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FINITE GROUPS WITH A STANDARD SUBGROUP
ISOMORPHIC TO PSU(4, 2)

KENSAKU GoMI

The combined work of M. Aschbacher, G. Seitz, and I.
Miyamoto classified finite groups G with a standard sub-
group L isomorphic to PSU(4, 2" such that either n>1 or
Co(L) has noncyclic Sylow 2-subgroups. In this paper, we
study the case that n=1 and Cy(L) has cyclic Sylow 2-sub-

groups.

Introduction. A group L is quasisimple if L is its own com-
mutator group and, modulo its center, L is simple. A quasisimple
subgroup L of a finite group G is standard if its centralizer in G
has even order, L is normal in the centralizer of every involution
centralizing L, and L commutes with none of its conjugates. This
definition of standard subgroups is equivalent to the original one
given by M. Aschbacher in his fundamental paper [1].

I. Miyamoto has classified [23] finite groups G containing a
standard subgroup L isomorphic to PSU(4, 2") with » > 1 such that
Cy(L) has cyclic Sylow 2-subgroups. Part of his argument, however,
failed to apply to PSU(4, 2). This exceptional nature of PSU(4, 2)
may be explained by the isomorphism

PSU(4, 2) = PSp(4, 3) = PQ2(5, 3) .

Because of this, certain groups of characteristic 3 have standard
subgroups isomorphic to PSU(4, 2).
In this paper, we prove the following theorem.

THEOREM. Let G be a finite group and suppose L is a standard
subgroup of G with L = PSU(4, 2). Furthermore, assume that Cy(L)
has cyclic Sylow 2-subgroups, and let X denote the normal closure
of L in G. Then one of the following holds.

(1) X/O(X) is a simple group of sectional 2-rank 4.

(2) X = PSL(4,4) or PSU(4,2) x PSU(4, 2).

(3) Ng(L)/CyL) = Aut (L), and for each central involution z
of L, Cy(2) has a quasisimple subgroup K that satisfies the follow-
wng conditions:

3.1) ze K and W = O,K) is cyclic of order 4.

(8.2) K/{z) is a standard subgroup of Cyz)/{z) and W 1is a
Sylow 2-subgroup of Cu(K/{(z)).

(3.3) FEither K/O(K) = SU(4, 3) or K/Z(K) has a Sylow 2-sub-
group isomorphic to a Sylow 2-subgroup of PSL(6, q), ¢ = 3 mod 4.
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400 KENSAKU GOMI
(3.4) [K, O(Cy(2)] = 1.

REMARK. In Case (1), the structure of X/O(X) can be deter-
mined by a theorem of D. Gorenstein and K. Harada [14]; we can
show that X/O(X) is isomorphic to PSp(4, 3), PSp(4,9), PSU(4, 3),
PSL(4, 3), or PSL(5,8). Case (38) occurs in the automorphism group
of PSU(5, 3) with K = SU(4, 3).

The proof of the theorem begins with a study of fusion of an
involution ¢ of CyL). Let A be the unique elementary abelian
subgroup of order 16 of a Sylow 2-subgroup of L. We show that
the conjugacy class of ¢t in Ng({t)A) contains 1, 6, or 16 elements.
If it contains 1 or 6 elements, then after determining the possible
structure of a Sylow 2-subgroup of G, we show t¢ G’ by a transfer
argument. It then follows that N;(A)/Cx(4A) = A,, 5,, A, or X;, and
that A eSyl(Cy(A)). If N,(A)/C.(A) = A;, Y, or A;, a theorem of
Harada [17] shows that »(X) =4. When Ny(A4)/Cyx(4) =3, we
appeal to a theorem of G. Stroth [26]. Using an additional in-
formation, we show that this case does not occur. The analysis of
the case where there are 16 conjugates of ¢ follows the same line
of arguments as in previous papers of Miyamoto and the author
[11], [23] (we refer the reader to the introduction of [11]), although
some additional argument is needed in the analysis of a subcase
leading to Case (3) of the theorem.

Finally, we remark that the solvability of groups of odd order
[6] is used implicitly throughout this paper.

Notation and Terminology. Our notation is standard and
mainly taken from [12]. Possible exceptions are the use of the
following:

m(X) the 2-rank of X.

r(X) the sectional 2-rank of X.

I(X) the set of involutions of X.

ZH*X) the set of maximal elementary abelian subgroups
of X.

X~ the final term of the derived series of X.

J(X) the subgroup of X generated by the abelian 2-sub-
groups of maximal rank.

X* the subgroup of X generated by the squares of
elements of X.

E(X) the product of the quasisimple subnormal subgroups
of X.

L(X) the 2-layer of X.

X wreath Y the wreath product of X by Y.
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XY a central product of X and Y.
f(X mod Y) the preimage in X of f(X/Y), where f is a function
from groups to groups.

Zign the cyclic group of order 2~.

Ep, n=2 the elementary abelian group of order 2".

D, n=6 the dihedral group of order n.

Qs the quaternion group.

A, 2, n=3 the alternating and symmetric group of degree n.

F, the field of ¢ elements.

Ve, F) the vector space of 2-dimensional row vectors with
coefficients in the field F.

M4, F) the set of 4 X 4 matrices with entries in F.

An A,.-subgroup is an abelian subgroup of order 2*, while an
Fyw-subgroup is an elementary abelian subgroup of order 2*. Suppose
G = SL(2,4) = A,. Then G has two types of “natural” modules
over F,. The one is V(2, F,) viewed as an SL(2, 4-module in an
obvious way. We call this the natural module for G = SL(2, 4).
The other is the unique nontrivial irreducible constituent of the
permutation module for A,., We call this the natural module for
G = A, We use the “bar” convention for homomorphic images.
Thus if G is a group, N is a normal subgroup, and G denotes the
factor group G/N, then for any subset X of G, X will denote the
image of X under the natural projection G —G. A similar convention
will be used when a group G has a permutation representation on
a set 2, where we write X? instead of X.

1. In this section, we collect a number of preliminary lemmas
to be used in later sections.

LEMMA (1A). Let R be a monabelian 2-group with a cyclic
maximal subgroup @, and let teI(Q) and ue (R — Q). Then u 1is
conjugate to tu in R.

Proof. This is a consequence of the classification of nonabelian
2-groups with a cyclic maximal subgroup. See Theorem 5.4.4. of
[12].

LeMMA (1B). Let G be a group which contains a direct product
H x K of subgroups H and K. Assume that |G:HK| =2 and
that an element of G — HK interchanges H and K. Then G — HK
contains involutions and they are all conjugate in G.

Proof. Let geG — HK, and let ¢* = hk with he H and ke K.
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Then hk = (hk)* = k°h?, so h* = k and k° = h. Hence

(gh™) = gh™'gh™
— g2g—1h—1gh—1
= (hk)k*h™*
=1.

Thus G — HK contains an involution.

Now let geG — HK and ¢?=1. Let heH and ke K, and
assume that ghk is an involution. Then (hk)* = (hk)™, so h* =k
and % = h™'. Hence h™'gh = gg*h~'9gh = ghk. That is, ghk is con-
jugate to g. The proof is complete.

LEMMA (1C). Let E be an elementary abelian 2-subgroup of a
group G, and let t be an involution of Ng(E). Then the following
holds.

(1) |E:Cz(t)] £ 1C(t)|, and equality holds if and only if
ItE) = t~.

(2) If |E:Cyt)| = 4, then

Ne(CE, £)) = No({Cs(?), £) N No(HE) .

Proof. Commutation by ¢ induces a homomorphism from K onto
[E,t], and so |[E, t]] =|E:Cyt)|. Also, [E,t]< Cyt). Hence
|E: C5(t)| = |Cx(t)|.  Since |I(tE)| =|Cxt)| and |t*]| = |E: Cx(2)],
equality holds if and only if IGtE) = t~.

Under the hypothesis of (2), E and {(Cyt),t> are the only
maximal elementary abelian subgroups of (F, t>, and they have
different orders. Hence (2) follows.

LEMMA (1D). Let G be a finite group and let geG. Then
1Cs(9)] = |G- G'|.

Proof. For any xze€G, g7'¢* = [g9, x] € G'. Hence |G: Cx(9)|=|9%|=
|G].

LemmMA (1E). Let R be an S,subgroup of a finite group G and
S a normal subgroup of R with R/S abelian. Let x be an involu-
tion of R — S and suppose that each extremal conjugate of x in R
18 contained in xS. Then x¢G .

Proof. Let T be a subgroup of R with S T<R and z¢T
subject to |T| maximal. Then since R/S is abelian, R/T is cyeclic.
Also, each extremal conjugate of x in R is contained in 7. There-
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fore, Lemma (1E) follows from [27], Corollary 5.3.2.

LEMMA (1F). Let T be an S,subgroun of a finite group @G,
and let S be a normal subgroup of T such that T/S=E, and S<G™.
Let acIl{(T —S) and be (T — {a, S)), and suppose (ab)® =1, a’N
b, S> =@,b"NS=00, and (ab)’ NS = @. Then SeSyl(G).

Proof. By Lemma (1E), a€G and so TNG =8, <, S), or
{ab, S). If TNG =S, then TNG" =S again by Lemma (1E).
Thus S e Syl,(G™).

LEMMA (1G). Let T be an S,-subgroup of a finite group G, and
let S be a normal subgroup of T such that T/S = Dy and S < G*.
Let Z|S = Z(T/S), and let E/S and F/S be the fours subgroups of
T/S. Let acl(Z — 8S) and bel(EE — Z), and suppose a® N\ F < aS
and b* N F = . Then SeSyL(G*).

Proof. By Lemma (1E), b€G and so ENG =S or Z, since
bS~abSin T. If ENG =8, then TNG =S as S<TnGE T.
Suppose that ENG = Z. Then either TNG =F or TNG/S is
cyclic. Hence a°NT NG £ a8 and so a € G’ by Lemma (1E). Thus
TNG" =S. Therefore, SeSyl,(G”).

LemmaA (1H). Let A be a standard subgroup of a finite group
G, and assume that Cy(A) has a cyclic S,-subgroup. Then the
Sollowing holds.

(1) A0(@) <G if and only if an involution t of Ci(A) is
contained in Z*(@). '

(2) AO(@)/O(R) is a standard subgroup of G/O(G) and C,(AO(G)/
O(@) has a cyclic S,-subgroup.

(3) If AO(G) A G, then either {(A“Y0(@)/O(G@) is simple or
CASO@/OG)=AIZ(A) < A]Z(A). In either case, C,({A*>O(G)/O(G))=
O(G).

(4) If AO(G) 4 G and if there is a t-invariant 2-subgroup P
of (A% such that 1 = [P, t] £ CC, (1)), then [(A%, O(G)] = 1.

Proof. Let te I(C(A)) and let G = G/O(G). Then t e I(G)and A
is a quasisimple normal subgroup of C(). Let zeC(4) N C(f). We
may choose xzeC(t). Then [z, A]|Z ANOG) £ Z(A), so [z, A] = 1.
Thus C(A) N C(t) = C(A) N C(t). Therefore, C(A) has cyclic S,-sub-
groups and (2) follows.

Assume that A <{G. Then C(4) <] G and so C(4) is a cyclic 2-
group and e Z(G). Conversely, if e Z(G), then 4 <] C(%t) = G.
This proves (1).



404 KENSAKU GOMI

Assume that A 4 G. Then by a result of Aschbacher, F*(G)=
(A% and either F'*(G) is simple or A is simple, F*(G)= 4 x 4,
and 7 interchanges two components of F*(G). Let L = (4°0(G)
and assume that there is a t-invariant 2-subgroup P of L such that
1=+ [P, t] and [[P, t], Coi(t)] = 1. Then [[P, ¢], O(G)] =1 by [11, (1J)].
Hence C,(O(L)) £ O(L). Since L = L/O(L) is simple or a direct pro-
“duct of simple groups interchanged by ¢, it follows that L —
C.(O(L)O(L). Thus (A% < C,(O(L)) and (4) follows.

Lemma (1I). Let K = PSL(n,q), n =2, or PSU,q), n =3,
q odd, and let a be an involutory automorphism of K that is mot
a product of an inner automorphism and a diagonal automorphism.
Then Cx(e) is solvable only if K = PSL(2,9), PSL(3,38), PSL(4, 3),
PSU, 3), or PSU4, 3). If C(e) is mot solvable, then the structure
of Cxla)” is given on the following table.

K Crla)”

PSL(n, q) PR*(n, q),

PSp(n, q), n even,
PSL(n, p), q = p°,
PSU(n, p), q¢ = p°,

PSU(n, q) | PQ2%*(n, q),
PSp(n, q), n even.

Proof. Consider the case K = PSL(n, q) first. Set G=GL(n, q)
and H = SL(n, q). Let v be the transpose-inverse mapping of G,
and if ¢ = p% let ¢ be the automorphism of G induced by that of
F, of order 2. Then a is induced on K = H/Z(H) by an element
x of 7@, 0G or oG such that x*¢ Z(G).

First, assume that xe7G. Then n=3. Let 2 =7a, acG.
Then as a*¢ Z(G), it follows that ‘e =a or —a, where ’a is the
transposed matrix of a. We also have that

Co(x) = {y e Gl'yay = a} .

That is, Cs(x) is the orthogonal or symplectic group defined by the
symmetric or alternating matrix a. Now Aut ({z, Z(G))) is solvable,
so Ny({z, Z(G)))* < Cy(zx). Also, Cy(x)*<H. Thus Cx(a)”*=Cyx)"Z(H)/
Z(H), and so Cg(a) is solvable only if (n,q) = (3,3) or (4, 3), and
if Cx(a) is nonsolvable then Cy(a)* = P2*(n, q) or PSp(n, q).

Next, consider the case rcoG. Let x =o0a, a€@G. Then as
x* € Z(@), we see that ¢ = a’a is a scalar matrix such that ¢** = 1.
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Hence there is a scalar matrix deG such that d*™¢ =1, so that
(da)’da = 1. Replacing x by xd, we may assume that a’c = 1. By
[20, Proposition 3], there is an element ge G such that a = g9
Thus 2 =0¢ and we may assume from the outset that x = o.
Therefore, Cy(x) = GL(n, p), and so Cg(e) is solvable only if (n, q)=
(2,9), and if Cg(a) is nonsolvable, then C.(a)” = PSL(n, ).

Assume, therefore, x e 7o0G. Let 2 = 7oa, ac€G. As above, we
may assume that aa = 1. That is, a is a hermitian matrix. Thus
Cq(x) is the unitary group defined by a over F,, and so Cy(@) is
solvable only if (n,q) = (2,9), and if Cg(a) is nonsolvable, then
Cx(a)” = PSU(n, p).

Now consider the case K = PSU(n, q). In this case, we set
G* = GL(n, ¢%), G = Un, q), and H = SU(n, q). Let 7 be the trans-
pose-inverse mapping of G* and let ¢ be the automorphism of G*
induced by that of F,: of order 2. Then we may regard G=C.(07),
and assume that a is induced on K = H/Z(H) by an element z of
0Z(G*)G such that 2*e¢ Z(G*). As before, we may assume that
x = oa, a€Z(G*)G, and a’a =1. Let a = a,a, with a, € Z(G*) and
a,€G. Then

(1) a®” =a;%a, = a7 'a = ¢ 'a,

where ¢ = af™. Now there is an element g € G* such that a=g%™
by [20, Proposition 3]. Hence by (1), (g°9™")" = e7*(g°9™"). That is,
(2) egrgT" = g°g .

Now (07)* = 079~ ""g, so let h =g~ "9. Then h* = ¢~ = ¢7'¢g7'g" =
e*h™ by (2), so

th = eh .
Hence

Also,
ha — g—z'ga — e—lg—vz‘g — eh
by (2). Choose an element de€ Z(G*) such that d** =e¢™* and set
h, = dh. Then *h, = eh, and h{ = d%h = d**¢h, = h,. Thus h, is a
symmetric or alternating matrix in C,.(0) = GL(n,q). Now z’ =¢
as a’a =1, so
Co(w) = Ceu(w) N Cpul07)

= Cg(0) N Cgul(07)*)

= Cg(0) N CgoTh)

= Cg*(o-) n ng(Thl) B
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Thus Cy(x) = O*(n, q) or Sp(n, q) by a previous discussion. Hence
Cx(a) is solvable only if (n, q) = (3, 3) or (4, 3), and if Cy(a) is non-
solvable, then Cy(a)” = P2*(n, q) or PSp(n, q).

LeMMA (1J). Let E be an elementary abelian group of order
16 on which M = SL(2,4) = A, acts. Let ReSyl,(M).

(1) If |Cx(R)| =4, then E is a natural module for M =
SL(2, 4).

(2) If |Cy(R)| = 2, then E is a natural module for M = A,.

Proof. (1) follows from [11, (1K)]. Assume that |Cy(R)| = 2.
Let a,, a,, <--, a; be the nontrivial fixed points on E of S,-subgroups
of M, so that {a,, a,, ---, a;} is M-invariant. Since M acts irreduci-
bly on E, we have aa,---a, =1 and E = {a,, a,, +++, a;y. Now let
V be the direct product of E and a group <{a) of order 2, and let
M act on V in an obvious fashion. Then, by the above remark,
{aa,, aa,, ---, aa;} is an M-invariant set which generates V. Thus
V is a permutation module for M = A, and F is a nontrivial irre-
ducible constituent of V. This proves (2).

LemmMA (1K). Let E be an elementary abelian group of order
25, and let K and L be subgroups of Aut (E) such that SL(2, 4) =
K<L=S8I2,16). Let ReSyl,(K), and let R< SeSyl,(L). Assume
that |Cyx(S)| = 4. Then there is mo nontrivial K-invariant subgroup
A of E such that C,(R) < Cx(S).

Proof. Let W = Cy(S) and assume, by way of contradiction,
that A is a K-invariant subgroup of E such that 1 = C,(R) < W.
Clearly, N.(S) normalizes W. As N (R) < N.(S) and N.(R) centra-
lizes C,(R) which is a subgroup of W of order 2, we have that
[Nx(R), W] =1. As |N,(S)/S| =15 and Ng(R)S/S is an S,-subgroup
of N (S)/S, it follows that [N (S), W] =1.

Let seI(L — N, (S)) and set H = N,(S) N N,(S%). Notice that
H is a complement for Sin N,(S). Furthermore, W N W*=CyL)=1,
as L = (8, S*) and L acts irreducibly on E by [8, (4B)].

