proof. We consider the number «, with a period of length =,
given by (10). We have already seen that the periodicity of the
sequence of triples (a;, k;, d,) (1 =1, 2, ---) leads to the formulas (11)
and (18) for P(Nw). Evidently the period of the (a, k;, d,) is as
long as possible if each of the % a;® in the period of @ occurs with
each of the possible different pairs %k, d,; thus by Lemma 5. the
longest possible period length for the (a,, k., d,) is nf(N). This fact
and (13) lead at once to the estimates (15). The estimate (16) follows
because it is easy to see that the set Cyp*) is made up of the
p°* + p** numbers /p° (0 =7 < p°) and 2/p*™* (0 <1 < p*™h).

Theorem 1 is the same as Cohen’s Theorem 4.3 and Corollary 4.4
|2, pp. 136-137]; but the states his estimates in terms of C,N)
instead of C(N).

4. Periodicity properties of matrices. For each integer N > 1,
we define a multiplicative group I'(N) of 2 by 2 unimodular matrices
with integer entries by

b]:ad—bczil,bzcsa—dEOmodN}.

F(N) = {B d

The same notation is used by Cohen [2, p. 132]; for any 2 by 2
unimodular matrix M, he also defined [2, p. 185] (N, M) to be the
smallest positive integer such that M%) belongs to I'(N).

We can associate a unimodular matrix M with the quadratic
irrational @ given in (10) as follows:

a b
17 M = (e)(C) -++ (ca) = [ :I , say.
¢ d
We call M the matrix of a or the matrix of the period ¢, ---,c,
or the matrix of the continued fraction [a,, ---, a,]. We have
(18) i = [au ey an] and ‘l')‘ = [av Tty an—l]
¢ d

(here b=1, d =0 if n=1). In view of (18), we see that this
definition of the matrix of a is the same as the one given by Cohen
[2, p. 129].

Cohen showed the relevance of N(N, M) to the study of S(N, n)
and R(N). The role of (N, M) is made really clear by the use of
the Chatelet algorithm of §2. Before exploring this further, we
need the following lemmas.
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LEMMA 6. Let

_ab_a(M)b(M) o 1w
19) M —L d] —[C(M) d(M)J’ ad —bec =(—-1)*=¢, say,

be a unimodular matriz with integer entries. Define sequences ()
and s(i) by

rl)=17r2) =a+4d, -+, (%) =(a+d)r@it —1) —er(t —2) (t=3)
and
s(1) =1/2(a + d), 8(2) = 1/2(a + d)* — ¢, «--,
s(1) =(a +d)s(i —1) —es(t —2) (1 =3).
Then for each positive integer k
a(M* = s(k) + 1/2(a — d)r(k) , b(M*) = brk) ,
c(M* = er(k) , d(M*) = s(k) — 1/2(a — d)r(k) .
Proof. This is Lemma 5.4 of Cohen [2, p. 139].
LemMMA 7. Let p be a prime and suppose M is given by (19).
Define
D=DWM)=(a—df+4bc =(a + d)) —4e = (a + d)* + 4(—1)"*.

Then M* belongs to I'(N) (i.e., N(p*, M) divides \) for the value of
A given in the following tables, where (D/p) is a Jacobi symbol:
(a) if p>2

B- [@- [@--

1/2n(p —1) odd | »*7(p — 1) impossible " (p + 1)
1/2n(p —1) even| 1/2p°(p — 1) »° 1/2p*'(p + 1)
(b) ifp=2

s=1)| s=2 ] =3

n odd 3 6 3.2°7%

n even 3 3 3.2°73
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Wf D=0mod8, A= 2°
iof D=4mod8, A=2 for s=1L,A=2"" for s=2.

Proof. This is Theorem 5.3 of Cohen [2, pp. 137-138].

Our next lemma shows how \(p, M), where p is prime and M
is defined by (17), is related to periodicity properties of the algorithm
(2). We here confine ourselves to the case N = p, p prime, because

the results are simplest in that case.

LEMMA 8. Suppose M is given by (19), and let p be a prime
which does not divide the entry ¢ in M. Define

A_{[o 1} [o p] O=h=» 1)}'
Suppose

» 0 A B
L — P
0 o =g o)
for some n and some P in 4. Then M is in I'(p) if and only if
P= [{)’ ‘1’]

Proof. Suppose M* is in I'(p), but P does not have the form
asserted in the lemma, i.e.,

I —
= Ll kJ for some k.
0 »
Then (20) gives
[pa(M”) pb(M“)J _ [A —kA + pB
(M) dM* | |C —kC+ pD]|’

so ¢(M™) = C, whence p divides C, since p divides ¢(M") because M*
is in I'(p). But this means p also divides d(M™) = —kC + pD, which
contradicts

a(M")d(M™) — b(M™)e(M™) = £1 = a(M™)d(M") mod p .

Now suppose P does have the form asserted in the lemma. Then
(20) gives
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[pa(Mﬂ pb(M")J _ [pA BJ
e(M™) dM | |pC D]’

so ¢(M™) = pC, whence p divides ¢(M"). By Lemma 6, b(M™) = br(n)
and ¢(M™) = ¢r(n); now p divides 7(n) since p does not divide ¢, so
also p divides b(M™). It also follows from Lemma 6 that p divides
a(M™) — d(M™). Hence P is in I'(p), and the proof of Lemma 8 is
complete.

Now we are in a position to give the exact value for R(p), p
prime. We use the abbreviated notation

i
m
of Cohen [2, p. 141].

THEOREM 2. We have RQ2)=F@)+ 1=5. If p is an odd
prime, then

(21) R(p)=F(p)+1 4f p=3 mod4,
(22) R(p) =F(p) if p=1 mod4.

