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//-ESTIMATES FOR SOLUTIONS TO THE INSTATIONARY
NAVIER-STOKES-EQUATIONS IN DIMENSION TWO

CLAUS GERHARDT

In this paper we derive Lp-estimates for solutions to
the instationary nonlinear problem which are known to be
valid for solutions to the linear problem. Since the esti-
mates do not depend on t explicitly, they can be used to
prove an exponential decay of the solutions if t goes to
infinity.

O* Introduction* The regularity of the weak solutions1* to
the Navier-Stokes-equations is an outstanding problem in the mathe-
matical theory of fluid dynamics. In the three-dimensional case the
answer to this question is still unknown in general, though definite
answers have been given in the case of small data for arbitrary
large times, and in the case of large data and small time intervals,
cf. the remarks in [4, Chap. 6].

In the two-dimensional case the problem is much easier to
settle: it is well-known that the (unique) weak solution to the
Navier-Stokes-equations is regular provided the data are smooth
enough. However, the answer is not quite satisfactory since the
results of the Z^-theory of the nonstationary hydrodynamic poten-
tials have not been carried over to the Navier-Stokes-equations, e.g.,
to prove that the solution has square integrable second derivatives
one has not only to assume that the external force is square inte-
grable but also that it has a square integrable time derivative.

Recently, v. Wahl filled this gap in proving that in dimension
two the solution of the Navier-Stokes-equations has r-summable
second derivatives if the right-hand side of the system is r-summa-
ble for 2 <̂  r < oo. Actually, he gave a detailed proof in the case
r = 2, and indicated the steps necessary to prove the general
result.

The aim of this paper is to give a simple proof of v. WahΓs
result. To prove the .[/-estimates for arbitrary r ^ 2 we apply
the results of Solonnikov [7, § 17] valid for the linear Stokes-
equations.

In the interesting case r = 2 we shall give an elementary proof
relying only on GronwalