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CARDINAL INEQUALITIES FOR TOPOLOGICAL SPACES
INVOLVING THE WEAK LINDELOF NUMBER

MURRAY BELL, JOHN GINSBURG, AND GRANT WOODS

Let wL(X), χ(X), f(X), e(X)9 and d(X) denote respectively
the weak Lindelof number, character pseudocharacter, cellu-
larity, and tightness of a Hausdorff topological space X. It
is proved that if X is a normal Hausdorff space then \X\ ^
2%U)WLU)Λ Examples are given of a nonregular Hausdorff
space Z such that \Z\ > 2 x ( z ) u 7 l r C Z ) and a zero-dimensional
Hausdorff space Y such that | Y\ >2^γ)dmwUY\ Define rf(X)=
min {fc: each closed subset of X is the intersection of the
closures of K of its neighborhoods}. It is proved that c(X) ^
rf(X)wL(X). Related open questions are posed.

1Φ Introduction* Let X be a Hausdorff topological space. The

weak Lindelof number of X, denoted wL(X), is defined to be
min {tc: each open cover of X has a subfamily of cardinality no
greater than K whose union is a dense subspace of X}. If wL{X) = #0

we say that X is weakly Lindelof; see [9] and [10] for information
concerning these spaces. It is immediate that wL(X) <̂  L(X), where
L(X) is the Lindelof number of X (definitions of this and other
cardinal functions are given below). It is only slightly less trivial
to see that wL(X) <̂  c(X), where c(X) denotes the cellularity of X.
The theme of this paper is the study of situation in which L(X)
and/or c(X) can be replaced, in inequalities involving cardinal func-
tions on X, by wL{X). We also consider in detail several illuminating
counterexamples which place bounds on the situations in which such
substitutions can be made.

Perhaps the most famous inequality involving cardinal functions
is ArhangeΓskii's theorem [2], which answered a fifty year old
question of Alexandroff. It asserts that if X is a Hausdorff space
then |X| ^ 2X(X)L(X), where χ(X) denotes the character of X. It has
also been proved that if X is Hausdorff then \X\ ̂  2χ(X)c(X) (see [4]).
One is led to conjecture that the common generalization of these
theorems is true, namely that \X\ ̂  2x{X)wL{X). In Theorem 2.1 we
prove that if X is a normal Hausdorff space this is true; the proof
is a modification of a technique used by Pol [6] to give an elegant
proof of ArhangeΓskii's theorem. We then demonstrate the need
for some separation axioms in the hypotheses of this theorem by
exhibiting two examples; first a nonregular Hausdorff space Z for
which \Z\ > 2%{Z)wL{Z\ and second a zero-dimensional Hausdorff space
Y for which |Γ | > 2^Y)W)wL{Y) (here ψ(Y) and d(Y) denote respec-

37



38 MURRAY BELL, JOHN GINSBURG, AND GRANT WOODS

tively the pseudocharacter and the tightness of Y). This latter ex-
ample is interesting because, as remarked in [6], PoΓs proof of
ArhangePskii's theorem can be easily extended to show that if X
is Hausdorff then \X\ ̂  2*{X)d{X)Lm. The character of Y is large,
however, and it remains an open question whether |X| <; 2χ{X)wL{X)

for each regular Hausdorff space X. It is also unknown whether
\χ\ <; 2P&mx)»uz) f o r e a c h n o r m a i Hausdorff space X. The example
Y mentioned above serves in many ways as a "universal counter-
example", and we examine its properties in some detail.

In Theorem 3.1 we prove that c(X) ^ wL(X)rψ(X) where
rψ(X) = min {/c: each closed subset of X is the intersection of the
closure of tz of its neighborhoods}. This provides another link
between cellularity and weak Lindelof number. Previously considered
examples are examined again in the light of this theorem. The
paper ends with a list of open questions suggested by the preceding
theorems and examples.