Now [H, WW*] =1, as [H, W] =1 by the first paragraph and
H: = H. For any we W¢%, let & = ww*. Then as (H,s) < C.(®)
and (H, s) is a maximal subgroup of L, we have that C,(@W)={H, s).
Consequently, |#%| =|L: (H,s)| =136. As 136 x 2 = 272 > 255 =
| E*#|, it follows that @, ~ @, for any w,, w,€ W* Choose ze€ L so
that @7 = #,. Then (H, s)* = C,(#,)* = C,(W,) = {H, sy, and so x €
N.({H, s)) = (H,s). This is a contradiction as we may choose
W, #= W,
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Now we define some subgroups of SL(4, 4). Let M*, R*, D*,
and E* be the groups consisting of the following matrices, respec-
tively.

A
( ), AeSL(2,4), and I is the 2 x 2 unit matrix,

I
a 1
1 , aeF,,
1
a—l
a—l
,a€F4-—{O},
a
a
1
. b,e,deF,
a b 1 ’a7 70’ 4 °
c d 1

Thus R* e Syl,(M*), and M* and D* normalize E*. Let f* be the

field automorphism of SL(4,4) and let t* be the graph-field auto-

morphism of SL(4,4). That is, f* is induced by the involution of

Aut (F) and t* is the transpose-inverse mapping followed by f* and
1

conjugation by 1 1 . Let L* = M*M*",

1
We shall consider the following situation.

Hypothesis (1.1). E is an elementary abelian group of order
28, and N is a subgroup of Aut(#) which has a normal subgroup
L satisfying the following conditions.

(1) L=Mx M, tel(N), M = SL(2, 4).

(2) Cy(L) = O(N).

(8) For ReSyl (M), W = Cy(RR!) is a fours group.

LeMMA (1L). Assume Hypothesis (L.1). Furthemore, assume
the following.

(4) CyxM) =1.

(5) For a complement H for R in N, (R), [W, htht] =1 for
all he H.

Then there is a monomorphism o from the semidirect product
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of N and E into {M*, E*, D*, t*, f*> such that M° = M*, R° = R*,
ON)y < D*, E° = E*, t° =t*, and f°=f* if f is an element of
Cit) N Ny(M) acting as a field automorphism on C.(t) = SL(2, 4).

Proof. Let »re€ I(N,(H)) and set s = rétrt. We use the additive
notation for E. As M = (R, R"), the condition (4) implies that
Co(R) N Cx(R") = {0}. In particular, WnN W~ = {0}, and as W+ Wr<
Co(RY), |Co(RY)| = |Cx(R™)| =z 2. As Cyx(R") N Cx(R™) = {0}, we con-
clude that

E = Cy(R') D Cx(R™) .
Also,
Co(RY) = W W and Cyx(R™) = Cx(RY)'" = Wi W*.

Furthermore, as Cyz(R) N Cx(R) = W has order 4, Lemma (1J) shows
that Cy(R') and Cx(R™) are natural modules for M = SL(2, 4). This
proves that we can identify M with M* so that £ = E* as modules
for M. More precisely, if weCy(t)*, H = <{h), and F, = {0, 1, 2, 4},
then F and E* can be identified by the mapping which associates
with w™ + w*’" 4+ w**** - w*®, where a, b, ¢, d € {0, 1, 2}, the matrix

1

x° 2% 1

ax° xb 1
and the action of an element of M on FE identified with E* is the
conjugation by the corresponding element of M*. In this identifi-

cation, B* corresponds to R.
Using the condition (5), we have that for each 7¢{0,1, 2},

(¥ = w™
Rir\t . b Titrt
(w ) =w ’
(wh'btrt)t — wh_"r R

(,whis)t — ,wh“is .

This shows that we can identify ¢ with ¢*. Thus (M, t)E =
(M*, t*SE*.

Suppose O(N) # 1. The A X B-lemma [12, Theorem 5.3.4] shows
that O(N) acts regularly on W¥ Hence |O(N)| = 3 and there is an
element z € O(N) such that w* = w*. Then a computation similar to
the above shows that O(N) can be identified with D*.

If LON) = N(M), then N = (M, O(N),t) so the above para-
graphs prove the lemma. Suppose, therefore, that LON) < N(M).
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Now let f be an element of N(M) satisfying the following con-
ditions:

(*) f inverts H, feC(s), and feC(w) .

The second condition implies that f centralizes » and ¢r¢. There-
fore, by a computation similar to that in previous paragraphs, we
can show that f can be identified with f*.

Suppose that C(M?®) # MO(N). Then there is an involution
feC(M?*) N N(R) that satisfies the first two conditions in (*). The
f normalizes RR' and so acts on W. Hence if O(N) # 1, there is an
element z € O(N) such that w/ = w?, and so fz™* satisfies (*). Assume
that O(N) = 1. Then [f,tft]eC(M)N C(M*) < C(L) = O(N) =1, so
that (ft)* =1. Thus {f,t) is a 2-group acting on W, and so it
centralizes some nontrivial element of W. As C,(t) = {(w), it follows
that w = w. Therefore, we can always choose an element fe C(M?*)
that satisfies (*). By the above paragraph, f acts as the field
automorphism on E. It follows that [f, ¢] centralizes E, and there-
fore [f,t] =1. But then f =tfte C(M")NC(M) = O(N), which is a
contradiction. Therefore, C(M*)=MO(N). This implies that LO(N)
has index 2 in N(M).

Let K/L be an S,-subgroup of N/L with te K. Notice that
K/L = E,. As I(Lt)=t" by Lemma (1B), K =LC(t) and so |Cr(t)N
NWM):C,t)| =2. As Cu(t) = {xtat|xe M} = M = SL(2,4), NM)n
C(C(t)) = C(L) = O(N) and it follows that Cr(t) N N(M) N C(C,(¢))=1.
Thus we may choose an involution f e C(t) N N(M) which acts on
C.(t) as the field automorphism. Then f acts as the field automor-
phism both on M and on M’. In particular, f inverts H and
centralizes s. Moreover, fe N(RR'), so f centralizes {(w) = C,(¢).
Thus f satisfies (*) and therefore f can be identified with f*. As
N =M, O(N), t, f>, we have proved the lemma.

LeMmMA (1M). Assume Hypothesis (1.1). Furthermore, assume
the following conditions.

(4) Cyx(M) =+ 1.

(56) WnWrt =1 for re (M — R).

Then E = Cx(M) x Cx(M?), and Cz(M*) is a natural module for
M= A,

Proof. Set s = rtrt. Then

W* = (Cg(E) N Cx(B)™*
= Cx(R)" N Cx(R)™*
= Cx(R)" N Cx(R)™ .
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As M = (R, R"), we may deduce as follows:

Co(M) N Cx(M?)
= Co(R) N Cx(R7) N Cu(RY) N Cx(R™)
= (Cx(R) N Cx(RY)) N (Cx(R) N Cu(R™))
=Wn Wwe
=1.

In particular, M acts on C,(M?*) nontrivially, and so |Cx(M*)| = 2'.
As |F| = 2%, we must have that E = Cz(M) x Cy(M*). Moreover, as
R normalizes C,(M) and Cy(M?*), it follows that

Co(R) = (Co(M) N Cx(R)) x (Cx(M*) N Cx(R))
= Cx(M) x (C(M") N Cx(R)) .

Therefore,

W = CE(-R) N CE(Rt)
= (Cx(M) N Cx(RY)) x (Cp(M*) N Cx(R)) .

Since | W| = 4, we conclude that |C,(M*) N Cx(R)|=2. Thus, C,(M?)
is a natural module for M = 4, by Lemma (1J).

LEMMA (IN). Let t be an involution of a finite group G, and
assume that C(t) has a mormal subgroup L isomorphic to SL(2, 4)
such that <{t) e SyL(C(L) N Ct)). Furthermore, assume that an S,
subgroup R of L 1s contained in an N(R) N C(t)-invariant KE-sub-
group S of G. Then X =<(Lf) s isomorphic to SL(2,16) or
SL(2, 4) x SL(2, 4), C(X) = O(@), and SeSyl(X).

Proof. Let bars denote images in G/O(G). Then by Lemma
(1H), L is a standard subgroup of G and C(L) has a cyclic S,-sub-
group. Let H be an S,-subgroup of N, (R). Then commutation by
t induces an H-isomorphism S/R — R, and since R = [R, H], it
follows that S =[S, H]. Thus S= X, and in particular, m(X)=4.
Appealing to [16], we now get that X = SL(2,16), SL(2,4) x
SL(2,4) or PSL(S,4). If X = PSL(S, 4), then we must have that
t acts on X as a graph automorphism. But then # does not
normalize any FK,-subgroup of X. Therefore, X = SL(2,16) or
SL(2,4) x SL(2, 4) and so SeSyl,(X). Since R =[S, t]< L, (3) and
(4) of Lemma (1H) show that C(X) = O(G) and X = SL(2,16) or
SL(2, 4) x SL(2, 4).

LEMMA (1P). Let G be a finite group and t an involution of
G. Assume that C(t) = K X {t) x O(C(t)) with K = Sp (4, 2). Assume
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Surthermore that G has a t-invariant subgroup M isomorphic to
the commutator subgroup of a maximal parabolic subgroup of
Sp(4, 4) and that conjugation by t induces the same automorphism
of M as the involutory field automorphism of Sp(4,4). Then
E(G) = Sp(4, 4) and C(E(G)) = O(@G).

Proof. Let S be a t¢-invariant S,-subgroup of M and let T =
(S, t). We show that I(St) =¢" =t°NT. Our assumption on the
action of ¢ on M in particular implies that I(St) =t7, so I(St) <
t* N T. By assumption, m(Cs(x)) =6 for any xe€I(S) and so, as
m(C(t) =4, t*NS = @. Thus t*N T = I(St).

Let T< UeSyL(N(T)). Then as t*NT =t", U= TCyt). By
hypothesis, Ci(t) is isomorphic to an S,-subgroup of Sp(4,2), so
Cr(t) € Syl,(C(t)). Therefore, C,(t) = Cx(t) and U = T. This shows
that T e SyL(G).

Since t*NS = @, Lemma (1E) shows that ¢¢G’, and since
M=M <G, it follows that SeSyl(G). Thus, X = (K'®) has
S;-subgroups of class at most 2. Now, K’ = 4, is standard in G
and C(K’) has cyclic S,-subgroups. Moreover, K'O(G) 4 G by
Lemma (1H) as t¢ Z*(G). Hence if bars denote images in G/O(@),
the same lemma shows that C(X) =1 and either X is simple or
X = A, X A,. In the first case, X is of known type by [9], and in
either case G* = X. Thus M = M~ < X and S e Syl,(X). Therefore,
X = Sp(4,4). Let E be an E,-subgroup of S. By hypothesis,
[E, t] = Cx(t) = E;, and hence [[E, t], O(C))] =1 by the structure
of C(t). Therefore, E(G)= Sp(4, 4) and C(E(G)) = O(G) by (3) and
(4) of Lemma (1H).

LEMMA (1Q). Let G be a finite simple group containing an
E subgroup A such that N(A)/C(A) = A, and AecSyl,(C(4)). Then
G = M,,, PSL(4, q) (¢ = 5mod8), or PSU(4, q) (¢ = 3 mod 8).

Proof. The proof of Lemma 12 of [17] shows that G has S,
subgroups of type A, or A,. Then by [13] and [21], G is isomor-
phic to one of the following groups: Me, M, M,, PSL4,q) (¢ =5
mod 8), PSU(4, q) (¢ = 3 mod 8), and Ly. The groups Me, M,, and
Ly have no E,subgroup whose automizer is isomorphic to A; (see
a table on p. 543 of [7] and Proposition 9.1 of [13]). Thus we have
the result.

LEMMA (1R). Let G be a finite group and Z a subgroup of
Z(@) isomorphic to Z,. Set G = @/2 and let A be an E&subgroup
of G satisfying the following conditions.

(1) Ny (A)/Cx(A) = Z..
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(2) AeSyl(Cs(4)).

(38) |G: Ng(A)| is even.

(4) The preimage of A in G is not abelian.

Furthermore, let t be an involution acting on G and G in the
following fashion.

(5) A= Cyt) = Ng(A).

(6) Cut)Ca(A)/Ce(A) = 3, wreath Z,.

(7) MG(A)/A = CN@(A)/A(t)'CG(A)/A'

(8) [Z,¢t]=+1.

Then there is a quasisimple characteristic subgroup H of G con-
taining Z such that Cy(H) = Z0(G). Either H/OH) = SUA4, 3) or
FI/Z(IIT) has S,-subgroups isomorphic to those of PSL(6,q), q=3
mod 4.

Proof. Let bars denote images in G/O(G). Assume that @ =
04(G) # 1. Then @NCA) =1 and so, as C(A) = AO(C(A)) by (2),
it follows that 1 @ N A <] N(4A). The condition (1) implies that
N(A) acts irreducibly on A. Therefore, A < Q, but A+ Q as
|G: N(A)| is even. But now A < N;3(A) <] N(4), which is a contra-
diction because O,(N(A)) = A by (1). Thus, 0,(G) = 1.

By the above, F*(G) is a product of nonabelian simple groups.
Let K =F*G), A< TeSyl(G), and U=TNK. Then 1= UT
by [6]. Hence we have that UN A # 1 and then, as UNA = Kn
A< N(A), we have that A <U< K just as above. However, A= U
by (8), so A < N3(A) < Nz(A) | N(A). It now follows from (1) that
Nz(A)/Cx(A) = A, or 3;,. Let L be a component of K and let V =
UNL. Then 1% VNA=LnNA<]NzA) and then A< V<L as
before. As C(A) is solvable, we conclude that K is simple.

Now the conditions (5), (6), and (7) imply that there is an S,
subgroup S of N(A) such that 1=+ [S,t] < 4. Also, [Coea (), A] =
[O(Cs(t)), OCe(t))] = 1. Therefore, [O(G),[S,t]] =1 by [11, (1J)].
Thus, C,(O(G)) # 1 and, since N(A) is irreducible on A, we have
[0(G), A] = 1.

Let K be the full inverse image of F*(G) in G. Then A <
Cx(O(K)). In particular, C.(O(K)) £ O(K) and so, since K/O(K) is
simple, we have that K = C.(O(K))O(K). Thus K is a central
product of K= and O(K). Now we set H= K*. Then H is quasi-
simple and Z(H) = O(H). Furthermore, A < O0*(K) = H and con-
sequently, N,(A4)/C,(4) = A; or 3.

Now define H and A to be the subgroups of G such that A/Z=
Hand A/Z = A, respectively. Then, clearly H <] G. We show that
H is perfect. Suppose false. Then there is a subgroup J of H of
index 2 such that H =JZ. Let B=AnJ. Then |B| =32, B/Zn
B = E,, and A, acts on B/Z N B nontrivially. This forces B to be
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elementary. But then A = BZ is abelian, contrary to (4). There-
foreA, H is perfect. Furthermore, since H is quasisimple, so also
is H.

We check that H is the desired subgroup of G. By definition,
Z < H and C;(H) = 20(G) since H = F*(G) is simple. To prove
the second assertion, assume first that N,(A4)/Cy(4) = 4,. Then
H|Z(H) = M,,, PSL(4, q) (¢ = 5mod 8) or PSU(4, q) (¢ = 3 mod 8) by
Lemma (1Q). The Schur multipliers of these simple groups are
known [5], and so we can determine the structure of H. We see
that H/OH) = SL{, q) or SU4, q). As (5) and (6) imply that C,(t)
is solvable, Lemma (1I) and (8) show that H/O(H)=SU(4, 3). There-
fore, assume that N,(A4)/C,(A) = 3,. In this case, a similar argu-
ment and the theorem of [26] yield that H/Z(H) has S,-subgroups
of type PSL(6, q), ¢ = 3mod 4. The proof is complete.

2. In this section, we fix notation for L. = PSU(4, 2) = SU{4, 2)
and set down some facts about L and its automorphisms.

By choosing a suitable basis of the underlying hermitian space,
we identify the elements of L with the 4 x 4 matrices x with
entries in F, satisfying

1: 1
1
(2.1) ty T = and det z =1,

1 1

where ‘x denotes the transposed matrix of x and Z is the matrix
obtained by squaring each entries of x.
Denote by P the group of matrices

1
2.2) a 1
’ ¢ b 1

d o+ ¢ o 1
where b* = b and d® = ac® + a’¢ + d. Define 4, to be the group of
matrices (2.2) with b = 0, and define A, to be the group of matrices
(2.2) with @ = 0. Let Z be the group of matrices (2.2) with a=b=
¢c=0.
Let ¢ be a primitive cube root of unity in F, and set
1 1
11 e 1

a, =
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1 1
1 1
b, = 1 ’ b1 = 1 1 ’
1 1 1 1
1 1
1
b2 = ¢ 1 ’ b3 = 11 ’
e 1 1
¢ = bo, C; = ba; C3 = bob1b3 ’
¢, = byb;b;, ¢ = b,b,b,b; ,
1 1
1 1
1= y 8 =
s 1 : 1
1 1

Denote by K, the group of matrices
1

a b
L(2, 2
) <C d>eS( )
1

and denote by K, the group of matrices

a b

c d
a’ b
¢ d?

a b
R <c d)GSL(Z, 4).

Now we list some facts about L and its automorphisms. Proofs
will be mostly omitted because the assertions are consequences of
straightforward calculations involving matrices.

LEMMA (2A).



FINITE GROUPS WITH A STANDARD SUBGROUP 415

(1) |P| =064 and PeSyl,(L).
(2) P is generated by the involutions a,, a,, b, b, by, b,, and the
Jollowing commutator relations hold:

[a,, b,] = by, [a,, bs] = bed, ,
[az’ bl] = by, [a,, bs] = byb, .

All other commutators are trivial.
(8) A, is generated by a,, a, b, b,.
(4) A, is generated by by, b, b,, b,.
(5) Z(P) = Z = <by, ZyP) = {by, b, by).
(6) &u(P) = {4}
(7) &*P/z) ={A/Z, A/ Z}.
(8) P=AA,.

In the above lemma, (1) follows from the fact that | L|=2°.3.5.

LEMMA (2B).
(1) N (P)= HP.
(2) The following relations hold:

ai = a,, aj = a,a,, b =b,, b = bb,.

J centralizes other gemerators of P listed in Lemma (2A)(2).
(3) H acts regularly on (P/A,)}, (A/JA, N A, and (A, N A,/ Z) .

LemmA (20).

(1) N (4) = (K, x H)A,.

(2) A, = DD, = QuxQs and Z(A,) = Z = {by).

(8) Under the action of N (A,), (A/Z)* decomposes into two
orbits of lengths 9 and 6, the former corresponding to involutions
of A, — Z and the latter corresponding to elements of order 4 of
A,. Oy4K) x H = {8,b,y X {j) acts regularly on the orbit of length 9.

(4 ) CL(A1/Z) =A,.

(5) 02'2’(K1A1) = A,.