Proof. Suppose the Assumption of §2 holds and suppose « is a
quadratic irrational with period length » and continued fraction ex-
pansion given by (10). We saw in §2 that under these conditions
the sequence of identities (2) holds with the matrices M; there equal
to (a,—y) ¢ =1,2, ---). We saw in §3 that the sequence of triples
(agy kiyd;) (1=0,1,2, ---) is eventually periodic. Let us suppose
that «, with period length =, has been chosen so that the period
length of the sequence of triples (a;, k;, d;) is maximal, say equal to
r. Since each ¢, in the period of @ given in (10) can be associated
with at most p + 1 different pairs k;, d; (namely, those correspond-
ing to the p + 1 matrices in the set 4 of Lemma 8), we have » <
n(p + 1).

Suppose r = n(p + 1) does occur, and that the sequence of »

identities
» 0 Ary Bry|[0r0 —kry,
(ap) =
01 Ciii Dpyy )0 dris
3[+r—1 '—'kI+r—1 AI+r Bl+r p 0
(aI-i-r—l) =
0 dI+r—1 CI+r D1+r O 1

is a typical periodic part of the sequence (2) (of course, this means
01ir = Dy K1y, =0, d;, = 1, as indicated in (23)). If we multiply on
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the right in the first equation of (23) by (a;), (@r42), * -, (@74,—,) in
order, and after the ¢th such multiplication use equation ¢ + 1 of
(23) for 1 £ 1 < r — 1, we obtain

p 0 A Blp 0
Mp+1 —
o apr=[e olo 1
for some A4, B, C, D, with

(24) M = (a’l)(a’1+1) co o (Qrpn—y) -

It follows from Lemma 8 that M** is in I'(p), so r = n(p + 1)
is possible if and only if there exists a matrix M of form (24) such
that M(p, M) = p + 1. By Lemma 7, N(p, M) = p + 1 is possible for
p =2 and for any p = 3mod4, but not for p = 1 mod 4. An easy
calculation shows that A2, M) =3for M = @3)"(n=1,2, ---). Thus,
by (13), S(2, ») = 5n for all n and R(2) = 5. For any p = 3 mod 4,
it is also possible to find M such that \(p, M) = p + 1, but only
when % is odd (by Lemma 7). In fact, if n is odd we can take
M = (a)(2p) - -+ (2p) (n — 1 factors (2p)), where a is defined by a =
2+z mod p; here z=u-+vi is any generator of the group of numbers
2+ 1y, © and ¥y integers, with norm =+1modp (this group has
2(p + 1) elements and ¢(2(p + 1)) generators, where ¢ is Euler’s
function). A proof that this choice of M satisfies N(p, M) =p + 1
was given by Cohen [2, pp. 142-143] (note that there is an incorrect
factor of 1/2 in the congruence defining a [2, p. 142]). Thus, by
(13), we have S(p, n) = (F(p) + 1)n whenever p = 3mod 4 and = is
odd. Since always S(p, n) < (F(p) + 1)n by Theorem 1, this proves
(21).

If p = 1mod4, then by Lemma 7 the largest possible value of
r is np, and this attained if and only if p divides D(M). Hence
S(p, n) < nF(p); equality actually holds here for = even because
r =mnp when M = (a)2p)---(2p) (n — 1 factors (2p)), where a
satisfies a® + 4 = mod p. This is stated without proof by Cohen [2,
p. 145]. A proof using (13) can easily be given by considering the
sequence of triples (a,, k;, d;) which arises from (2) for this choice
of M. It turns out that each of the » — 1 pairs (k;, d,) = (k, p) with
1 <k =< p— 1occurs n times among the triples (a,, k,, d;) in a period,
and the remaining p triples in the period have the form (2p, 0, 1)
or (2p, 0, p), except for one triple (1, 0, p). Thus we have (22), and
this completes the proof of Theorem 2.

REMARK. Theorem 2 shows that the estimate (16) of Theorem
1 holds with equality when s =1 and » =2 or p =3mod4. As
Cohen [2, Corollary 6.5, p. 144] remarked, the only other cases in
which (16) holds with equality are those in the following theorem.
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THEOREM 3. Let p be a prime such that p = 3mod 4. Then for
each s =1 we have

(25) R(p®) = F(p°) + F(p*™) .
If p = Tmod 12, then also
(26) R(2p*) = F(2p°) + F(2p*™) + F(p*) + F(p*™) .

We also have R(4) = 14 and R(6) = 28.

Proof. First suppose p = 3mod4. By a generalization of the
argument used in the proof of Theorem 1 to establish (21), we see
that (25) holds if, for each odd », we can find a matrix M of form
(24) such that \(p°, M) = p"*(p + 1). In fact, the matrix M used
for the case s =1 in the proof of (21) also suffices for any s> 1
(see Cohen [2, pp. 142-143]).

Now suppose p = 7mod 12. In this case we see that (26) holds
if, for each odd n, we can find a matrix M of form (24) such that
M(20% M) = 3p*Y(p + 1). It is easy to deduce the existence of such
a matrix (see Cohen [2, p. 144]) from the existence of M with
No(p% M) = p7(p + 1).

Finally, we evaluate R(4) and R(6) by special arguments similar
to the one used to show R(2) = 5 in the proof of Theorem 1.

5. Concluding remarks. In the final part of his paper, Cohen
[2, §§7 and 8, pp. 144-147] gave several conjectures, including
conjectures for the exact values of S(N, ») when n is even and N
is arbitrary, and for the exact values of R(IN) when N is arbitrary.
These conjectures can certainly be approached via the Chéatelet
algorithm as described above, but it seems that considerable calcula-
tion might be necessary in order to make progress. We do not go
into these questions here.
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