All hypothesized topological spaces will be assumed to be infinite
Hausdorff spaces. If any further separation axioms are assumed in
the hypotheses of a theorem, they will be stated explicitly. The
set of natural numbers is denoted by N. The cardinality of a set
Sis denoted by |S|. If ^ is a collection of sets, then \j{F:Fe^~}
is denoted by u y i If ic is a cardinal number, κ+ will denote its
cardinal successor. If a is an ordinal number, let a + 1 denote its
ordinal successor. If S is a set then [S]<κ denotes the set of sub-
sets of S of cardinality less than /c. In Example 2.2 we make use
of Martin's axiom together with the negation of the continuum
hypothesis. This set-theoretic assumption is denoted by MA + —iCff;
see [4] or [8] for a discussion of it. We shall use the notation and
terminology for cardinal functions employed in [4] For the con-
venience of the reader we repeat some of the definitions contained
therein.

The Lindelof number of a space X, denoted L(X)y is min {tc:
each open cover of X has a subcover of cardinality no greater than
fc}. The cellularity of X, denoted c(X), is sup {Λ:: X has a family
of pair wise disjoint nonempty open sets of cardinality /c}. If c(X) — #0

we say that X satisfies the countable chain condition and abbreviate
this by writing "X has c.c.c". The density character of X, denoted
d(X), is min {fc: X has a dense subset of cardinality K). Let peX.
The character (respectively pseudocharacter) of X at p, denoted
χ(p, X) (respectively ψ(p, X)) is min {tc: X has a neighborhood base
at p of cardinality /c} (respectively min {tc: {p} is the intersection of
tc open subset of X}). The character (respectively pseudocharacter)
of X, denoted χ(X) (respectively ψ(X)), is sup {χ(p, X): p eX}
(respectively sup {ψ(p, X): p e X}). The tightness of X at p, denoted
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d(p, X) is min {/c: peel A implies there exists ΰ £ i with peclB and
\B\ ̂  ιc}. The tightness of X, denoted 3(X), is sup {d(p, X):peX}.

2. Bounds on the size of a space in terms of its weak Lindelof
number*

THEOREM 2.1. Let X be a normal space. Then \X\ ̂  2χ{X)wLUΊ.

Proof. Let n = χ(X)wL(X). For each peX find an open
neighborhood base {G(p, a): a < K} at p. For each ordinal a < tc+

we will define by transfinite induction a subset A{a) of X such that:
( i ) aγ < a2 implies A{ax) Q A(a2).
(ii) A(a) is closed in X.
(iϋ) \A(a)\ ̂  2*.
(iv) If ^/ C {G(p, 7): p e A(α) and r < fc} and | ^ | ^ Λ: and X -

c l [ U ^ ] ^ 0 then A(α + 1) - c l [ U ^ ] ^ 0 .
After having constructed {A(a): a < fc+} as described above, we will
show that X— \J{A(ά): a < tc+}. By (iii) this will imply than
\X\ ̂  2«. /c+ = 2*.

Let S C X and let p e cl S. For each α < ιc choose x(a) e Sf]
G(p, a) and put T(p) = {x{a): a < ιc}. Define a function λ: cl S -> [S]=Λ

by λ(j>) = Γ(p). As X is Hausdorff, λ is one-to-one. Thus ]clS| ^ |S|%
so in particular if |S| ^ 2Λ then |clS| ^ 2̂ .

Choose xoe X and let A(0) = {xQ}. Now let α0 < ιc+ and suppose
that we have chosen {A(a): a < a0} so that (i)-(iv) are satisfied when-
ever the ordinal variables range over ordinals less that aQ. We now
define A(a0). If aQ is a limit ordinal, let A(a0) = cl[U{A(a):a < a0}].
Then (i)-(iv) are satisfied whenever the ordinal variables range over
ordinals less than a0 + 1. Note that (iv) is satisfied vacuously when
a = a0 as A(a0 + 1) is not defined. If a0 = τ0 + 1, let (E(70) =
[{G(p, α): p 6 A(τ0) and a < ιcψκ. If ^ e (E(T0) and cl [ U ^ ] ^ X
choose r ( ^ ) 6 X - cl [ U ΐ f ]. Define A(α0) = A(τ0) U cl {r(^): ^ 6 ®(70)
and X - c l [ U ^ ] ^ 0}. Since |A(70)| ^ 2ff by hypothesis, it follows
that |K(7o)| ^ (2KY = 2% so by the preceding paragraph |A(αo)| ̂  2*.
It follows immediately that (i), (ii), and (iv) follow whenever the
ordinal variables range over values less than a0 + 1. The induction
step is now complete.