(4) and (5) above are consequences of (1), (2), and (3).

Lemma (2D).

( 1 ) NL(Az) = KzAr

(2) A, is a natural module for K, = A,.

(3) C.(4,) = A,

(4) Under the action of K,, A decomposes into two orbdits of
lengths 5 and 10, the former consisting of ¢, ¢, €, ¢, and c;.

LemMmA (2E).
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(1) L has two conjugacy classes of imvolutions, and we may
choose b, and b, as the representatives of these classes.

(2) Cp(by) = P and Cy(b,) = N (4.

(3) CP(bl) = <au A, and CL(b1) = <a1’ 8y A,

(4) Involutions of A, — Z are conjugate to b, in N, (A4,).

(5) Central involutions of L contained in A, are ¢, ¢, Cs, €., Cs,
and so they are all conjugate in N, (4,).

Let A = Aut (L) and identify L with Inn (L). Then A = ()L,
where f is the automorphism of L induced by the automorphism
of F, of order 2. Let R = (f)P.

LEmmA (2F).
(1) ReSyl(A).
(2) The following relations hold:

af = ay, af = a,Q; ,
bl = by, b = by, b = bb, b = b, .

(3) 7R)=4.

(4) Z(R) = Z(P) = Z, R = {a,, by, by, b,).

(5) R has exactly four E-subgroups: A, {C,(f), f) = a, b,
by, [, LCu(f), f) = by, by, by, [, amd {(C,(f), £ = {by, b, bybs, a,f).
All these are self-centralizing in R.

(6) J,,.(R) = <CA1(f)7 AZy f> = <a’u bo, b1r bz: b3, f>: ZJT(R):<b07 b1>-

For the proof of (3) above, see [17, Lemma 2]. (6) is a direct
consequence of (5).

LEMMA (2G).

(1) N,(A) = {FON(AD.

(2) N(AD/A, =K, X {(fPH= 23, X 3.
( 3) CA(A1/Z) = Av

(4> OZ(NA(Al.)) = Ar

(2), (3), and (4) above are consequences of (1) and Lemma (2C).
See Lemma (2D) for the proof of the next lemma.

LemmA (2H).

(1) N A, = )N (4).
(2) N (A)/A, ={fPK, =3,
(3) Cu(4,) = A..

(4) Oy(N,(A)) = A,.

LEMMA 2D. N,(Ci (), 1) = (KA.
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Proof. Observe that b, is the only central involution of L
contained in A,. By Lemma (2E)(2), we have

N,(CW(F), 1) = Nu(Cu () = Cu(be) = (FPNL(A,) .

Thus, using Lemma (2C)(1), we obtain the result.

LEMMA (2]).
(1) CCu(f) = {4y 1).
( 2) NA(<CA2(f)y f>) = <f7 Ay Sy A?>-

Proof. Use Lemma (2E)(3) to prove (1). Once (1) is proved,

then N,({(C.(f), 7)) £ NAC(f) = N4, f)) = Ny(4,), hence (2)
follows easily.

LemMmA (2K).

(1) C.(f)= Sp(4,2) =3,

(2 ) CL(fbo) = CL(f) N CL(bo) = <a1, b;, b, by, ENES

(3) If xeI(A — L), then x ~ f or fb, in A and x2* N C.(x)x #

{x}. '
(4) If xeI(N(P)— L) and C(x) N N (4, is an extension of

E, by SL(2,2), then x <€ f.

Proof. For the proof of (1), (2), and (3), see [3, §19]. For (4),
suppose (fb,)? =z, g€ L. Since C,(fb,) is also an extension of E,
by SL(2, 2) by (2), we have C,(£b)7=C(x) N Ny(4,), hence (a,, by, by’ =
0,(CL(fby))* = O,(C(x) N N (4,)) = C(x) N A,. Since b,eC(x) N A4, and
since b, is strongly closed in A, with respect to L by Lemma (2E),
we have b = b,, hence geCy(b,) = N (4). But C.(fb) < N,(4) N
N, (4,) = N,(P), a contradiction. Therefore, x ¢ f.

3. In this section, we begin the proof of the theorem stated
in the introduction.

Let G be a finite group which contains a standard subgroup L
isomorphic to PSU(4, 2), and assume that C(L) has a ecyclic S,~sub-
group.

We identify L with the group of 4 X 4 matrices z satisfying
(2.1). The symbols used in §2 for various objects defined for
PSU(4, 2) will retain their meaning for the balance of the paper.
Thus P is an S,-subgroup of L consisting of matrices (2.2).

Let ¢ be an involution of C(L) and set C = C(t). We first
prove the following.

LEMMA (BA). If t N LCy(L) = {t}, then r((L%)) =4.
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Proof. Assume that ¢t N LCy(L) = {t}. Let T eSyl,(Cy(L)), @=
PT, and Q < ReSyl,(C). Then te Z(R) and Z(R) < Q by Lemma
(2F). Therefore, t°N Z(R) = {t} by our assumption, and hence
N(R) £ C. This implies that R e SyL(G).

Now if t€ Z*(G), then LO(G) |G by Lemma (1H). Therefore,
we may assume that t° N R = {t} by [10].

Let t#wuet®*NR. Then u¢@Q by our assumption, and so
|R: @] = 2. Notice that Q/P= T is ecyclic by our hypothesis.
Hence if R/P is nonabelian, then P ~ twP in R by Lemma (1A),
and so t*NtuP + @. If R/P is abelian, then by Lemma (1E),
either £ N {¢uy)P + @ or t¢G'. In the latter case, RNG =P or
P{tuy as P < L < G'. Hence r({L%) = 4 by Lemma (2F). Therefore,
we may assume that t* NtuL = @ for all uet®NC, u #=t.

Suppose tuct? for all uet*NC with u #t¢t. Let t*eC — {t}.
If ¢t¢ L°C(L°), then there exists an element x ¢ C.4(t)* with tx et
by Lemma (2K). Then z = t(tx) €t so 2’ '€t® N L, contrary to our
assumption. If te L?C(L?), then t =+ t* ' et N LCyL), contrary to
our assumption. Thus there is a conjugate ¢*eC — {¢} such that
tt? + t.

Choose t’e€ C — {t} so that tt° + t, and let t*ett’L. If C,(t") =
C(tt*) = C,(t°), then ¢ ~ t* ~ tt* by Lemma (2K), a contradiction.
Hence C,(t*)  C.(t°). If R/P is nonabelian, we may choose hegR
by Lemma (1A). But then C.(t*) = C.(t’), a contradiction. There-
fore, R/P is abelian.

Now Z(R) £ Q by Lemma (2F), so P{{t’) contains no extremal
conjugates of ¢t in R. Thus t¢ G’ by Lemma (1E), and »({L%)) =4
as before. The proof is complete.

In view of Lemma (3A), we shall make the following hypothesis.

Hypothesis (3.1). t% N LCy(L) # {t}.

We next prove

LEMMA (3B). Under Hypothesis (3.1), <{t) € Syl,(Cy(L)).

Proof. Let T eSylL(Cy,(L)) and let t +# t*e LCy(L). We may
assume t’€ PT so T < C(t’) = C°. Lemma (2E) shows that C,(t) =
LN C? contains an FE g ;subgroup A. The image of A X T in
C?/Cy(L)* has rank at least 4 and its exponent is equal to that of
T as TNCyL) =1. Thus Lemma (2F)(5) forces |T| = 2.

DErFINITION (3.1). Let @ = P{t), and B; = A, {t) for 1¢€{l, 2}.

LemMMA (3C). We have t*NL = Q.



FINITE GROUPS WITH A STANDARD SUBGROUP 419

Proof. This is obvious if t* N LC,(L) = {t}. Therefore, we may
assume Hypothesis (3.1). Suppose t’c L for some g G. By Lemma
(2E), we may assume t’ = b, or b,, so that Cy(¢?) e Syl,(C.(t?)) and %*
has a square root in P. In particular, ¢ has a square root in C.
Hence, if Q < ReSyl,(C), then R/P= Z, by Lemma (3B). Thus
I(C) £ L{ty. But then C(t?) = 2,(Cx(t")) < L*{t’», and therefore,
t°e Cux(t?)* < L°. This is a contradiction proving the lemma.

LEMMA (8D). If C contains an Sysubgroup of G, then r({L%))=A4.

Proof. We may assume Hypothesis (3.1) by Lemma (3A). Let
@ = ReSyl(C), so that ReSyl,(G). Suppose that teG'. As |R/P)|
is at most 4 by Lemma (8B), Lemmas (LE) and (3C) show that there
is an element wet°*N(R — Q) and, moreover, {u)P contains an
extremal conjugate v of ¢ in R. However, since Z(R)<®, we have
v € P, which is impossible by Lemma (8C). Therefore, ¢t ¢ G’ and so
r({Lf) = 4 as in the third paragraph of the proof of Lemma (3A).

LemMmA (3E). N(B,) = N(4,).

Proof. If N(B,) < C, then N(B, normalizes B,N L = A,. If
N(B) £ C, then 2 = t"® = {t}. By Lemma (3C), 2 < A, so 4 —
{abla, be 2) is a nonidentity N(B,-invariant subgroup of A4,. As
K, (S N(B,)) acts irreducibly on 4, A, = A. Thus N(B,) < N(4,).

LEmmA (8F). |[C(A,) N N(B,): C(B,)| is a power of 2.

Proof. As C(A4,) N N(B,) stabilizes the series 1 < 4, < B,, the
assertion follows from [12, Corollary 5.3.3].

LemmA (83G). Let 2 =t¥?), Then 2 = {t}, {t, cit, cit, cit, c.t, cst}
or Ait. If Q= {t}, N(B)? is a primitive permutation group on 2,
and C(R) = C(B,).

Proof. By Lemma (3C), 2 < A,t. Under the action of K,
which is contained in Ny(B,), A, decomposes into two orbits of
lengths 5 and 10, the former consisting of ¢, ¢, ¢, ¢,, and ¢;,. Hence
it is enough to show that |£2| s+ 11. Suppose |2| =11. Then by
Lemmas (3E) and (3F), C(4,) N N(B,) = C(B,) and then N(B,)/C(B,) is
isomorphic to a subgroup of Aut (4, = GL(4,2). This is a contra-
diction because |GL(4, 2)| is not divisible by 11.

LEMMA (8H). Let feI(C — LCy(L)) and suppose that the action
of f on L s induced by the involution of Aut(F). If
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290 <byy by, by, ) < VP2, then no element of G interchanges B, and
CCo(f) [o t) by conjugation.

Proof. 1If an element g of G interchanges B, and {(C.(f),f, t),
then g normalizes their intersection <b,, b, b,, t) and so t* =t for
some k€ N(B,) by hypothesis. However, gheC and {C,,(f), f, t)"* =
B, which is a contradiction as <{C.(f), f,t) £ <(L,t) while B, <

(L, t).

LEMMA (3I). Let f be as in (8H) and suppose that {C, (f), f, t)°=
B, for some g€ G. Then Af < O**(N(B,)).

Proof. As (L, f,t) = L{f) x {t) and as KA, = N, ({C.(f), /)
by Lemma (2I), we have that X = N ,,({C4(f), f, t)) is equal to
(KA, f,ty. Thus 0**(X) = 0**(K,A) = A, by Lemma (2C), and
hence A, < O**(N({C,(f), f,t))). Therefore, A < O**(N(B,)).

LEMMA (3J). Under Hypothesis (3.1), the following conditions

hold.

(1) N(@) = N(B) N N(B).

(2) m(C) =5.

(3) C does mot have an Ey-subgroup X such that SL(2, 2) x
SL(2, 2) = No(X)/Co(X).

Proof. By Lemma (2A), &*(Q/Z(Q)) = {B./Z(Q), B,/Z(Q)}, hence
(1) follows. (2) is a direct consequence of Lemma (2F)(5). By the
same lemma, if X is an E,-subgroup of C, then X~B,, (C,(f), f, ),
or {C,(f), f,t) in C, where f is an involution acting on L as a
field automorphism. Hence N (X)/Ci(X)= 3, or Z, x SL(2,2) by
Lemmas (2H)—(2J). Thus (3) holds.

4. In this section, we shall work under the following hypo-
thesis.

Hypothesis (4.1). t752 = {t}.
We prove the following theorem.
THEOREM (4A). Under Hypothesis (4.1), »((L°)) = 4.

The proof involves a series of reductions, First, if tNLC,(L)=
{t}, then Theorem (4A) holds by Lemma (3A). Therefore, we assume
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that G satisfies Hypothesis (3.1). Then {(¢) € Syl,(C,(L)) by Lemma
(3B).

LEmMMA (4B). If t¢G', then Theorem (4A) holds.

Proof. By Hypothesis (4.1), N(B,) < C so that N(B,) N C(4,) =
C(B,). This implies that B,eSyl,(C(4,) as C(B, = B,0(C) by
Lemmas (2H) and (3B). Hence N(A4,) = N(B,)C(4,) = NyB,)C(A,) by
a Frattini argument, and so N(4,)/C(4;) = A, or X; by Lemmas (2D)
and (2H). We also have that N, (4,) < Ny.(4,) since L < G'. There-
fore, N, (A,)/Cs(4,) = A; or X,. Also, A, =< Cy(4,) <{C(4,). Since
B,e Syl,(C(4,)) and t¢G’, it follows that A,eSyl(C.(A4,). Thus,
7(G") = 4 by [17, Theorem 3] and hence »({L%)) =4. The proof is
complete.

Let Q@ < ReSyl(C). The following lemma follows from Lemma
(3D).

LemmA (4C). If R e Syl(G), then Theorem (4A) holds.

In view of Lemmas (4B) and (4C), we shall form now on assume
that

te G and R¢SyL(G).

We shall eventually derive a contradiction from this hypothesis.

LEMMA (4D). There is an involution feC whose action on
L = PSU(4, 2) is induced by the automorphism of F, of order 2.

Proof. It is enough to show that I(R — Q) + @. Since R¢
SylL,(G), N(R) £ C so that N(R) £ N(B,) as N(B,) < C by Hypothesis
(4.1). If I(R) £ I(Q), then B, would be the only E,-subgroup of R
by Lemma (2A), and so N(R) £ N(B,). Therefore, I(R — Q) # ¢,
as required.

We assume without loss of generality that fe R. Notice that
R =Q{(f>. Let SeSyl(N(R)). Then R < S, so we may choose
geS — R.

LeMMA (4E). The following conditions hold.

(1) S=R{g) and g*€ R.

(2) t7 = bt and b = b,.

(3) g interchanges B, and {C,(f), [, t) by conjugation.
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(4) geN(A) N N(B).

Proof. As Cy(t) = R < S, {t} <t5. Also, t°< Z(R). As Z(R)=
{by, t) by Lemma (2F) and as ¢ + b, by Lemma (3C), it follows that
t5 = {t, bt}. Therefore, |S: R| =2 and S < C(b,). Hence (1) and (2)
follow.

By Lemma (2F), B, (Ci(f), [, &), (Cu(f), F,ty, and (Cu(f),
f,yt)®, where xeP — C,(f)A,, are the only E,-subgroups of R.
Since N(B,) £ C by Hypothesis (4.1), B, # Bf <| R. Thus (3) holds.
Then Lemma (8I) shows that A7 < O0*¥(N(B,). Since N(B, = C,
0*¥(N(B,)) = N, (4,) by Lemma (2D). Hence A!< RN Ny (4, =P.
Also, b, = bje A!. Since A,/<{b,y is the only Esubgroup of P/{b,)
by Lemma (2A), we have that Af{ = A,. Since B, = {(4,t) and
t? = bte At, ge N(B,). The proof is complete.

LEMMA (4F). We may choose f so that the following conditions
hold.

(1) g interchanges A, N A, and C,(f) by conjugation.

(2) g interchanges P and {A,, f) by conjugation.

(3) geN(KP, 1)).

(4) t°n<p ) = 0.

Proof. Using Lemma (4E), we may deduce as follows:

(Al N Az)g = (A1 n Bz)g
= A4, NLC (), [, &)
= CAl(f ) .
Since g’e R = N(A, N 4,), Cu(f)* = A, N A,. Now A is a maximal
subgroup of {C,(f), f,t) containing C,(f). Since ¢*NL =@ by
Lemma (3C), Af # {(C,(f), t). Therefore, A} = {C,(f), [ or (C. (),
ft>. Replacing f by ft in the latter case, we may choose f so that
Af = (Cy(f), 7. Then
Pr = (4,4,
= ALCL (), 1
= (A, f)

and (4,, /) =P as ¢°¢ R < N(P). Hence g normalizes (P, A,, f) =
(P, fy. Since A] = (C,(f), f> and t°N A=, t*N{C,(), )= 2D.
By Lemma (2K), every involution of Pf is conjugate to an element
of C,(f)f. Therefore, t?N (P, f) = @. The proof is complete.

LEMMA (4G). The following conditions hold.
(1) N(R) = N(B).
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(2) SeSyL(N(B)).

Proof. Since Z(B, = <{b, ty) by Lemma (2C), t"® < {¢, bit}. By
Lemma (4E), g€ N(B,) — C. Hence |N(B,): NyB,)| =2 and N(B, =
Ne(B)<g>. Similarly, N(R) = N(R){g). Since N(R) =< N,(B,) by
Lemma (3J), (1) follows. Now ReSyL(Ny(B,)), so S = R{g)e
SyL(N(B,)). The proof is complete.

LeMmA (4H). I(S) £ I(R).

Proof. Suppose this is false. Then 2,(S) = R, so N(S) < N(R),
and Lemma (4G) yields that SeSyl,(G). Also, t*NS=t°*NR
(P, f>t by Lemma (4F)(4). As (P, f> <{S and |S/KP, f>| =4 by
Lemma (4F), Lemma (1E) forces t¢ G’ against our hypothesis.
Therefore, I(S) £ I(R).

Now let bars denote images in C(b,)/<b,y>. Then S acts on A,
by Lemma (4E). In the following two lemmas, we collect necessary
information on this action. Notice that we may choose @, b,, @,, b,
as a basis of A,.

LEMMA (41). The following conditions hold.
(1) a‘fs = d15u b2b3 = bz: afz = bzaz; b1 = b
(2) d{ = @y, Ezf = b251,
(3) a‘ligf = a—zl—)-u gzbgf =
(4) Cz,(by) = <b,, by).
( 5 ) Czl(f) = <du b1>
(6) Cz,(bf) = <@by, b).

Proof. (1), (2), and (8) follow from relations listed in Lemmas
(2A) and (2F). (4), (5), and (6) are consequences of (1), (2), and (3),
respectively.

Now choose f as in Lemma (4F). So far ¢g was an arbitrary
element of S — R. We now prove

LEMMA (4J). We may choose g so that g° € A, and the following
relations hold:

a :Ezy b—2g=(5_bl,@§’ = Q,, Elg = 51.
For g satisfying these relations, we have that

CL(Q) = <@1521 a, 51> .
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Proof. Lemma (4I) shows that b,, f, and b,f have the following
matrix forms with respect to the basis a@,, b,, @, b, of A,, respectively.

1 1 1 1

1
1 1
11 Tl 1 1111

1 1 1

Choosing a suitable element ge S — R, we determine the matrix
form of g. By Lemma (4F), g interchanges A, N A, = {b,, b,y and
C,(f) = <@, by, and so g normalizes (b,). Therefore, g has the
following matrix form.

1
1
c d 1

= o o R

By Lemma (4H), we may assume from the outset that g2c A,. Then
g induces an involutory automorphism on A,, and so the square of
the matrix of g is equal to the unit matrix. Hence we have that
@ =0 and ¢ =d. Thus g has the following matrix form.

1

[
H o & Q

Now P?¢ = (A, f> by Lemma (4F), so gb,g = f mod A,. This implies
that

1 al /1 1 1 a 1
1 a 1 1 a 11
c ¢ 1 e 11 c ¢ 1 el |1 1
1 1 1 1

Hence we have that a = ¢, and so ¢ has the following matrix form.

1

a a 1

'—A
= o & 8

We compute that b,fg has the following matrix form.
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1 a+1

1 a+1

a+1 a+1 1 e+ 1
1

Hence replacing g by b.fg if a =1, we may assume that g has the
following matrix form.

1

1 e
1

This implies that a! = a,b; or a,b:b,. Since a3 is an involution, it
follows that ¢ = 0. This implies that the relations listed in Lemma
(4J) hold. The latter half of the lemma follows from this easily.

Now choose ¢ as in Lemma (4J). We next prove

LemmA (4K). The following conditions hold.

(1) (P, S, p/A = Dy and Z(KP, f, 9)[A) = (4, bf)/A,.
(2) S=«(P,f, g x (.

(3) Z(S) = {by-

(4) Zy(S) = <by by, t).

Proof. By the choice of g, g>€ A, and g interchanges P={A,, b,>
and (4,, f>. Hence (1) follows. By Lemma (4E)(2), t € Z(S). Since
(P, fyoopNR=LP, >, t¢<{P, f,g9). Thus (2) holds. Now Z(S) =
Ci(t) = R, so Z(S) < Z(R) = {b,, t). Since t’ = bt by Lemma (4E),
() follows. By (2), Z(S) = Z((P,f,g)) x (). Since [b,f, A,] 1
‘and since (A4, b.f>/A,=Z({P, f, g>/A,), we have that C;7;,(4,)=A4,.
Hence Z((P, f, 3)) = C1,((by, £, @)) = <by by Lemmas (4I) and (4J).
Thus Z(S) = (b,, £). This proves (4).

LemMmA (4L). S¢Syl(G).

Proof. Assume that SeSyl(G). Then (P, f,g> contains an
extremal conjugate w of ¢ in S by Lemma (1E), since teG’'. Since
t°N<P, f> = @ by Lemma (4F), u = g or b,fg mod A4,, and we may
assume that w =g mod A,. Then C; (u) = (@b,, @, b,y by Lemma
(4d) and Cop,z,p4,(w) =<4, 9, b:19)/ A}, 80 | Cip,,(w)|=2° and |Cs(u)| =
2'. However, |C|, = |R| = 2. This is a contradiction. Therefore,
S ¢ SyL(G).

Now let T e Syl(N(S)).
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LEMMA (4M). The following conditions hold.
(1) |T-S|=2.

(2) t'= <boy bot.

(3) TeSyl(G).

Proof. By Lemma (4L), S< T and sot’ = |T:C,(t)| = |T: R|=
4. On the other hand, t' < Z,S) = {b, b, t) by Lemma (4K), so
t" < (b, byt since t* N L = @. Hence (1) and (2) follow.

Now Z(T) = <{b,y since Z(T) < C,(t) < S and Z(S) = <b,»>. Hence
Z(T)< Ni(B,)=S by Lemma (4G)2), and so Z,(T) < ZXS) =
(b, by, ty. Now (2) shows that <b, b)) <|{T, so (b, by = Z,(T). It
also follows from (2) and Lemma (4E)(2) that t* = bt or bt for
heT — S. This implies that t¢ Z,(T). Therefore, Z,(T) = <{b,, b,)>.

Let X =2Z,T). Then X = Ny (B) =S, and [X, S]=Z {(b, b).
Hence [X, S]< (b)) = Z(T). Now b, t) = Z\S) T, so (b, t)<X.
In particular, 7€ X and so, if Y =X N (P, f, 3, then X=Y<&) by
Lemma (4K)(2). We have that

[V, P, F,]1<<by £ A4,.

Hence ¥ < Z((P, f, 3> mod A4,) = (4,, b,f> by Lemma (4K)(1). From
Lemma (41)(8), we get that [b,f, @] = @,b,b, ¢ <b,>. Hence, Y < A,
and using Lemmas (4I), (4J), we get that ¥ < (@,b,, b,>. Therefore,
(b, Ty £ X £ @b, b, ). That is, <b, by, t) < Zy(T) < {a,by, by, by, t).
Hence -Ql(Za(T)) = (b, by, .

Now let UeSyL(N(T)). Then tV < (b, b, t> by the above, and
so t¥ = (b, byt. This shows that |U:R| =4. Hence U= T and
T e Syl,(G). The proof is complete.

LEMMA (4N). te@G'.

Proof. Let heT —S. Then RNR*<|{T as h*eS < NR) by
Lemma (4M). Since R = C,(¢t) and t*e {(b,ybt by Lemmas (4E) and
(4M),

R N R" = Cy(t") = Cx(by) = {a, by, by, by, by, f, T) .

Now t ~ bt ~ bt by Lemma (4M), and since every involution of L
is conjugate in L to b, or b, it follows that ¢ ~ xt for all z e I(L).
Since P? = (A, f) and t* = bt, we also have that bt ~ (fb,)bt=ft.
Hence t ~ ft. Also, t° N <ay, by, by, by, by, /) = @ by Lemma (4F)(4).
Therefore, we conclude that the subgroup generated by the products
of two elements of ¢ N {a,, by, b, b, b, f, t) is equal to <a, b, b, b,,
b, f>. This shows that <a, b, b, b, b, /) <|T. Hence (P, f>n
(P, ¥ = {ay, by, by, by, by, f). Thus N = (P, f){P, f)* is a normal
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subgroup of 7 of index 4, and moreover, t¢ N as S = (N, ¢).

Let w be an extremal conjugate of ¢ in 7. Assume that weS.
Notice that <b, t) <| S and S/<b,, t) = (P, f, 9>/{b,y by Lemma (4K).
Hence if u ¢ R, then u = g or b,fg mod B, and so |Cg;(u)| =4 and
[Cy/000(w)| =8 by Lemma (4J). Since [Cp(w)| =2° by assumption,
we get that C,, ,(w) = (b, t). But then weC,(t) = R, a contradic-
tion. Hence w € R and so uw e (P, f)t < Nt by Lemma (4F)(4).

Assume that w¢S. Then we may choose h = u. Now B! is
an E,-subgroup of S, and B! # B, since Se Syl,(N(B,)) by Lemma
(4G). Also, t € Z(S) < B! by Lemma (4K)(4). Therefore, B!= X{&)
for some E subgroup X of (P, f, g) different from A, by Lemma
(4K)(2). Thus XA,/A, is a nonidentity elementary abelian subgroup
of (P, f, §>/A, which centralizes the subgroup X N A4, of 4,. We argue
that XA, = (A, b.f, >. If not, then using Lemma (4I)(4), (5), (6),
and Lemma (4J), we get that XA4,=(A4,, §> or {4, §.fg>. Conjugat-
ing, we may assume the former. Then X N A, = Z({4,, §)) = (ab,,
@, b)) by Lemma (4J). But then a,eB'< R so a,c RN ER'=
{a,, by, by, by, by, f,t>, which is a contradiction. Therefore, XA, =
(A, b,f, 5> and so BB} = (B, b.f,g>. This implies that B, N B/
has index 4 in B,, so that | B, N B/'| = 2'. We also have that B, N
R"= B, N(RNR") = {a, b, b, b, t). Hence |B, N R"| = 2°. Now con-
sider the following normal series of T.

BNB'=E(BNR)YB'NR)=RERNR'=RR'"=S<T.

The factors of this series have order 2 except for (B, N R*)(B!NR)/
B, N B! and RR"/R N R*, which are fours groups. Therefore, the
centralizer of h in each factor has order 2. There are 4 factors
and |Cy(h)| = 2° by the choice of h. Hence h must centralize B, N B!.
But then, as te Z,(S) < B, N B!, heCy(t) < S, which is a contradic-
tion. Therefore, v €S and so u € Nt as shown before.

We have shown that each extremal conjugate of ¢ in T is
contained in N¢. Thus Lemma (1E) shows that ¢¢ G'.

Lemma (4N) conflicts with our assumption. Therefore, we have
proved Theorem (4A).

5. In this section, we shall make the following hypothesis.
Hypothesis (5.1). ¢V = {t, ¢,t, ¢.t, cit, c,t, ¢t}

The purpose of this section is to prove the following.

THEOREM (5A). Under Hypothesis (5.1), »({L%)) = 4.
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The proof of this theorem is similar to that of Theorem (4A),
although the arguments involved in this section are much more
complicated than in §4. We begin the proof by studying the
permutation representation of N(B,) on 2 = t¥%2, Let

n, =t and n;, = ¢,_t
for 7€{2, 3, 4, 5, 6}, so that

2 = {n,, ny, Ny, Ny, N5, N}«
LemmMA (6B). N(B,)? = N(B,)/C(B,) = X; or A,.

Proof. First, observe that () = B,. Hence C(2) = C(B,) and
N(B,)? = N(B,)/C(B,). By Hypothesis (5.1), | N(B,): N,(B,)| = 6. Since
Ny(B,)/C(B,) = 5 or A; by Lemmas (2D) and (2H), it follows that
| N(B,)/C(B,)| = 720 or 360. Thus N(B,)? is a subgroup of the sym-
metric group on 2 of index 1 or 2. Hence N(B,)? = 3, or A,.

Notice that Hypothesis (5.1) implies Hypothesis (3.1). Therefore,
() € Syl (Cy(L)) by Lemma (3B).

LEMMA (5C). The following conditions hold.
(1) N(Ay)/C(4,) = N(B,)/C(B,).

(2) N(Bz) n C(Az) = C(Bz) = Bzo(C)-

(3) B,eSyl(C(A4,).

Proof. Since {t) € Syl,(Cy(L)), Lemma (2H) shows that C(B,) =
B,0(C). By Lemma (5B), N(B,)/C(B, has no nonidentity normal
2-subgroups. Since N(B,) N C(4,)/C(B,) is a normal 2-subgroup of
N(B,)/C(B,) by Lemmas (3E) and (3F), it follows that N(B,) N C(4,) =
C(B,). This proves (3), since B,cSyl,(C(B,)). Finally, (1) holds by
a Frattini argument.

Now O(C(B,) = O(C) by Lemma (5C)(2), so let bars denote
images in N(B,)/O(C). Then since C(B,) = B,0(C), N(B,)/B, = 3, or
A; by Lemma (5B). Choose the subgroup M of N(B,) such that
B,< M and M/B,= A,. Then since K,B,/B, = A,, K,B, < M and in
particular, @ < M. Now A, <] N(B, by Lemma (3E). Hence /A4,
is an extension of Z, by 4,, and it contains Q/A, = E,. Therefore,
the extension splits, and there is a subgroup N of M such that
A, < N and M/A, = N/A, x B,/A,. As before, K,A, < N, and so

< N.

DEFINITION (5.1). Let M and N be the preimages of M and N,
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respectively. Furthermore, let @ < ReSyl,(C), R < T eSyl,(N(B,)),
S=TnM, and U= SnNN.

Thus U<]T, T=RU, RnNU=P, and RN S = Q by the above
remark. In particular, T/U = R/P. Notice also that N(B,)/C(B,) =
Yy if and only if @ < R, as R e SyL(N4(B,)).

Lemma (D). If T/U 1is cyclic, then Theorem (bA) holds.

Proof. Suppose that T/U is cyeclic. Then ¢*N T < S. Hence
“NR=<SNR=Q, so B,=<{t“N B,y is weakly closed in R with
respect to G by Lemma (2A). Let te B,. Then B/ ' < C, so there
is an element cecC such that BY ' < R°. By the weak closure of
B, B/ = B; and t* = t“c¢"%, Therefore, t* N B, = t'%2 = Q,

Let x€t*N(Q — B,). Then ¢ B, by Lemma (2A) and z is con-
jugate to an element of B, N B, in NyB,) by Lemma (2E). Since
t*NB.NB, = 2N B, = {t, c;t} and since ¢ and ¢t € Z(NyB,), * =t or
¢,t and so x € B,, which is a contradiction. Therefore, t*NQ = t°N B,.
This in turn implies that ¢ N S = ¢ N B,, as M/B, has one conjugacy
class of involutions by the definition of M. Thus t*NT =N B,=
2. Hence N(T)< N(B, and so TeSylL(@). Also, t*NT< Ut
Therefore, t ¢ G' by Lemma (1E). Since U< N’ < G', we conclude
that UeSylL(G").

Now N(A,)/C(4,) = X, or A, by Lemmas (5C) and (56B). As
Ny (A)/Cy(A) = As and UeSylL(Ng(4,), it follows that N.(A4,)/
Co(A,) = A,. Also, since B,cSyl,(C(4,) and since t¢G, A,e
SyL,(Cs(4,)). Thus by [17, Theorem 3], »(G') = 4 and hence #({L"))=
4. The proof is complete.

In view of Lemma (5D), we shall assume from now on that
T/U is not cyclic. This implies that T/U = E,. Let bars denote
images in N(B,)/O(C). Then since N(B,)/N = T/U, there is a sub-
group K of N(B,) such that N < K and N(B,)/A, = K/A, x B,/A,.

DEFINITION (5.2). Let K be the preimage of K in N(B,) and
set V=TnNK.

Since R/P = E,, we may assume without loss of generality that
there is an involution fe R — @ whose action on L is induced by
the automorphism of F, of order 2.

Now A4, <] R, so R acts on A, by conjugation. In the following
lemma, we collect information on this action. For the proof, see
Lemmas (2A) and (2F).
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LEMMA (BE). The following conditions hold.
(1) bgl = bor bt = bu b = bobzr bgl = bob1b3-
(2) bgz = boy bz = bobu bg?‘ = bzy bsaz = bobzb3~'
(3) b({ = bo: b{ = bu bzf = blbz, bg = ba'

(4) Cula) = <by by.

(5) CAz(az) = (by, by

(6) Cu(f) = by, by, bs).

Permutation representations of a,, a,, and f on 2 can be com-
puted by using Lemma (5E) and the expressions of ¢,’s in terms of
b’s given in §2. We have that

a? = (ny, n) (Mg, M)y a2 = (N5, N5) (N, M), 2 = (W5, M) .
Therefore, we may assume without loss of generality that
T¢ ={a® 1% af, a3y ,
where

a? = (ny, Nn,) .

That is, t* = ¢, (et)* = t, and (¢;t)* = ¢t for 1€{2, 3, 4, 5}. Noticing
that ¢; = (e;t)t, we get that ¢f = ¢, and ¢f = ¢ic; for 1€{2, 3, 4, 5}.
Thus we can determine the action of a on B, using the relations
b, = ¢, b, = ¢,¢;, b, = ¢,c¢,, and b, = ¢,. Furthermore, we can compute
[B,, a] and Cz(a). Also, Cx(2) = B, and a? is an involution which
centralizes af, a?, and f°. Thus we have the following result.

LEMMA (BF). There 1s an element a €T — R which satisfies
the following conditions.

(1) @, [a,al, [a, ], and [f, a]e B,.

(2) b = by, bf = by, by = b,, by = byb,, t* = byt.

(3) [Bya] = <by-.

(4> CBz(a) = <b0; b, b, bt).

Our next result shows that 7 has the unique structure.

LEmMmA (5G).

(1) We may choose a in Lemma (5F) and f so that a* =
[a'u a’] = [azy a’] = [f, G/] =1,

(2) If P*/A, is an E,-subgroup of U/A, different from PJA,,
then & *(P*) comsists of two E,-subgroups.

Proof. Observe first that VN R = <P, f) or (P, ft). Replac-
ing f by ft in the latter case, we may assume that fe V.
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Choose an element ae¢ T — R as in Lemma (5F), and let bars
denote images in N(B,)/C(B,). Then T = (@) X {@y, @, [y = Z, X Dy
and Z(T) = <a, a,)>.

Now a@,e Z(T), so {(apA,<]V. Also, C,(a) = (b, by and so
I(a,4,) = af? by Lemma (1C). Thus V = C,(a,)4,, and consequently
| Cy(a,)| = 64.

Now <{a,, a,, f, by < N({a,, a,y) N Cy(a,). Suppose that equality
holds here. Then C,(a,) N Cy(a,) = Cla,) N {a, a, f, by = {a, a,, b,)
and so |Cy(a): Cy(a,) N Cy(a,)] =8. This shows that |afv’| =8.
However, since (@, @y <|{T, <{a, @, C,(a)) <|Cy(a,). Similarly,
<a’1’ CAg(a1)> Q CV(al)' Hence agv(‘h) é a2<a1’ CAZ(a1)>, Whereas II(a2<a’1y
Cila))) =4 as C(a,) N {a,, Cyla,)) = {a,, b,y has order 4. This con-
tradiction shows that <a,, a,, f, b, = N(a, a,») N Cy(a,), so N(a,,
a,>) N Cy(a,) has index 2 in Cy(a,).

Now C,(a,) £ N({a,, a,), so that by the above paragraph,

Cy(a) = (N(a,, a) N CV(al))CAg(al) .

Thus V = N,({a,, a,0)A, and so we may assume a ¢ N, ({a;, a,)).
Then, since [@, (@, @01 =1, [a, {a,, a,)] = 1. Also, since @ = (af)*=
1,0’ and (af) € N a, ay,)) = <b). Using the relation ¢* = bt, we
may deduce as follows:

(atf) = (aft) = (af)(af)"Uaf)t
= (af)t*'t
= (af)*thit
= (af)b, .
Also,
(at) = a’t't = a*(bt)t = a°b, .

If a®* = b, let a, = at. Then a? =1 and (a,f)* = (af)*, < {b,y by the
above. If (a,f)? = b,, let f, = ft. Then (a,f,)® = (af) = (a,f)b, = 1.
If a* =1 and (af)* = b,, then (af,)’ = (af)*b, = 1. Therefore, replac-
ing a and f by at and ft, if necessary, we may assume that a* =
(af)* = 1. This proves (1).