Let A(κ+) = U{A(α):α < Λ:+}. Note that A(/ε+) is closed; for
suppose x 6 C1A(Λ:+). For each a<tc choose q(a) e A(tc+) Π G(x, a). Then
g(α) e A(μa) for some ^α < /c+. Let ^ = sup {μa: a < Λ:}; then μ < fc.
Then # e cl {q(a): a < fc}Q cl A(μ) S A(j« + 1) S A(/c+) so Λ(Λ:+) is closed.
We claim that A(tc+) = X; for if not, let qeX — A(fc+). As X is
regular there exist disjoint open sets U and V with qe U and

£ V. For each p e A(fc+) find α(p) < Λ: such that G(p, a(p)) Q V.



40 MURRAY BELL, JOHN GINSBURG, AND GRANT WOODS

Let E = X - U {G(p, a(p)): p e A(/c+)}. Then A(/c+) and E are disjoint
closed sets. As X is normal, there exist disjoint closed sets C and
D of X such that E £ int C and A(Λ;+) £ int D. Then X = (int G) U
[ U {G(p, a{p)): p e A(/c+)}]. As wL(X) <̂  Λ: there exists a family
{p,: i < ft} of points of A(/c+) such that (int C) U [ U {G(pif a{pz))\ i < K}]
is dense in X. Now int Cf] int D = 0 so int D n U {G(p<, α(Pi)): i < £}
is dense in int D. Thus

(1) A(/c+) C cl [ U {£(£>,, «(#,)): i < *}] Q cl F £ X - U S X .

If α0 = sup {α(Pi): ΐ < A:} + 1, then α0 < Λ:+ and ^ = {G(pif α(p*)): ί < Λ:} e
•e(α0) by (1). Hence r(^)e4(/ί + ) - c l [ U ^ ] , which contradicts (1).
It follows that A(Λ:+) = X and so, as noted above, \X\ ̂  2x(X)wL(X).

One might be tempted to conjecture that each space X (with
sufficiently nice separation properties) has a dense subspace S such
that L(S) ^ wL(X) or c(S) ^ wL(X). If this were the case, then
the inequality \X\ <> 2xiX)wL{X) would follow from the three inequalities
|g| ^ 2

X ( 5 ) κ ( 5 ), |S| ^ 2c{S)χ{S), and |X| ^ cί(X)x(X) (see [4] for proofs of
there). To show that 2.1 does not follow from these inequalities in
such a direct fashion, we give an example of a weakly Lindelof
Tychonoff space all of whose Lindelof subspaces and c.c.c. subspaces
are nowhere dense. We also exhibit a (consistent) example of a
normal space with no dense Lindelof or c.c.c. subspace; however,
we must use MA + — CH to obtain this example.

EXAMPLE 2.2. Let X be the Alexandroff double of the closed
unit interval / (see Example 2, page 107 of [3], or [1]). Thus,
X = / x {1, 2} topologized as follows: each point of I x {1} is isolated,
while a neighborhood base at (p, 2) is {[(p — 1/n, p + 1/n) x {2}] U
[((P ~ (IM)f V + (Xln)) - {p}) x {1}]: neN} for each pel. Then X is
a conpact Hausdorff first countable space with an uncountable collec-
tion of isolated points. Thus Xω is compact Hausdorff and first
countable, while each subset of Xω of countable cellularity has an
empty interior. Let P be the space of finite subsets of / with the
Pixley-Roy topology. Thus if A e P and U is open in I with A £ ί / ,
denote by [A, U] the set {FePiAQFQU}. Then {[A, U]: AeP,
U open in I, A £ U] is a base for topology on P, the "Pixley-Roy
topology". Pixley-Roy topologies are discussed at some length in
[7], and the properties of P mentioned below without explicit cita-
tions may be found therein. P is first countable, has c.c.c. (and
hence is weakly Lindelof), and each Lindelof subspace of P is nowhere
dense. Thus XωxP is first countable and weakly Lindelof (being the
product of a compact space and a weakly Lindelof space). If & is a
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subspace of Xω x P that is either Lindelof or c.c.c. then S is nowhere
dense. Unfortunately Xω x P is not normal.