Now (af)? = (n,, n,)(ny, 1) by definition, so afeS and S = {a,,
a, af>B,. Since P*B,/B, is an E,-subgroup of S/B, different from
PB,/B, and since PB, = {a,, a,)B,, it follows that P*B, = {a,, af)B,.
Hence if ze P* — 4,, then C () = C,(a), Cylaf) or Claaf), and
so using Lemmas (5E) and (5F), we have that C,(x) = (b, b,>. Now
(1) shows that {a, a, a,, ) is a complement for B, in T, so that
B, has a complement Y in N(B,) by Gaschiitz’s theorem [19, Haupt-
satz 17.4]. Then Y’ is a complement for A, in N’, and so there is
a fours group X such that XA, = P*and XN A, =1. Since C,(x)=
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{by, b,y for xe X% [11, (1C)] shows that & *(P*) = {4,, X{b,, b,)}. This
proves (2).

Now choose an element acT — R as in Lemma (5G). As
remarked in the proof of Lemma (6G)2), T = {a, a,, a,, f)B, and
<a,a1,a2,f>ﬂBzzl.

Lemma (BH). The following conditions hold.
(1) Z(T) = <byy.
(2) Z(T) =<a, by, b, t).

Proof. As Z(T)= Cp(t) = R, Z(T) £ Z(R) = {by, t). As t* = bt
by Lemma (5F)(2), Z(T) = <{b,).

Now Z,(T)=Cr(B,/<{byy)= Z(T mod B, = {a, a,) B,. Since [a, B,]=
{(b,y by Lemma (5F)(3) and since [a,, B,] = <(b,, b) by Lemma (5E)(1),
we have that {(a) £ Z,(T) < {a)B,. Hence if X = B, N Z,(T), then
Z(T) = LayX.

By definition X £ Z,(Q) = <b,, by, b,, ty. Clearly, b,ecX. We
have that [{a, a, a,, /), b,] = (b,y by Lemmas (5E) and (5F). Also,
[Ka, a,, a,, >, t] = <b,y. Hence b, and te X. However, b,¢ X since
[f,b,] =b, by Lemma (5E)3). Therefore, X = <b, b,t) and so
Z(T) = <a, by, by, t).

LemMmA (BI). The following conditions hold.

( 1 ) Cl(blt) = <aa27 a.‘u f7 B2>’

(2) B, and D = {a, f, by, b, t) are H,-subgroups of C,(b,t) and
both are normal in T.

( 3 ) CT(G’) = <ay Qyy Aoy fy boy bl) bzr b3t>'

(4) CT<a/b1) = {a, ay, [, by, by, by, byt, ast).

(5) E =<a,by,b,by,bt) and F = (a,a,, f, b, by are H,-sub-
groups of Cra) and Cyab,), and both E and F are normal in T.

Proof. Since B, is abelian, Cy(b,t) = Cy 40,5 (b:t)B,. By Lemma
(6E), a, and f centralize b,t. Also, (b,t)**2 = (bbit)*: = byb,b,t = bt by
Lemmas (5E) and (5F). However, a ¢ C(b,t) by Lemma (5F)(2). Thus
Ciarayran r(bst) = <aas, a,, /) and hence (1) follows.

To prove (2), it is enough to show that a € N(D) as D=(C,(f),
[yt <| R by Lemma (2F). By Lemmas (5F) and (56G), a centralizes
a, [, by, b,. Also, t* =b¢. Thus ae N(D). (3) is a direct conse-
quence of Lemmas (5G)(1) and (5F)(4).

As a consequence of (3), we have that E is elementary of order
32. Also, F' is elementary of order 32 as {a,a, f)> centralizes
{by, b,y by Lemmas (5E) and (56F). Thus E and F < C(ab,). Now
(ab)** = (abb,) = (ab,)bb, = ab, by Lemmas (5E) and (5F)(2). Hence
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(B, F, at; £ Cyab,) and as (¥, F, a,t) is maximal in T and ab, ¢ Z(T)
by Lemma (5H), we conclude that Cy(ab,) = {F, F, a,t) = {a, a,, f, b,,
by, by, bit, at).

Now {a,, a,, f) centralizes a¢ and normalizes <b,, b, b,, bit> by
Lemmas (5E) and (5F). Also, [B,, a] = <{b,) and B, centralizes {b,, b,,
b,, b,ty. Thus T = {a,, a,, f, K, B,y normalizes K.

Similarly, we see that @, normalizes <{a,a, f) and <b, b).
Furthermore, [{a, a, f), B,] = <{b,, b,y and B, centralizes <{b, b,>.
Hence T = {a,, F', B, normalizes F'.

LEMMA (5). 190 (A, 1> = (" = {t, bt} and () B, = (¥0,

Proof. Suppose that t~bit. Since R e Syl (C(t)), t is extremal
in an S,-subgroup of G containing 7. Therefore, there is an
element g € G such that (b,¢)’ = ¢ and Cx(b,t)’ = R. By Lemma (2F),
B, and D are the only normal E,-subgroup of R, so Lemma (5I)(2)
shows that {B,, D}’ = {B,, D}. Since bt¢et"?? by Hypothesis (5.1),
g € N(B,) and therefore, D’ = B,.

Now T = N(C,(bt)) N N(D) by Lemma (5I), so T*<N(B,) N N(R).
Also, T < N(B,) N N(R). Hence there is an element ke g(N(B, N
N(R)) such that T" = T. Thus b = b, since Z(T) = {(b,y, D" = B,,
and (b,¢)* = ¢ or bt since Z(R) = <b,, t).

It follows from Lemma (3I) that Ay < TN O*¥(N(B,)) = U as
O*(N(B,)) = N. Suppose that A} =A,. Then B! = {4, bt)'={A,t)
or (A, bty, so he N(B)) = N(Z(B,). However, Z(B,) = <b,t) and
t"t = bt or bdte Z(B,). This is a contradiction. Therefore, A=+ A4,
and so Ar £ P since A,/{b,y is the unique FEsubgroup of P/{b,>.
Hence A'A4,/A, is contained in the E,-subgroup P*/4, of U/A, diffe-
rent from P/A,, and so A} < P*. However, |& *(P*)| =2 by Lemma
(6G), whereas |& *(4,)| > 2. This is a contradiction. Therefore,
t + bt and then t“ N B, = t¥*’ by Lemma (2D).

Now t“"N A, = @ by Lemma (3C). Also, (2E) shows that involu-
tions in 4.t — {t, bt} are conjugate to bt. Thus t? N (4, t)<{t, bit).
Since bt = t“ and R = C,(t) has index 2 in T, we conclude that
"N (A, t> = {t, bt} = t".

LeMMA (5K). Let T,eSylL(N(T)). Then the following holds.

(1) [TeTi=2

(2) IfgeT — T, then {b, b, 1) = {a,b,b,), Bf =F, F’=B,,
D' =FE, and E' = D.

(8) If T<T, then there is an element ge T, — T such that
g* € (by, b,

(4) If T < T, then there is an element ge T, — T such that
t" = a or ab,.
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Proof. First of all, Z,(T) = <a, by, b, t) and Cy;,,n(@) = <by, b
by Lemmas (5F) and (5H). Hence

&*(Z(T)) = {Ka, by, b, <by by, 1)}
and
Cboy by = Z(Z(T) T, -
Assume that T < T, and let ge T, — T. By Lemma (5J),
t% N (byy by, t) = {t, bt} .

On the other hand, |[¢7?| = |T<g): R| = 4. Hence we must have
that <b, b, t>) 4 T<(9>. However, {(b,b,t) <]T by Lemma (5H).
Therefore, g ¢ N({b,, b,, t)). Since g acts on & *(Z,(T)), we conclude
that

<b09 bu t>y = <a, bo, b1> .

As a consequence of this, we have that [t°N <a, b, by| =2 and
moreover t¢ (N {a, by, by < a{b, b,y since (b, b)) <] T.. Now a’ = ab,
and (ab,)* = abb, by Lemmas (5E) and (5F). Hence

t% N <a, by, b,y = {a, ab,} or {ab,, abb,} .

This proves (4), and we may assume that ¢ = a or ab, in proving
the remaining part of (2) since B,, D, E, and F <] T.

Now we have shown that t¢ N Z,(T) = {t, bit, a, ab,} or {t, bt, ab,,
abb,}. Therefore, |T;:R| =|t""|<4 and |T:T| 2.

Let ge T, — T and suppose t* = a or ab,. By Lemma (2F), B,
and D are the only normal E,-subgroups of C,(t) = R. Also, E
and F' are normal E,-subgroups of C,(a) and C,(ab,) by Lemma (5I).
Hence {B, D) ={E, F}. Now <(a, B,y is conjugate to {f, B, in
N(B,) since a? = (n,, m,) and f?= (n, n,). Since & *({a, B,))={E, B,}
by Lemma (5F)(4) and since &*({f, By) = {{Cy,(/), [, £, B)}, it
follows that E is conjugate to {C,,(f), f, t) in N(B,). Thus Bf # K
by Lemma (8H) and so Bf = F and D?= E. This proves (2) as
g*e T < N(B, N N(D).

Now (b, by <| T, and <b,, b, £ Z(T), so Cy(<b,, b,)) is a subgroup
of Cr,({by, b)) of index 2. Furthermore, C,(<b, b,») = B,F' and B,N
F = (b, b>. The assertion (3) now follows from Lemma (1B) applied
to Cr,(<by, b,))/<by, b1

LEMMA (BL). If T < T,eSylL(N(T)), then the following condi-
tions hold.

(1) Z(T) = {by-

(2) Zz(Tl) = <b0; bu at>-
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(3)  Z(T) = {a, a,by, b, by, T).

Proof. Since Z(T)=Ct)NT. =R T, Z(T) £ Z(T) = <{b,y by
Lemma (5H). Hence Z(T,) = <b,y, and consequently, Z,(T),) =
N, (B) =T. Since Z(T,) = Z(T), Z(T,) = Z\T) =<a, b, b, t) by
Lemma (5H). Now Lemma (5K)(2) shows that 7, normalizes {b,, b,),
80 {by, b,y < Z,(T,). Furthermore, if g€ T, — T, then g interchanges
{a, by, b,y and <b, b, t>. Hence (b, b)) =< Z(T) = {by, b, at). We
show that ate Z,(T,). We may assume that ¢ = a or ab, by Lemma
(5K)(4). If t*=a, then a’* =1t or bt since g’c T and " = {, bit}.
Hence (at)’ = atb, or at by Lemma (6F)(2). If ¢*=ab,, then (ab,)’=t¢
or bit, so (ab,t)’ = (abt)b, or abt. In either case, at € Z,(T,). There-
fore, Z,(T,) = <{by, b,, at).

It remains to prove (3). Suppose first that Z,(T,) £ T. Then
we may choose ge Z,(T,)—T. However, since g normalizes Z,(T,)B,=
{a, B,y and since & *({a, B,)) = {H, B,} by Lemma (5F), we must
have that B? = E, contrary to Lemma (5K)(2). Thus Z,(T) < T.

Let bars denote images in T,/(b, b,>. Then FB, is a normal
E,-subgroup of T, by Lemma (5K)@2) d T.an = FBXa, §)>. We
choose @, f, @, by, b;, t as a basis of FB, and represent @, and § by
6 x 6 matrices with respect to this basis. Using Lemmas (5E) and
(5F), we see that @, has the following matrix form.

1
11

Therefore, Z(T) = Cs3,@,) = <@, @, b,, ). Then by Lemma (5K)(2),
g interchanges (@, @, and <b, t) as <@, @,y = Z(T)N F and <b,, t>=
Z(T)N B,. Also, g interchanges <@, f» and (b, bit)> as @, f) =
FnD and <b, bty =ENB, Thus g interchanges <(@,> and <b,),
and also interchanges <(@,, afy and (b, b,>. Since g also interchanges
(t) and (@) by Lemma (5K)(2), we get that the matrix of § has
the following shape.
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By Lemma (5K)(8), we may assume from the outset that g* = 1.
This implies that the square of the above matrix is the unit matrix.
Hence @ = B8 and § has the following matrix form.

1
a1l 1
1
1
a1l 1
1

Now an element Z of FB, is represented by a sextuplet (8, 5.,
Bay Bi Bs Bs). Using matrix forms of @, and g, we see that [Z, @,]
and [Z, g] are represented by the sextuplets (8., 0,0, 5;, 0,0) and
(B + Bi + aBs, Be + By Bs + Bs + Bey By + QB + Bay B + Bs Be + B +
Bs), respectively. This shows first that [F'B, @] = (@, b,y & {at).
Therefore, Z,(T,) < FB,. Next, both [Z, @,] and [Z, §] are contained
in (at) if and only if the following equations hold.

B:=B=0, B +B+aB;=0, B+ B =0,
183+65+186:182+:83+BG’ :81"'“)82"‘16’4:0-

These are satisfied if and only if 8, =8, and B, = B, = 0. This
implies that Z,(T,) = <@b,, @, ty. Hence (3) follows.

In the course of the proof of Lemma (5L), we have proved the
following.

LeMMA (BM). Let T,eSyL(N(T)) and let g be an element of
T, — T such that g°c b, b,>. Then g acts on FB, = FB,/{b, b) in
the following fashion.

Here, @ = 0 or 1.
LemmA (BN). N(T) contains an S,-subgroup of G.

Proof. Let T,eSyL(N(T)). If T = T, then T eSyl,(G). There-
fore, assume that T<T,. Then by Lemmas (5L), (5E), and (5F),
Zs(T1) = <a/, a,b,, b,, bu t>
= (b X {a, t)x<a;b,)
= Z, X D27, .
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Therefore, Z,(T,) has exactly 3 abelian maximal subgroups

Yl = <bu t, a’1b2> ’
Y, = <bu a, a1bz> )
Y, = <b1; at, azbz> .

Let X eSyl,(N(T,). Since Y, contains Z,(T,) = <b, b,, at) while
Y, and Y, do not, X acts on {Y,, Y,}. Since t*N Y, = {¢ bt} = t"
by Lemma (5J), Ny(Y,) < Nx({t, bt}) = T. Thus |[X:T]| <2 and so
X = T,. This shows T, < Syl,(@).

Now let T, be an S,-subgroup of G containing 7.

LeMMA (50). The following conditions hold.
(1) W =<a,a, a, b, b, b, t) =<4, a,t) is a normal subgroup
of T,.
(2) W 1is an extra-special group of order 27, and Z(W)=<{b,>.
(3) TI/W’——— <fyb37 W>/W~:E4 ’Lf T'—Tu
o9, WH)IW=Ds if geT, — T.

Proof. First of all, |T,: T|<2 by Lemmas (6K) and (6N). Next,
using Lemmas (5E) and (5F), we have that & *(T/B,) = {FB,/B,,
{a, a,, a,yB,/B;} and that & *(T/F) = {B,F/F, {a, b, t)F/F'}. Since
T, permutes B, and F' and since B,F'<| T, by Lemmas (5I) and (5K),
it follows that T, permutes {a, a, a,)B, and {a,, b, t)F. Hence T,
normalizes their intersection. Since {a,, b, t)F = {a, a,, a,, f><{b, b,,
b,, ty, the intersection is equal to {a, a,, a,><{b, b, b,, t) = W. Hence
(1) holds.

Now W = {a, b,y={a,, by*{a, t) = DyxDy«D; and Z(W) = <{b,>.
We have that T = {(f, b,, W), so T/W = E,. Assume that T < T..
Then by Lemma (5K), there is an element g € T, such that T,=<g>T
and ¢g*e{b, by < W. Lemma (5M) shows that f?eb,W. Thus T,=
{f,9, W) and T,/W = D;. The proof is complete.

Now let bars denote images in C(b,)/¢(b,y>. Then T, acts on W
by Lemma (50). In the following two lemmas, we collect informa-

tion on this action. Notice that we may choose a,, b,, @, b, @, t as
a basis of W.

LEMMA (BP). The following conditions hold.
(1) Efg = 611)—1’ 533 = 5-2, dgs = Ezdzs 5'1173 = 51’ a =
(2) af =a, bf =bb, af =a,d, b/ =b, & =a, t/ =%.

(3) @i’ = a,b,, b/*=0,b,, aj»=a,b,ab, b »=b, ats=a, t/=1.
(4) Cﬁ(b3) = <527 51’ 6, Z>'

1 §|
|
Il
H
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(5) Cﬁ’(f) = <dv 5_1, a—_’_; z>'
(6) Cﬁ/(fb3) = <@1b2, bu a, E‘>

Proof. (1), (2), and (3) follow from relations listed in Lemmas
(2A) and (2F) together with Lemmas (5F) and (5G)(1). (4), (5), and
(6) are consequences of (1), (2), and (3), respectively.

LEMMA (5Q). If T < T, then there is an element ge T, — T
which satisfies the following conditions.

(1) g*e<4, at). o _ _

(2) af =b, bf =a, aj = a,bat)*, bf =b, a’° = bt, t* = b7a,
where a = 0 or 1.

{@,b,, @, by, at) if a =0,

(3) Cylgy=1, """~ .

{@,byy by, @ta7t°|B, v, 6€1{0, 1}, B+7+0=0) if a=1.

Proof. Choose @, b,, @,, b,,@,t as a basis of W. Lemma (5P)
shows that b, f, and fb, have the following matrix forms with
respect to this basis, respectively.

1 1 1 1 1
1 1 1 1 1
11 1 1 1111

1 ’ 1 ’ 1
1 1 1
1 1 1

Choosing a suitable element ge T, — T, we determine the matrix
of g. We choose g so that g*e<b, b,) by Lemma (5K)(3). From
Lemmas (5L) and (6M), we get that {(a,, b,, b,)?=<b,, b,, b,», {b,, b,>?=
{by, by, and <a, b,, b, = (b, b, t). Hence g has the following matrix
form.

1 o
1 B
Ty Yo Vs Vs Vs Vs
1
) 1
e 1

Clearly, v, = 1. Since ¢g*e W, the square of this matrix should be
the unit matrix. Hence we have that ¢ =8, 6 =¢, v, =7, and
7s = s, and so, changing notation, we see that g has the following
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matrix form.

B B 1

» o= 9 RN
Q)
[=%)

1

™

By Lemma (5M), gb,g € fW. This implies that

1 1 1 1

BB 1 v o 4 11 g A1

® o = Q2 K R
o o = 2 ! R
Y
Qo

1 1 1

is equal to the matrix of f. Hence we have that @ = 8. Now gfb,
has the following matrix form.

1 a—+1
1 a+1
a+1l a+1 1 v4+1 6 o

o

1

™

Hence, replacing g by ¢fb, if «a =1, we may assume that a = 0.
Thus the matrix of ¢ has the following shape.

1
1
1 v 6 o
1
€ 1
e 1

This in turn implies that afe a,bja’t’(b,> and so 1=(a$)*=/(a,b])*(a’t’)*.
Hence we have that v =4. Finally, W becomes a nonsingular
symplectic space over F, with respect to the bilinear form (Z, ¥)=X,
where [z, y] = b), A€{0,1}, and the basis we have chosen is a
symplectic basis. Furthermore, ¢ induces a symplectic transforma-
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tion on W. This implies that the matrix of ¢ is invariant under
the transpose-inverse mapping followed by conjugation by the matrix

1

Hence we have that v =¢. Thus, changing notation, we conclude
that g has the following matrix form.

1

QR ! M R
=
-

This implies that g satisfies (2).

Now let W, =<A4,, at). We have chosen g so that ¢g*e (b, b,)=
W,, and we may have replaced g by g¢gfb,. However, Lemma (5M)
shows that (fb,)° € {a,b,, by, b, at) fb,< W fb, and so (9b.)*=g*(f.)"fbs €
W,. Therefore, the property that g*e W, is preserved. Thus g
satisfies (1). Since (3) is a consequence of (2), we have proved the
lemma.

LEMMA (5R). W is weakly closed in T, with respect to G.

Proof. Assume that T, contains a conjugate X of W different
from W. Sinee | XW: W | |T:W| 2, | XnNW|=2. If Z(X)Z
W,then (X N WYX= WnZX)=1and (XN W)Z(X) is elementary
abelian of order at least 2°. However, this is impossible as X is
extra-special of order 27. Therefore, Z(X) < W. Then X*=Z(X)<
W, so XW/W is elementary abelian. Hence |[XW:W|<2° by
Lemma (50), and [ X N W | =2, Thus, W =X N W) =X’ and so
X centralizes X N W/W'. Since | X N W/W'| = 2* and since no
element of T, — W centralizes a hyperplane of W/W’ by Lemmas
(6P) and (5Q), we have that (X N W/W'| =2 and [ XW/W| = 2.
However, XW = {(f, b, W) or {fb, g, W) by Lemma (50) and so
|Crmw(X)] < 2* by Lemmas (56P) and (5Q). Here we choose ¢ so
that ¢g*c¢ W. This is a contradiction proving the lemma.



FINITE GROUPS WITH A STANDARD SUBGROUP 441
LemMmA (BS). teG'.

Proof. Define
Wo = <Au a‘t> ’
and

_ [<af, b, Woy if T=T,,
" af, by g, Wy if ge T, — T.

We choose ¢g as in Lemma (5Q). Lemmas (5P) and (5Q) show that
f and b, normalize 4, and {(at), and that g normalizes W,. Hence
W, <] T,. Using Lemmas (5E) and (5F), we get that (afb,)?® = b,.
Therefore, <{af, b,y = D; and {af, b, W,)» = {af, b,y W, has order 2°
By the choice of g and Lemma (5M), (af)’e€ b.{b, b, b,y < b, W, and
b e afla, by, by < afW,. Hence g normalizes <{af, b, W,» and {af,
b, 9, Woo/W,= D,. In particular, [{af, b, g, W,»| =2° Hence T, is
a maximal subgpoup of T, in either case.

Assume that ¢eG'. Then T, contains an extremal conjugate u
of ¢ in T, by Lemma (1E). We may assume that u*=¢ and C, (u)*=
C,(t) = R for some xc(.

Suppose w e W,. Since u¢ Z(W) = {(b,y, |Cy(u)| = 2° by Lemma
(1D), and so |Cp,(w): Cy(u)| = 2°. Hence Cyp ()" = (b,y. Since C; (u)*=
R and since R" = {(b,y, it follows that xzeC(b,). Now W/{(b,) is
weakly closed in C(b,)/<b,> = C(b,) by Lemma (5R), so there exists
an element y ¢ N(W) such that ¥ = #. Then ¢t = u or ub,, and so
Co(t) = Cy(u). Now |Cp(u): Cy(u)| = 2°, so fb,e Cy(#). Hence e
Cy,(fb;) = (@b, b, aty by Lemma (5P). Thus u e {ab,{b, b){at).
Also, ueAat as t*N A, = @. Since u* =1, we conclude that ue
a,b,at{b, b,>. Now a,b,ath,=(ab,at)’, a,b,ath,=(ab,at)’, and a,b,atbb,=
(ab,at)’t. Therefore, a,b,atib, b,y=u’N C,(w). But now t¢N C,(t)=
t“N A, ty = {t bt} by Lemma (5J), so (t*N Cu(t)’ = ufN Cyu)
contains only two elements. This contradiction shows that « ¢ W..

Suppose w e T, — {fbs, W). Then C,(u) < T or {fb, g, W), so
|Cpr(u): Cyp(u)| = 2°. Also, uW is conjugate to fW, bW, or gW in
T,, so |Cy(u)| £ 2* by Lemmas (5P) and (5Q). But then |Cy(u)] £2°
and |Cy,(w)|=27, which is a contradiction. Therefore, u c {fb;,, W) N
T, = <afb;,, W,> and then u <€ afb,W,.

Now (afb,)?* = b,, so afb, is an involution which normalizes A,
and (aty. Moreover, Cj(afb,) = <@b, b,y by Lemma (50), hence
Lemma (1C) shows that @ is conjugate to afb, or afb,at under A,.
Since #* =1, we have that u is conjugate in T, to an element of
afb,atlb,y. Notice that afb,atlb,y = fbitib,y by (5F) and (5G). So
we assume that w e fb,;t(b,y. Then C,(w)=Cr (fbit). Now Cy(fbt)=
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Cy(fby)=<(a,b,, b,, @, t) by Lemma (5P), and so C,(fb;t)<{a;b,, b, a, t).
Equality does not hold here, since (fb,t)% = (fb,b,b,t)" = fb,b,b,b,t =
Sfbbit. Therefore, | Cy(fbit)| < 2 and since |Cr (fbyit): Cyp(fbst)| < 2°,
it follows that |C,(fbi¢)| < 2. This is a contradiction because
Cr,(fbgt) = Cr(w) has order 2°. Therefore, t¢G'.

Now we conclude the proof of Theorem (5A). Let X = (L%
and let bars denote images in G/O(G). Since |G|, < 2" and t¢ G,
we have that |X|, < 2°. Hence by Lemma (1H), X is a simple
group and C3(X) = 1. Now N(4,)/C(4,) = X; or A, by Lemmas (5B)
and (5C). Since O¥(N) = (P"> < N(4,), it follows that Nz(A4,)/
Cz(4,) = X, or A, Also, since B,cSylL(C(4,) and since t¢ X, we
get that A,eSyl,(Cz(4,). Assume that Nz(4,)/Cz(4,) = 3,. Then
since |X|, < 2°, [26] shows that X is isomorphic to the Higman-
Sims simple group. However, the centralizer of an involution in
the automorphism group of the Higman-Sims group does not have a
component isomorphic to PSU(4, 2) (see [2]). Hence Nz(4,)/Cz(4,) =
A, and so 7(X) =4 by [17, Theorem 3].

6. In this section, we consider the following situation.
Hypothesis (6.1). t¥52 = A,t.

Notice that this implies Hypothesis (3.1). Hence {t) € Syl,(C,(L))
by Lemma (3B). We prove the following theorem.

THEOREM (6A). Under Hypothesis (6.1), (Lf) = PSL(4,4) or
PSU4, 2) x PSU(4, 2), or else Case (3) of the main theorem occurs.

We begin the proof by studying the structure of N(B,).
DEFINITION (6.1). Let D, = O,(N(B,)).

LEMMA (6B). The following conditions hold.

(1) N(B, = Ny(B,)D, and NyB,) N D, = B,.

(2) D,/B, is elementary abelian and commutation by t induces
an Ny(B,)-isomorphism D,/B, — A,.

(3) Z(D,) = D; = A,

Proof. By Hypothesis (6.1), |N(B,): Ny(B,)| =16. As NyB,)/
C(B,) = A, or X, we have that |N(B,)/C(B,)]| = 2°-3-5 or 27.3.5.
Then a theorem of [4] shows that N(B,)/C(B,) is not simple; so let
C(B,) < X < N(B,), X # N(B,). Recall from Lemma (3G) that N(B,)/
C(B,) is a primitive permutation group on 2 = A,t. Hence we have
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N(B,) = Ny(B,)X. Furthermore, either N (B, N X/C(B,) = A, or 1.
Assume the former. Then Ny(B,)/C(B, = 2, as X # N(B,), and so
[N(B,)/C(B,)|, =2". Hence N(B,)/C(B,) can not be embedded in
GL(4, 2). Thus Lemma (3E) forces C(B,) < C(4,) N N(B,) < N(B,),
and so C(4,) N N(B,/C(B, is a nontrivial normal 2-subgroup of
N(B,)/C(B,) by Lemma (3F). Therefore, we can always choose X so
that N,(B,) N X = C(B,). Let us fix such X, and let bars denote
images in N(B,)/C(B,). Then X? is the regular normal subgroup of
N(B,)? and so X is a self-centralizing elementary abelian subgroup
of order 16. Let Y = C(O(C)) N N(B,). Then as C(B, = B, x O(C),
O(C) I N(B,) and Y <|{ N(B,). Moreover, Y #1 as K,< Y. Hence
we have XNY =1, and so X< Y. This implies that X =
Cx(0(C))O(C). Thus X is 2-closed and, as O,(N.(B,))= B,, the state-
ment (1) follows.

Now A,<]D, by Lemma (BE), so A, N Z(D,) # 1. As K, acts
irreducibly on 4,, it follows that A, = Z(D,). Also, Z(D,) = C,,(t)=
B,. Therefore, Z(D,) = A,. Consequently, (2) holds. Moreover,
A,ND:+1 and so A, < D;=< B,. Suppose that D;= B,. Then
D,/A, has a cyclic subgroup X/A4, of order 4. As A, = Z(D,), X is
abelian. But this contradicts C,,(t) = B,. Therefore, D; = A,.

DEFINITION (6.2). Let @, = QD,, Q, = Ny,(Q), and F = Ny (Q,).
Let V = <Z; t>7 D1 = Oz(N(B1))9 and Do = CDI(A1>-

REMARK. We have Q,/B, = Q/B, X Ny,5(Q/B,) and the N,(B,)-
isomorphism D,/B, — A, maps N,,5(Q/B,) onto C,(Q) = Z(P). Hence
|Npys,(Q/B,)| =2 and |Q,/Q| = 2. Also, F' is the product of @ and
the group of elements x of D, such that [Q, ] £ N,,(Q). Commu-
tation by ¢t maps the latter group onto the group of elements y € A4,
such that [@, y] £ Z(P), which is equal to A4, N A, Thus we have
|F/B,| = 32.

LEMMA (6C). The following conditions hold.
(1) N(B) = N4).

(2) N(B) = N(V).

(3) N(Bl)/Bl = NC(B1)/B1 X DI/BL'

( 4 ) QD1 = Q1-

(6) D,=B,D, and B.ND,=1V.

(6) D,= D,

(7) D,= D,

(8) [N (4), D] = 1.

Proof. Every involution of At is conjugate to an element of
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A,t under L, and so it is conjugate to ¢ by Hypothesis (6.1). As
t*NA =@ by Lemma (3C) and as 4, = 2,(4,), it follows that 4,=
{abla, bet’ N B,>. Hence (1) follows.

Now |Q, N D,: B, = 2 by Lemma (6B) and so Q, N D, = B,Q, N
D, N C(HO(C))). Let xe@, N D,N C(HO(C)) — B,. Then xe N(B, by
Lemma (3J). In particular, Ny(B,) < N(B,). Now, N(B) = N(V) as
Z(B) =V, and NyB,)=NyV) as O(N,(V))=A,. Moreover, |[N(V):
Ny(V)| =2 as t"" £ {t, bit}. Hence N(B) = N(V) = (N (B,), z). In
particular, (2) holds.

Now B,C(B,) = B, x O(C) by Lemma (2G). Hence O(C) <] N(B,)
and X = Cy3)(0(C))O(C) is a normal subgroup of N(B,) containing
B,0(C). Let bars denote images in N(B,)/B,0O(C). Then H<|N,B,)
by the structure of N,(B,), and as N(B,) = {Ny(B,), &y, it follows
that H <] N(B,). Hence Y = Cx(H) is a normal subgroup of N(B,).
Now, € Y by the choice of %, and so ¥ = (¥ NNy B), T). As
N.(A) = K, x HZ YN Nyi(B) < C(H) N NyiB,) = N,(4,), it follows
that ¥ = (K, x H)Z). Now K, =3, Hence K, = 0K, x H){7Y,
and so, as Aut (J,) = 3, it follows that ¥ = K, x H x K for some
subgroup K of order 2. Clearly, K = 0,Y) <{N(B). Now let K
denote the preimage of K in N(B,). Then as O(C) S K< X, K=
Cx(0(C))O(C) and thus K is 2-closed. As O,Ny(B,) = B, by Lemma
(2G), (3) holds.

As a consequence of (8) we have D, < N(Q), so D, < N(B,) by
Lemma (3J). Hence D, normalizes @, = @D,. Also, B, N B, < B,<D,
is a series of H-invariant normal subgroups of D,. As H acts
irreducibly on B,/B, N B, by Lemma (2B), it follows that D, centralizes
B,/B, N B,. Noticing that B,/B, N B, = Q,/D,, we conclude that D,
centralizes Q,/D,. However, N(B,)/D,0(C) = A, or '3, by Lemma (6B)
and, in particular, an S,-subgroup of N(B,)/D, is either E, or D,.
Thus we have D, < @,, and as D, < N(Q) and |Q.: Q| = 2, (4) follows.

To prove the remaining assertions, set D = C, (H). Then as H
centralizes D,/B, and as C,(H) = V, we have D, = B,D and B,N D=
V. Consequently, |D| =8 and as Cy(t) = Cp(H) =V, we see that
D=D,, Now D=@Q, by (4 and H acts regularly on @Q,/D, as
Q./D, = Q/B, as H-modules. Therefore, D < D,, and then D < D
as s, € N(D) by the definition of D. Thus by Lemma (6B), D cen-
tralizes (4,, Ay, H) = N (A4,). In particular, [4,, D] =1 and hence
it follows that D = D,. Thus all parts of the lemma hold.

LEMMA (6D). D, has a maximal subgroup K, which is either
elementary abelian or homocyclic of exponent 4 and is inverted by t.

Proof. Let I’ ={e, ¢, ¢ ¢, ¢;}. We may choose elements d; e
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D, t¢e{l, 2,8, 4,5}, such that [d, t] =¢; by Lemma (6B)2). Let
D, = D,/B, and 4 =1{d,d, d, d,, d;}. Now I' is the set of central
involutions of L contained in A4,, so Ny (B, acts transitively on I.
Hence N(B,) acts transitively on 4 by Lemma (6B). We may choose
each d, to be an involution. Indeed, we can choose d, e I(D,) by
Lemma (6C), and then choose conjugates d,, d,, d,, d; of d, under
N,(B,). Then {d,;, A,> is elementary abelian since A, = Z(D,), and
moreover, Cy. 4,(t) = A,. Hence & *({d,, By)) = {{d,, A, B;}, and so

if D, = D,/A,, then {d,, d,, ---, d;} is N(B,)-invariant. Now ¢, - -¢,=
1, so dd,-+--d, =1. Thus there are two cases: dd,--d;=1 or .
As A, = e, ¢+, 6, Dy =<d,, 4, +++, dy and so D, —<d oT -, dy,
5. Hence if d,d,---d;, = 1, then we may choose d,3, d,1, J{ as

a basis of D,. If dd -.d, = T, then we may choose d,, dz, cee,d;yas
a basis of ]32. In either case, the basis of D, we have chosen is
N(B,)-invariant. Hence if we define E, to be the subgroup of D,
generated by the elements that are the products of even number
of the basis elements, then E, is an N(B,)-invariant maximal sub-
group of D, and B,N E, = 1.

Let E, be the preimage of E, in D,. Then E,/A, = A, as K,
modules by Lemma (6B)(2), so K, is abelian by Theorem 1 of [24].

If dd,---d, =1, then d, = (d,7)(d,%)(d,%)(d,T) e E, by the defini-
tion of E,, and so K, is generated by involutions. If d,d,---d, = Z,
then d,7 = d,d,dd,e E,. As (dt)* =[d,, t] =¢, E, has a bas1s con-
sisting of elements of order 4 inverted by ¢. The proof is complete.

DEFINITION (6.3). Let W = D, N E,.

Since D, = Et) and te D, < D,, we have D,=W{) and W=_Z,
or E,. Also, WA, =Q,N E,. Indeed, A,W < Q,N E, by definition,
|Q, N E,: A,] =2 by a remark following Definition (6.2), and W £ A4,
as Wty = D, £ B, = A,{t) by Lemma (6C).

LEMMA (6E). The following conditions hold.

(1) N(B)= ND,) = ND)=NAW) = NW).

(2) @NNWD)=F

(3) If N(B) = N(D,), let D= 0(N(D,)). Then N(D,)=N(B,)D,
NB)ND =D, D/D, is elementary abelian, and D/D, = A/Z as
N(B,)-modules.

(4) If N(B,) < N(D,), then the following hold.

(4.1) C(D,/W) = D,0(C).

(4.2) N(Dy/DO(C) = 2,

(4.3) N(D,)/D,OC) = 5, wreath Z,.

4.4) W=2Z,.

(4 L.5) C+CyL).
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Proof. By definition, D, = Cp (4, <| N(4,) N N(D,). As N(B)=
N(A) N N(D,) by Lemma (6C), N(B,) = N(D,). Recall also from
Lemma (6C) that N(B,) = N(V) and that D, = D,. These show

(a) IN(D,): N(B,)| = 2,

as V is one of the two E,-subgroups of D,. In particular, N(B,) <
N(D,) and so, as D, = O,(N(B,)), we have N(D,) < N(D,). As A, =
Cp,(D,), we also have that

(b) N(D,) < N(A,) .

We argue that N(D) < N(W) and V~ W. If W=LZ, this is
obvious. If W = E,, then E, = E,, by Lemma (6D) and so t*N W=
@ as m(C)=5. Thus V~ W and consequently N(D, < N(W).
Furthermore, if N(B,) < N(D,), then W = Z, as otherwise V ~ W in
N(D,), a contradiction. As C, (W) = A, W, it follows that N(D,) N
N(W)< N(A,W). Finally, NNAW) < N(W) as Z(A, W) = W. Thus
we have proved the following.