Now assume MA + -iCH, and let T be an uncountable subset
of / of cardinality less than 2**°. The space PL of finite subset of
T, with the Pixley-Roy topology, enjoys all the properties of P
listed above except that Pι is normal (see [7]). Thus the free
union Xω\jP1 is first countable, normal, weakly Lindelof space with
no dense Lindelof subspace and no dense subspace of countable
cellular ity.

Next we consider two examples which give bounds to the degree
to which 2.1 can be generalized. First, we produce a Hausdorff
space Z for which \Z\ > 2%{ZiwL{-Z). Second, we exhibit a zero-dimen-
sional Hausdorff space Y such that |Γ | > 2*{Y)d{Y)wL{Y). In fact the
constructions of Y and Z are almost identical. We consider Z first.

EXAMPLE 2.3. Let tc be any uncountable cardinal, let Q denote
the rational numbers, and let A be any countable dense subset of
the space of irrational numbers. Then Z is the set (Q x tc) U A
topologized as follows. If q e Q and a < tc then a neighborhood base
at (q, a) is {Un(q, a): n = 1, 2, •} where Un(q, a) — {(r, a): r eQ and
\r — q\ < 1/n}. If aeA, a neighborhood base at a is {{b e A: \b — a\ <
1/n} U {(#, a): a < it and \q — a\ < 1/n}: n — 1, 2, •}. It is easily
seen that this assignment of neighborhood bases makes Z into a
first countable Hausdorff space in which, for each a < tc, Q x {a}
is open in Z and homeomorphic to Q (with the usual topology).
Now suppose that G is an open subset of Z containing A. We show
that G is dense in Z; i.e., we show that if qeQ, a < tc, and neN
are given, then Un(qf a) Π G Φ 0 . To do this, note that as A is
dense in R there exists a e A such that \a — q\ < 1/n. As G is open
and contains α, there exists meN such that (r, α)eG whenever
r eQ and |r — α| < 1/m. Choose i e N such that j > m and 1/i <
1/w - |α - q\. If |r - α| < 1/i and reQ then (r, α) eG Π £/»(?, α).
Hence G is dense in Z. This implies that Z is not regular. It also
implies that Z is weakly Lindelof, for any open cover of Z contains
a countable subfamily covering A (as A is countable) and the union
of this countable family is dense in Z. Thus χ(Z) = wL(Z) — fc$0

and \Z\ = ic. Hence the gap between \Z\ and 2 x ( Z ) w L m is arbitrarily
large.

EXAMPLE 2.4. Let Y be identical to the space Z of 2.3 except
that the neighborhood bases at points of A are changed as follows:
if aeA, neN, and Fe[tc]<ω, let Vn,F(a) = {{δ6 A: |δ - a\ < 1/n} (J
{(<?, α ) e ΰ x /r: |<? - α| < 1/n and α 0 F}}. Then {FΛ>ί.(α): neN and
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Fe[fc]<ω} is taken as a neighborhood base at α. It is easily seen
that this is a valid assignment of neighborhood bases at points and
that Y is a zero-dimensional Hausdorff space (and thus completely
regular).

Now we show that is G if an open set containing A, then Y — clG
is countable. This will immediately imply (as in 2.2 above) that Y
is weakly Lindelof, i.e., that wL(Y) — fc$0 Suppose that Y — clG
is uncountable. Since Q is countable there is q e Q and a subset S of
K such that \S\ = y$x and {q} x SQ Y — clG. For each a e S there exists
n{a) eN such that Un{a)(q, α) fl G = 0 . By the pigeonhole principle
there is a subset T of S and w e ΛΓ such that | T\ = fc$i and Ϊ7n(<7, α) Π
G Φ 0 for each ae T. Since is dense A in i? there exists α e i with
\a — q\ < 1/w Since each basic neighborhood of a is disjoint from at
most finitely many sets of the form Q x {a}, where a < /c, it easily
follows (as in 2.2) that a ecl[U {£/»(?, a): a e T}]. But G is an open
set containing a and disjoint from [j{Un(q, a):ae T), which is a
contradiction. Hence Y — cl G is countable as claimed.