(c) N(B) = N(D)) = N(D,) n N(W) < N(A, W) = N(W).

Let X = N(D,)N N(W) and a = |X: N(D,)|. We shall determine
the value of a and prove that X = N(D,). The statement (1) will,
then, follow from (c). First, we shall obtain two expressions for
| X: N(Q)|. It follows from the structure of N,(B,), Lemma (3J),
and Lemma (6C) that | N(B,): N(Q)| = 3. Hence

(d) | X: N(@)| = 3|N(D,): N(B)|a .

Now @, =@QD, =QD, = P+«D, by Lemma (6C), so Z = Z(Q, and
&£*Q,/Z) ={A,D)/Z, A,D,/Z}. Thus N(Q, normalizes A,D, = D, and,
in particular, F' < N(D,). Also, F < N(W) as @, = B.E, normalizes
W. Therefore, FF < X. More precisely, we have that F =@Q,NX
as Q, N N(D,) normalizes @, = D,B,. The statement (2) will follow
from this once we prove X = N(D,). By Lemma (3J) and the defi-
nition of D, 71€{l, 2}, N@Q) =< N(B,) < N(D,). Hence N(@Q)=< N@Q,)
and then N(Q) < N(F'). Furthermore,

(e) N(Do) NF = Q1

as N(D,) N F normalizes @ = A,B, by (b). In particular, N(Q) N F=
Q,. Thus setting b = | X: N(Q)F'|, we have another expression:

(f) | X: N(Q)| = 4b .

Now let bars denote images in X/W. Then, as )>=D,, CE)=
N(Dy and
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[T¥] = | X: N(D))| = a.
Also, as D, = (&) x A, and A4, { X,
[T =1+ |t NtA?] .
To determine the second term, consider the action of C(f) = N(D,)
on At = (A, W/W)¥. By (b), AW/W = A/Z as N(D,)-modules. We
know that under the action of N,(A,), which is contained in N(D,),
(A,/Z)* decomposes into two orbits of lengths 9 and 6, one corres-
ponding to the involutions of A, — Z and the other corresponding
to the elements of order 4 of A, (see Lemma (2C)). Therefore,

under the action of C(f), Af decomposes into two orbits of lengths
9 and 6. Thus

tYNta? =0,6,9 or 15,
and hence
(g) a=1,1710 or 16 .
Now recall that t“N A4, = @. This yields that Y0 < I(D, —
A,), so
[tV < b2
as D, = DyDy=Dy and A, = Dy=D,. On the other hand,
[¢7 0 = [ N(Dy): X || X: No(B)|

as N(D,)NC = NyB,), so
| = {2 [ N(D,): X |a if N(B) = N(D,) ,

4| N(D,): X|a if N(B,)) < N(D,) .
Therefore,

26 if N(B,) = N(D,) ,

(h) (ND): Xla = {13 if N(B,) < N(D,) .

Now assume that N(B,) = N(D,. Then 3a = 4b by (d) and (f).
Thus a =16 by (g), and then N(D,) =X by (h). Assume next
that N(B,) < N(D,). Then 3a = 2b by (a), (d), and (f). Also, a<13
by (h). Therefore, ¢ = 10 by (g) and then N(D,) = X by (h). Thus
a = 10 or 16 and N(D,) = X in either case. Statements (1) and (2)
follow from this as remarked before.

Now (t¥y = D, in either case and so X = X/C(D,) is a permuta-
tion group on 2 =t¥, Furthermore, X? is primitive in either case.
We shall determine the structure of X? By Lemma (6C), D, <
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C(D,/W). Also, N(B,) = D,NyB,), and CyB,/Z) = B,O(C) by Lemma
(2G). Hence

C(D,/W) N N(B,) = D(CD,/W) N No(By)
= D(C(B,/Z) N No(B,))
= D(B,0(C))
= D,0(C) .

Notice that [D,, O(C)] = 1 as O(C) stabilizes the series 1 < B, < D,.

Assume that N(B,) = N(D,). Then |2| =16 and Cx(t)=N(D,) =
N(B,), and consequently, C(D, = D,0(C) by the above. Thus |X:
Cx(®)| = 16 and Cx(t)=N,B)/B0O(C)=XY, X Z, or 3y X 3; by Lemma
(2C) and Lemma (2G). This shows that X is a {2, 3}-group that has
no nonidentity normal 8-subgroup. Then by Burnside’s theorem
[12, Theorem 4.3.3], 0,X) = 1 and so X has a regular normal sub-

group Y. As 1# K < CX(/\OfC)) < X and Y is a self-centralizing
minimal normal subgroup of X, it follows that ¥ < C;(?)zC )). This
implies that the preimage Y of Y in X is written as Y=C,(O(C))O(C).
Hence Y is 2-closed and if DeSylL(Y), then D = O,(N(D,)), N(D,) =
N(B)D, N(B,) N D = D,, and D/D, is elementary. Furthermore, the
irreducible action of N(B,) on A, yields that A, = Z(D) and“so com-
mutation by ¢ induces an N(B,)-isomorphism D/D, — A,. Thus (3)
holds.

Assume, therefore, that N(B,) < N(D,) Recall that W= Z, in
this case. The X? is a 2-transitive group of degree 10, and the

. e — L N
p/(inj-stablhzer Cx(t) = N(D,) has a normal subgroup O,N(B,) =
O,(K))H which is isomorphic to Z, x Z, and is regular on 2 — {f}
(see Lemma (2C)). A theorem of [18] now shows that

PSL2,9) = X = PI'L2,9) .

Now |X: N(D,)| = 10, | N(D,): N(B,)| = 2, and N(B,)/D,0(C) = X, X Z,
or Y, X Y,, Furthermore, C(D,/W)N N(B, = D,O(C) as remarked
before. Therefore, | X|, < 16 and equality holds only when C(D,/ W)=
DO(C) and N(B,)/DOC)= 2%, x ¥;. We argue that F/D, is ele-
mentary. Indeed, F'/D, = F'N E,/D, N E,. By Lemmas (6B) and (6D),
the mapping which associates with each element of E, its square
induces an Ny(B,)-isomorphism E,/A, — A,, and it maps F N K, onto
A, N A, by the definition of F. Thus (FNE,) = A, NA, and con-
sequently, F/D, is elementary. This implies that m(X) =3 as F'N
CD/W)=FNND)NCWD/W) =Q,NCD,/W) =D, by (e). Thus
X = 3, is the only possibility. In particular, | X|, = 16 and hence
C(D,/W) = D,O(C) and N(B,)/D,0O(C) = 3, x X;. This occurs only if
C +# LC,(L) (see Lemmas (2C) and (2G)). Furthermore, N(D,)/D,0(C)=
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Cx(t) = 3, wreath Z, by the structure of Y,. Thus all parts of the
lemma hold.

LemmA (6F). If N(B, < N(D,), then Case (3) of the main
theorem occurs.

Proof. We sAhall apply Lemma (1R) with C(W), W, A, W/W, and
t in place of G, Z, A, and ¢, respectively. Recall from Lemma (6E)
that

ND,) = NAW) = N(W) .

ND) N CA,W/W)/C(D,/W) is a normal 2-subgroup of N(D,)/C(D,/ W)
and so by Lemma (6E),

(a) N(D,) N C(A,W/W) = D,O(QC) .
As a consequence, we have that

(b) D, e Syl(C(A,W/W)) .
Moreover,

(¢) N(A, W) = N(D)C(ALWIW)

by a Frattini argument, and hence
(d) NAW)ICAWIW) = X,

by (2) and Lemma (6E). Now C # LC,(L) by Lemma (6E)(4.5), so
there is an element fe Ny (Q)—@Q such that f*eQ. Then feN(B)N
N(B,) by Lemma (3J) and so f normalizes @, = D,D, and Q,{f) has
order 2®. Also, feN(D,) < N(W) and Q,= D,E, < N(W). Thus
Q.(f> £ N(W). Furthermore,

N(AW) 0 QL) = (N(AW) NQ){SF) = FXf)

as N(A, W) N Q, normalizes A, WB, = Q,. Now |[F{f)| =2". Thus,
F(f> e SyL(N(A, W)) by (b) and (d), and hence

(e) IN(W): N(A,W)| is even .
Now W = Z, by Lemma (6E) and t¢ C(W), so
NW) = C(W){E) .

It is now clear that (d), (b), and (e) imply the conditions (1), (2),
and (3) of Lemma (1R), respectively.
Now notice that ¢, W) = D,, and recall from Lemma (6E) that

N(D,) £ N(D,) and N(D,)/D,O(C) = X¥; wreath Z,.
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Thus

f) AW < N(D,) < N4 W),

and using (a), we have

(g) N(D,)C(A,W|/W)|[C(A,W/W) = ¥, wreath Z,.

Noticing that (¢, A, W) = D,, we can now derive conditions (5), (6),
and (7) of Lemma (1R) from (f), (g), and (c), respectively. We
know that conditions (4) and (8) are satisfied. Thus by Lemma
(1R), C(W) has a quasisimple characteristic subgroup K containing
W such that

(h) C(K) = WO(C(W))

and either K/O(K) = SU(4,3) or K/Z(K) has an S,-subgroup of
type PSL(6, q), ¢g =3mod4. Now N(W)<C(Z), K< N(W), and
W|Z eSyl,(C(K/Z)) by (h). Thus K/Z is a standard subgroup of
C(Z)/Z. The fours group D,/Z acts on X = O(C(Z)). Let x e N(D,)—
N(B,). Then V° £V as N(V) = N(B, and so X = (N(V), Ny(V*),
N(W)) < O(N(W)). Hence [K, X] =1. We have proved that Case
(3) of the main theorem occurs.

In view of Lemma (6F), we assume from now on that G satis-
fies the following.

Hypothesis (6.2). N(B,) = N(D,).
Furthermore, we make the following definition.
DEFINITION (6.4). Let D = O,(N(D,)) and R, = Q,D.

Then by Lemma (6E)(3), N(D,) = N(B,)D, N(B,))(\D = D,, D/D, is
elementary, and D/D, = A,/Z as N(B,)-modules.

LEMMA (6G). The following conditions hold.
(1) R, NQ,=PF.

(2) R, = N@Q).

(3) E, is elementary abelian.

(4) N(D,) = N(B,) = N(E,).

(5) N@Q, = N(E).

Proof. By Lemma (6E)(2), N(D,) N Q, = F. Hence (1) will follow
once we show F' < R,. To see this, notice first that |N(D)/D|, < 4
by Lemmas (6C)(8) and (6E)@8). Next, FF< N(R) as F< N@Q)N
N(D,). Hence Q, < RRNF < F. As H acts irreducibly on F/Q, by
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Lemma (6B) and H < N(R, N F'), we have that F' = R, N F, proving
).

Now Lemma (6E)(3) in particular implies that |N,(Q,)/D,| =8,
so F' = N, (@, and consequently, F'<| R, by Lemma (1C).

We show that F'N E, is the only A,ssubgroup of F. Suppose
X is an A,-subgroup of F. If X< FND, then as FNE, is an
abelian maximal subgroup of FND, and as Z(FND,=<B, it
follows that X = F'N E,. Assume, therefore, that X £ F N D.,.
Then F = X(F N E,). For otherwise, Y = XN F N E, has order 16
and Y < Z(F). However, Z(F) = Z(Cy(t)) = Z(Q) = V, a contradie-
tion. Thus |Y|=32 and so if z€ X — D,, then |Cp,(x)| = 32. How-
ever, on the other hand, Lemma (6B) shows that [Cy,,(x)| =4 =
|Cu(x)] if xe@Q, — D,. This contradiction shows that F N E, is the
only A, -subgroup of F.

A similar argument shows that E, is the only A,.-subgroup of
Q.. Therefore, N(F) < N(F N E,) and N(Q, = N(E,).

Now R, < N(F') < N(F N E,). However, B, £ N(A4,) as N (4, <
Nz (A,D,)) = N (Q,) = F. These and Lemma (6D) imply that F'N E,
is elementary abelian, and hence (3) follows. The statement (4) now
follows from Lemma (1C). By the same lemma, C(F/FNE, <
N(F N D,) < N@B,). Also, Q,<CF/FNE, as Q,/FNE,=F/FNF,x
E,/FNE, and F/F N E, = Q/A,. Therefore, Q, is the only S,-sub-
group of C(F/F N E, by the structure of N(B,)/B, discussed in
Lemma (6B). Thus Q,<]|NF) as C(F/F N E,) <|N(F). In parti-
cular, R, < N(Q,). The proof is complete.

DEFINITION (6.5). Let T = RQ,, S =C,(W), and E, = C,(W).
Because of Lemma (6G)(2), T is a subgroup.

LemMMmA (6H). The following conditions hold.

(1) T = N(E).
(2) T =8{).
(3) D=E(Jt.

(4) We=(E,NEM:=(ENE)NENE)Y?2 is a comple-
ment for K, in S.

(5) (B, N E)NENE)?2" s a complement for H, in S.

(6) E,JW is elementary abelian.

(7) N@Q) = N(S).

Proof. The assertion (1) follows from Lemma (6G)(5). By
Lemma (6E)(1), R, £ N(D,) £ N(W). Also, Q, = D,E, normalizes W.
Therefore, T < N(W) and hence (2) and (3) follow.

Let X = E,N E;". Then as B,N Bj* = V and N(V) = N(B,) by
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Lemma (6C)(2), we have that X < Ny,(B) =@Q,. Thus X<Q, N Q=
D,. By Lemma (6C), D,ND,=(B.ND,)D, =(B,NB,)D, and then
X< B, NB)D,N({(B,NB)D)=D,, Thus X< DNE,=W. As
W = W= < X by Lemma (6C)(8), we conclude that W = E,N E;: =
(E, N E)N(E,N HE,)". Furthermore, as |E,| =2 by (3), we have
E, = (E,N E)E,N E)" by order consideration. As F, N E,<| E, by
(1), (6) holds by Lemma (6G)(3).

Now by Lemma (6B), commutation by ¢ induces an Ny(B,)-iso-
morphism K,/A,— A,, which maps WA,/A, onto Z and F N E,/A,
onto A,NA,, Hence (FNE)N W=24,=A4, as (A, NA4A)NZ=2=1.
Notice that E, N E,< F N E, by Lemma (6G)(1) and that E,N A4, =
A NA, by Lemmas (6C)(3) and (6E)(3). Therefore, E, N W= <
(A,NA)NZ=2=1. As |S: E,| =4 by (2) and (38), we conclude that
W2 is a complement for E, in S, proving (4). In particular, S =
E.E,.

As a consequence of (4), we have that (E, N E,)™ = (B, N E, N
(E, N E,)=) x W= and so

(El N Ez)s’ = ((Ez N Ez) N (Ex N Ez)sz)sl x W.

Hence
S = E\E,
= (E1 N EZ)(E]. N E,)" K,
= (E1 N Ez)lez
= ((E1 N Ez) N (E1 N E2)82>Sl WEZ
= (B, N Ey) N (E, N E)=)"E,.
Furthermore,

(B, N Ey) N (B, N E)?)" N E,
< (BN E,) N (E, N EY»
= W.

Therefore (5) holds.

Finally, N(Q) = N(B,) N N(B,) by Lemma (3J). Hence subgroups
used to define S are all normalized by N(Q) (see Definitions (6.1)-
(6.5)). Thus N(Q) = N(S).

DEFINITION (6.6). Let K = K,E, and L, = (K"*%'),

LeEMMA (61). The following conditions hold.

(1) L,E,= SL(2,4) x SL(2, 4) and t interchanges two compo-
nents of L,/K,.

(2) SeSyl(L).
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(3) O(N(E;) mod E,) = C(L,/E,).
(4) C(E,) = O(N(E,) mod E,).
(5) Z(S)=W.

Proof. Let bars denote images in N(X,)/E,. Then by Lemma
(6G)(4) and Lemma (6B), C(f) = N(B,) = Ny(B,). Therefore, K<]C(t)
and (&) eSylL(C(K)N C®&)). Furthermore, S is an E,-subgroup of
N(K,) and is invariant under N(Q,) N N(B,)=N(Q)E, by Lemma (6H).
Thus (2) and (3) hold and either (1) holds or L,/E, = SL(2,16) by
Lemma (IN). As a consequence, we have that C(&, N L, = E, since
K £ C(4,). Thus (4) follows from (3). Hence Z(S) = N, (P) =@, N
E, = A,W, and then Z(S) < Z(PW)=W. As W centralizes S=FE.FE,
by Lemma (6H)(4), (5), (5) holds.

Now PeSyl(K), P<SeSyl(L,), and Cg(S)=Z(S)=W. Further-
more, A, is a K-invariant subgroup of E, and C,(P)=Z < W.
Thus L, 2 SL(2, 16) by Lemma (1K). The proof is complete.

In view of Lemma (6I), we make the following definition.

DEFINITION (6.7). Let L,/ E,=M,/E,x M{/E, with M,/E,=SL(2, 4),
and set S, =S N M,.

LEMMA (6J). Assume that Cp(M,) = 1. Then (L°) = PSL(4, 4).

Proof. Let N = N(E,) and let bars denote images in N/C(E,).
Our aim is to use Lemma (1L) to E, and N. By Lemma (6G)(3), K,
is elementary abelian of order 256. By Lemma (61)(4), C(H, =
E,ON) and so Definition (6.7) and Lemma (6I)3) imply that N
satisfies the conditions (1) and (2) of Hypothesis (1.1). Also,
Cp,(S:SY) = C(S) = Z(S) = W by Lemma (6I)(5), so N satisfies the
condition (3) of Hypothesis (1.1) as well. Our assumption implies
that Cp (M, =1, so that N satisfies the condition (4) of Lemma
(IL). Now K = Cr(f) = {atat|ZeL,} and H is a complement for
P =C5;@®) in Nz(P) as K =K,. Hence H = {htht|h ¢ H*} for some
complement H* for S, in Ng(S,). Since [W, H] =1 by Lemma
(6C)(8), N satisfies the condition (5) Lemma (1L) as well. Thus we
can apply Lemma (1L) to determine the structure of N and the
action of N on E,. As for the structure of N, we have

(L*, t*) = N =— (L%, ¢*, f*, D*) .

In this embedding, L., M, S, and % correspond to L*, M*, R*R*",
and t*, respectively.

Let S,=((E,NE,)N(E,NE,)%)" Then by Lemma (6H)(5) <S,, t)=
S{t) is a complement for E, in T. Since SeSyl,(L,) by Lemma
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(6I)(2), T eSyl,({Ls, t)) and hence E, has a complement in {(L,, ¢) by
Gaschiitz’s theorem [19, Hauptsatz 17.4]. Therefore, the structure
of (L, t) is uniquely determined by Lemma (1L). There is an
isomorphism

0. {L,, t) —> (L*E*, t*) .

Here L; = L*E*, (tE,)° = t*E*, and ¢ maps S onto the group S* of
matrices

1

a 1
b ¢ 1
d e f 1

with entries in F,., We know that each S* and S*/Z(S*) has
precisely one KE,,-subgroup, E,* and E*/Z(S*). Since E, and E,/W
are elementary and Z(S) = W (see Lemmas (6G)-(61)), it follows
that E, and FE, are characteristic subgroups of S and that E; = E*
for ie{l, 2}.

Now consider the case where N does not contain an element
that corresponds to f*. Then T = (S, t) € Syl,(N). Since (S, t)’ =
(S*, t*>, we see that E, is the only E,,-subgroup of 7. Hence
N(T) £ N, which implies that 7T eSyl,(G). Next, since S° = S*
and I(S*) = I(E*) U I(Ey}), we have I(S) = I(E) U I(E,). Hence if
rxet®NS, then xe K, for some ie({l,2}. Since [Cy(x)| =256 by
Lemma (1D) and [C|, <256, we have Cy(z)€ Syl,(C(x)). But class of
Cz,(x) <2 and class of P =3, a contradiction. Therefore, ¢°N
S=@. Then t¢G by Lemma (1E), and since L= L*E* is perfect,
S eSyl,(G'). We now appeal to [22] to conclude that O*(G'/O(G")) =
0¥(X) for some parabolic subgroup X of PSL(4, 4). By Lemma (1H),
L(G) = {Lf) and [{L%), O(G)] = 1. Therefore, (L) = PSL(4, 4).

Assume, therefore, that N contains an element f that corres-
ponds to f*. Let f’ be a preimage of f in N. Since fe N(T), we
may choose f' € Ny(T). Then as feC®) and (t) = D,, f' e N(D,) =
N(B,) by Lemma (6G)(4). Also, since f normalizes @, = C7(), f'e
N(Q,). Recall that N(B,) = N B,)E, and N,B, N E, = A,. Hence
we may choose f'eNyB,). Then f' normalizes Q,NC =@, but
f'e@. Thus f'eC — LCy,L). Also, we may choose f' so that f"?e
E,. Then f?eCNE,=A,<L. Therefore, L{f'y = Aut(L). We
can now choose f e I(Lf’) so that the action of f on L is induced
by the involutive automorphism of F,. Then feC(s,) N C(s,) and
feN(S) by Lemma (6H)(7), hence feN(S,. Thus, {(S,¢ f> is a
complement for E, in <{S, ¢, f>. As (S, t, f) eSyl,({Ly, t, f)), E, has
a complement in {L,, t, f> by Gaschiitz’s theorem, and the structure
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of (L, t, f> is uniquely determined by Lemma (1L). Notice that
fePf" for some he H, hence feNy(M,). Hence by Lemma (1L),
there is an isomorphism

0: {Ly, t, [y — (L*, E*, t*, f*)

such that L= L*E*, S°=S8* (E,) =t*E*, and (fE,) = f*E*.
As It*E*) = t**", we may assume that ¢° =¢*. Replacing f by
f*7', we may also assume that f° = f*. Thus f is an involution
of C normalizing P = Ci(t).

Now let X =C(tf), Y =C,(f), and M = C,(tf). As C(f)n
N (4,) =C(f)nCt) N L, = C(f*) NnCE*) N L*E*, C(f) N N,(4,) is an
extension of E; by SL(2,2). Thus f acts on L as a field automor-
phism by Lemma (2K)(4), hence Y = Sp(4, 2). Also, M = Cppn(t*f*)
is isomorphic to the commutator subgroup of a maximal parabolic
subgroup of Sp(4,4), and as z' =2’ for x e M, the action of ¢ on
M is induced by a field automorphism of Sp(4,4). As C is a semi-
direct product of (L, ¢, f) and O(C), we have

Cx(t) = C(H)NCE) = (X, ¢, f, Coer(f))

We argue that ¢+ f. Indeed, C.(f){f) = Cpp(f*){f*) is an ex-
tension of an elementary abelian group of order 32 by SL(2, 2) x
SL(2, 2), while C does not contain such a group by Lemma (3J).
Let bars denote images in X/{tf)». Then ¢ € I(X) and since ¢ ~ f,

Cx(t) = Nx((, tf)) = Cx(2) .

Therefore,
Cx(t) = Y x &) x O(Cx(?))

with ¥ = Sp(4, 2). We can now apply Lemma (1P) to conclude that
E(X) = Sp(4, 4) and Cz(E(X)) = O(X). Consequently, |X|,<2". As
the Schur multiplier of Sp(4, 4) is trivial, it follows that E(X) =
Sp(4, 4) and Cx(E(X)) = <{tf, O(X)). Thus E(X) is a standard sub-
group of G and C(E(X)) has a cyclic S,-subgroup. Also, as |G: X|
is even, tf ¢ Z*(G) and so E(X)O(G) 4G by Lemma (1H). Appeal-
ing to [11], we conclude that (E(X)%) = PSU(4,4), PSU(5, 4),
PSL(4,4), PSL(5,4), PSp(4,16) or Sp(4, 4) x Sp(4,4). Since C(¢)
has a component of type PSU(4, 2), we must have that (E(X)%) =
PSL(4, 4) (see [3, §19]). Thus by Lemma (1H), (L% = PSL(4, 4).
The proof is complete.

In view of Lemma (6J), we now study the following situation.

Hypothesis (6.3). Cp,(M,) # 1.
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LemMMA (6K). L, = N, x N}, where N, is isomorphic to the
semidirect product of the natural A,-module by A,.

Proof. By Lemma (6H)(5) and Gaschiitz’s theorem, E, has a
complement N in L,(t). As in the proof of Lemma (6J), E, and N
satisfy Hypothesis (1.1) and Cg(S,S;) = W. Also, Cg(M,) #1 by
our hypothesis. As WNW?®= =1 by Lemma (6H)(4), the assertion
follows from Lemma (1M).

DEFINITION (6.8). Let R =SNN, F,=0,N,), and U = Z(R).
Let F,/U be an element of &*(R/U) different from F,/U.

REMARK. N, = K,A, and ReSylL(N,, hence R=P. Thus
Z*R/U) ={F,/U, F,/U} and F, is extra-special of order 32. Also,
W = U x U' by Lemma (6I).

LemMMA (6L). For 1€({l, 2}, the following holds.
(1) E,=F, x F}.
(2) s, eN(F,.

Proof. For i =2, the assertion is obvious, so consider the
case 1 =1. As S/W=RW/W x RRW/W and RW/W = R/U, we
have

E(SIW) ={F\F{|W, F,F;|W, F.F;|W, F{F,/W} .

Therefore, F,F{/W is the only member of & *(S/W) of order greater
than or equal to 2°. As E,/W is elementary of order 2 by Lemma
(6H), (1) holds.

Now s, C(W) < C(U) by Lemma (6C)(8), and hence s, acts on
Z(EJU) = U'F\/U. Now KA, =C,(t) ={za*lxcN,} and H is a
complement for P = Cs(t) in Ng,,(P), so H = {xx'|xc H*} for some
complement H* for R in N,,(R). As H* acts fixed-point-freely on
F,/U by the structure of N,, so also does H. Hence it follows that
[U'F, /U, H]=F,/U since H centralizes U* by Lemma (6C)(8). There-
fore, s, € N(F)).

DEFINITION (6.9). Let L, = (S, S8), N, = (R, Ry, G,={L,, L,»,
and G, = (N, N,»). Notice that N, = (R, R“2>

LEMMA (6M). G, is a central product of G, and Gi.
Proof. It is clear that G,={(G,, G), so we shall prove [G,, Gi]=

1. The structure of N(E,)/E, shows SN S = E, (see Lemma (6I)).
In particular, E,NE> < E, so (E,N E&)* is a complement for K,
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in S by Lemma (6H)(5). Thus
S = E,(E, N Ef)" .

NOW, .E,_sl = F131F1slt and .Elszsl = Flszlelszslt by Lemma (GL). AS Flsl,
Fer < Njivand Ly = Ni+ x Nit*, we have that

(E\NER = (F, N F2) x (F, N Fi)nt,

Also, E,=F, x Fi{. As F,, (F,N F)" < R, the above factorization
of S yields that

R = Fy(F, N Fy .

This shows that R = F,F, and R% = F,(F, N F{2) " as s, N(F,) by
Lemma (6L). Hence if X = (F,, (F, N Fy2)"2y, then N, = F,X and
so F,NF, £ F,N X<]N, As N, acts irreducibly on F,, F, N X=F,.
Thus

N, = (F,, (F, N F)ee)y
Now

[Fy, FY] = [N, N;]=1.
Since s, € N(F),

[Fy, (F, N Frwe] < [F, Fi#] < [N, Ni]=1.
Conjugating this by s,t, we have
[(F, N Fepeen Bl =1,

Also, since (s;8,)* = (8,8,),

[(Fl n Flsz)slszsl, (-FV1 n Flsg)slsgt]

_<__ [Flszslszsl, Flszslszt]

= [ Fpeez, F1828182t]

= [Fu Ff]szslxz =1.
Since Njt = (F,, (F, N F)vrny and Ny = (FY, (F, N Fi2)mety, we con-
clude that
(1) [Ny, Ni]=1.
In particular, [R*, R'] =1, and since [R, R'] =1 and N, = (R, R*),
it follows that
(2) [N, Ni]=1.

Also, [R*, N,] < [N, Ni]t = 1. As [R!, N,] £ [N{, N,] =1, it follows
that
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(3) [N{, N,]=1.
The equations (1), (2), and (8) show [G,, Gi] =1, as desired.

LemMMA (6N). The following conditions hold.
(1) G,= PSU{4, 2).

(2) G, =G, x G

(8) L =Cgy(t) = {wat|xeGy).

(4) C(@Gy) = O(N(G,)).

(5) ReSylL(G).

Proof. By Lemma (6K), N, is perfect. Therefore, R < N, <G
and then R < (G)* = G; as s,€G, < N(G,). Thus N, = (R, R%) <
G, and G, = Gi.

Let L, = {zx'|2z€@G,} and Z, = G,N Gi. Then, as G, = G*G: by
Lemma (6M), it follows that C, (t) = L,C,(t). By the same reason,
the mapping x — xx’ is a homomorphism from G, onto L, with the
kernel contained in Z(G,). In particular, L, is perfect by the first
paragraph and so Cy(t) = C4(t)° = L,. On the other hand, L =
(P, 8y, 8,0 < Cg(t) and so Cg(t)” =L as C* = L. Thus L = L, and
consequently G,/Z(G,) = PSU(4, 2).

Now C(G,) <{C(L) N N(G,) as L <G, Since <{&)eSyl(C(L)nN
N(G,)) and t¢C(G,), it follows that C(G,) has odd order. This
proves (4) as G, is semisimple. Now Z(G, has odd order, so as
the Schur multiplier of PSU(4, 2) has order 2, we have that Z(G,) =
1. Hence (1), (2), and (8) follow. Finally, (5) is obvious by (1).

LEMMA (60). If te N(G,)® for g€ @G, then ge N(G,).

Proof. We first show that N(Q) =< N(G,). By Lemma (3J),
N(Q) < N(B,), hence N(Q) = D,N,(Q) = A, WN Q) (see Lemma (6C)
and a remark after Definition (6.3)). A,W and N, (P) < L, < @G, and
Ny(Q) = (N (P), t, O(C)> or (N (P),t, OC), f>, where f is an ele-
ment of C acting on L as a field automorphism. Thus it is enough
to show ¢, O(C), and f e N(G,). Clearly, t, O(C), and f normalize
@ and centralize s, s,. By Lemma (6H)(7), N(Q) < N(S). Hence
t, O(C), and f normalize L, = {S, S*) for i €{l, 2}, and hence nor-
malize G, = {L,, L,y). Thus N(Q) < N(G,).

Now assume that te N(G,)’. Then ¢ acts, by conjugation, on
the set {GY{, Gi*}. Suppose that ¢ normalizes G{ and Gi*. Then both
G! N C(t) and Gif N C(t) have 2-rank at least 3 by Lemmas (2E) and
(2K), so m(G¢ N C(t)) = 6. This is a contradiction because m(C) =5
by Lemma (8J). Therefore, ¢ interchanges G{ and G!*. As a con-
sequence, we have L = G N C@E) = {xx*|x € G{} since G¢ = G x Gi*.
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Hence if YeA Syl(GY), then P = {yyt|y e Y} is an S,-subgroup of L.

As Q and (P, t) are conjugate by an element of L < G,, N((P, t))<

N(G,) by the first paragraph Let ze Z(Y)®. Then as z*=1, z7%z=

ztzt-te Pt, so that 2e NP, t)). As z¢ L, we conclude that L <

N(G,) N G§. Then [1, Lemma 2.5] shows that G¢{ < N(G,), hence
= N(G,)” = G@,. The proof is complete.

DErFINITION (6.10). Let T = S,eSyL(N(G,), S, = Ns(Gy), and
= Cs,(G7). Notice that S, = N (Gi) by Lemma (6N), and that
R <R, and S < 8,.

LEMMA (6P). S, eSyL(G).

Proof. Let ge N(S,). Then t°eS, =< N(G,), so that g e N(G,) by
Lemma (60). Thus N(S,) < N(G,), and the assertion follows.

LEMMA (6Q). SeSylL(G™).

Proof. There are three cases to consider:

1. R,# R.

2. R,= R but S, =+ S.

3. RR=Rand S, =3S.
Let N = N(G,). Then Lemma (6N)(4) shows that R,N R =1 and
that C,(GY)/O(N) = Aut (G,). Hence RS NRIS =S and |RS/S| =
|R/R| <2 as SNR,=R. Also, Ny(G)/Cy(G,) <> Aut (G,), hence
|S,/RiS| < 2. Therefore in Case 1, |R,S/S| = |R,/R| =2 and S,/S =
R,S/S x RiS/S. Similarly, |[S,: S| =2 in Case 2.

Suppose t€ Ny(G,). Then t?*c N and so g N by Lemma (60).
But then t¢ N,(G,) as Ny(G,) <| N, a contradiction. Therefore,

NS, =@
In Case 3, T = S,¢Syl,(G) by Lemma (6P) and t*NS = @ by
the above. Therefore, t¢ G’ by Lemma (LE). Since
S=G,=G~,
it follows that S e Syl,(G*). Therefore, we assume that
S<S,.

Then S < Ng(T). Also, Ns(T) = Cs,(t)S as I(T — S) = t° by Lemma
(1B). Thus Cy(t) > Cs(t) = P. As tgCs(t), Cs(t) is isomorphic to
an S,-subgroup of Aut(L). Therefore, we can choose an involution
acCs(t) — S.

We compute |Cs (x)| for € I(Ns(T) — 8). In Case 1, S, = R,X
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Ri, so that x =yz with yeI(R, — R) and zec I(R:— R!). Hence

Cs,(@) = Cr(y) X Cri(z). As y induces an outer automorphism on

G,, |Cr(¥)| < 82, and similarly |Cgi(2)| < 32 (see Lemma (2E)). Thus

|Cs,(®)| = 1024 and |[Cy(x)| =<2048. In Case 2, « induces outer

automorphisms on G, and Gf, so |Cs(®)| < 512 and |Cs (x)| < 1024.
We show that

a*N(RSURS) =0 .

Suppose that a’e R,SU R;S for some ge(G. Choose a’ so that
|Cs,(a)] is maximal. As RS = R,x R’, we may write a’ = uv with
we R, and ve R'. Assume Case 1. Then conjugating in N(G,), we
may assume that [Cp(u)| =32 and that |Cyi(v)| = 64 (see Lemmas
(2E) and (2K)), so [Cg(a’)| = 2048. Similarly in Case 2, we may
assume that |Cr(u)| and |[Cp(v)| = 32, so that |Cs(a®) ! = 1024. Thus
in any case, we may assume that [Cs(a%)| = |Cs(x)| for all ze
N (T) — S. Also, if weI(S, — S,), then w interchanges R, and R,
and so |Cy(w)| = 256 < [Cs(a’)|. Thus we may assume that a’ is
an extremal conjugate of a in S,. Then we may also assume that
Cs(a)’ <8, since S,e8yl(G). Then t’eS, < N, and Lemma (60)
yields that ge N. But now a¢ X = G,Cy(G,) U GiCy(G}) and a‘e X,
which is a contradiction because X is a normal subset of N(G,).
Thus we have proved that o N (RS U RiS) = ©.

Consider Case 1. Then S,/S = D,, and S,/S and (¢, a, S)/S are
the fours subgroups of S,/S. Since S, eSyl,(G) and since a* N S, <
aS and t°N S, = @, Lemma (1G) shows that S e SyL(G™).

Therefore, assume that Case 2 holds. We show

ta)NS=9g.

Suppose be (ta) N S. As before, we may choose b so that |C5 (b)|=
1024. Since |Cg,(x)| = 1024 for xz e I(S, — S) and since |Cy (y)| < 256
for any ye I(S, — S,), we may assume that b is an extremal con-
jugate of ta in S,. Then we may assume b = (ta)’ and Cjs (ta)’ < S,
for some geG. But then Lemma (60) yields a contradiction just
as before. Therefore, (ta)°NS = @. Since t*N<a,S) =@ and
a® NS =@, Lemma (1F) shows that SeSyl,(G®). The proof is
complete.

LeEmMA (6R). (Lf) = PSU(4, 2) x PSU(4, 2).

Proof. We argue that R is strongly involution closed in S
with respect to G (see [25]). By way of contradiction, let x € I(R)
and assume z?¢ S — R with ge G*. By conjugating in G,, we may
choose ¢ F, and 2°¢F, X F} — F,. Since E, is the unique FE,;-
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subgroup of S and S e Syl,(G*) by Lemma (6Q), we may also choose
geNE,)NG*. Now Y = N(E,) NG acts, by conjugation, on {F},,
F}} since F, = O(N,). Hence |Y: N (F,)| < 2. Since SeSyL(Y) by
Lemma (6Q) and since S < N(F,), it follows that Y < N(F,). Thus
ge N(F,). But then x?¢ F,, which is a contradiction proving the

assertion.
We can now apply Corollary 2 of [25] to get that

[CI(R)®™, (I(R"™)] < O(G™) .

Set X = (I(R)*") and let bars denote images in G/O(G). Then
[X, X] =1 so F¥(G) can not be simple. Thus Lemma (1H) shows
(L% = PSU(4, 2) x PSU(4, 2).

Lemma (6R) completes the proof of Theorem (6A). The main
theorem follows from Lemmas (3H), (3G), Theorems (4A), (5A), and
(6A).
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