We next show that d(Y) = Ho Obviously d(p, Y) - R, if pe
Q x fc since basic neighborhoods of such points are countable. Let
α e i , S£ Y, and suppose a eclS. We show that S has a countable
subset Si such that aeclS^ If αecl(S(Ί A) then S Π A is our S1#

If not, then a e cl(S Π (Q x A;)). Inductively choose a sequence Si =
{(?»» «n) neN] of points from S ΓΊ (Q x ic) such that |α — qn\ < 1/^
and such that n Φ m implies an Φ am; this is easily done using the
fact that V%tF(a) meets S Π (Q x A:) where F — {a^. i ^ n — 1}.
Obviously |SJ = ^ 0 ^^d as each neighborhood of a is disjoint from
Q x {a} for at most finitely many a, it is easily seen that a e clSL.
Thus 3(α, Y) - «o so 3(Γ) = « 0.

Next we show that every subset of Y is a Ga-set of Y. Thus
in particular Y is perfect (i.e., each closed subset is a G,-set) and
ψ(Y) = Ko To see this, note that for each q e Q, {q} x tc is a closed
discrete subset of Y. Thus F = U{{q} x Λ: geQ} U {{α}: α e i } ex-
presses 7 a s a union of countably many closed discrete subspaces.
Rewrite this as Y = U {Z)n: ^ 6 N} where each Dn is closed in Fand
discrete. If S £ Y then S= \j{SΠDn:neN} and each S n ΰ , is
closed in Y. Thus S is an i^σ, and our claim follows.

Since /c was arbitrary and \Y\ — fc, we see that | F | • = K > 2̂ ° =
2»χ-(F)1κF)d(r) if ^ > 2Ko. Hence we cannot simultaneously replace χ(X)
by ψ(X)d(X), and normality by complete regularity, in 2.1.

The space Y and its countable power Yω have a number of
other interesting properties which we consider now. Obviously
χ(α, Y) = K for each α e i , even though ψ(a, Y) = 3(α, Γ) = V̂ o.
Also, if ^ is a family of open sets, each containing A, such that
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A = f){clG:GeZ?}, then |gf| ^ tc, even though A is a Gδ-set of Y.
This illustrates that Y is not normal. Also, it is easily seen that
if D is a dense subspace of Y then L(D) = c(D) = /c. However, the
set of points of Y that have Lindelof neighborhoods, and the set of
points of Y that have c.c.c. neighborhoods, is just Q x /c, which is
dense in Y.

We next consider the countable power Yω. We claim that it is
a weakly Lindelof, perfect space of countable tightness in which
each Lindelof subspace, and each subspace of countable cellularity,
is nowhere dense. The last claim follows immediately from the fact
that Y is neither Lindelof nor of countable cellularity.

We sketch the argument that Yω is weakly Lindelof. First, by
an argument similar to that used above in showing that Y is weakly
Lindelof, one observes that if G is open in Y2 and contains A x A
then at most countably many points both of whose co-ordinates are
rational lie outside clG. Thus, given an open cover of Y, we may
find a countable subfamily <& whose union covers the countable set
A x A; then Y2 — cl [ U r^\ contains only countably many points of
the form ((q,a), (r,/2)). The rest of Y2 is contained in U {{a} x 7 : α x i } U
[J{Y x {a}: aeA}, a countable union of weakly Lindelof spaces.
Thus we readily obtain a countable subfamily of the original open
cover whose union is dense. This shows that Y2 is weakly Lindelof.
This argument easily extends by induction to show that each finite
power Yn is weakly Lindelof. By Ulmer's theorem (1.3 of [9]) it
follows that Yω is weakly Lindelof.

Recall Y is a countable union of closed discrete subspaces; it is
readily seen that this implies that each finite power Yn enjoys the
same property. Thus each subset of Yn is a Gδ-set of Yn, so in
particular each Yn is perfect. By Katetov's theorem (see [5]) it
follows that Yω is perfect.

The argument given above to show that d(Y) = ^ 0 easily ex-
tends to show that d(Yn) = y$0 for each neN. This clearly implies
that d(Y«) = Ko.

3* A relationship between cellularity and weak Lindelof
number. The examples in 2.2, 2.3, and 2.4 serve to illustrate that
the weak Lindelof number is independent of both the Lindelof
number and the cellularity, even for spaces with "nice" separation
properties and for which the tightness and pseudocharacter are
small. These examples also show that the class of weakly Lindelof
spaces is much broader than the class of spaces with dense Lindelof
subspaces, or dense subspaces of countable cellularity. Thus, based
on what we have seen to date, we know that although wL(X) ^ c{X)
and wL(X) <; L(X), the gap between wL(X) on one hand, and c(X)
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and L(X) on the other hand, can be arbitrarily large. We now
give a condition under which the cellularity is bounded by the weak
Lindelof number. Recall that the definition rψ(X) is given in §1.

THEOREM 3.1. c{X) ̂  wL(X)rψ(X).

Proof. Let tc = wL(X)rψ(X). Suppose c{X) ̂  tc+; let ^ =
{G> i < tc+} be a family of tc+ pairwise disjoint nonempty open subsets
of X. Let F = X - \j{Gt: i < fc+}. Then F is closed in X. If U
is any open subset of X containing F, then as wL(X) ̂  tc there is
subfamily ^ of gf of cardinality no greater than Λ: such that
(U ̂ ) U ί7 is dense in X. It follows that cl U contains all but tc
members of &. As rψ(X) <; tc, there is a family ^ of open sets
containing F such that \%r\ ^ Λ: and Π{clί7: Ue^} = F. For each
Ue&Ίet A(U) = {i < /c+: G, g cl 17}. By the above \A(U)\ ̂  κ9 and
so |U{A(?7): C/e^}| ^ K. Choose jeκ+ - U{A(ί7): C7e^}. Then
GSS n{clU:Ue%f} = F, which contradicts the definition of F.
Thus c(X) ̂  ^L(X)rα/r(X) as claimed.

COROLLARY 3.2. Le£ ̂ (-X") = niin {tc: each closed subset of X is
the intersection of no more than tc open sets}. If X is normal then
c(X) ^ wL(X)ψ(X). In particular every perfectly normal weakly
Lindelof space has countable cellularity.

Proof. In a normal space rψ(X) — ψ(X).

REMARK 3.3. Although it is obvious that f(X) ^ rψ(X) in
general, the space Y of Example 2.4 shows that th« gap between
ψ(X) and rψ(X) can be arbitrarily large; ψ(Y) = ̂ 0 and rψ(Y) = tc.
If we did not know it already, we could deduce from 3.2 that Y is
nonnormal since c(Y) — tc and wL(Y) = \ξ0.

4* Open questions*

4.1. Is either of the obvious generalization of 2.1 true? In
other words, is \X\ ̂  2^X ) 9 ( X ) w X ( X ) if X is normal, and is \X\ ̂  2^X)wL{Σ)

if X is regular? Example 2.4 illustrates that we cannot make both
generalizations simultaneously.

4.2. In Example 2.2 we used MA H—\CH to construct a normal,
first countable, c.c.c. space with no dense Lindelof subspace. Is
there a "real" example of such a space? Does such a "real" example
exist if we replace "c.c.c." by "weakly Lindelof" in the above list
of properties?
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4.3. Is there a theorem that relates L(X) to wL{X) in a
manner analogous to the way in which 3.1 relates c(X) to wL(X)Ί
Aside from the observation that L(X) ^ wL(X)p(X) (where p{X) is
the "paracompactness number"; i.e., p(X) — min{/r: each open cover
of X has an open locally tc refinement}), we know of no interesting
relation.
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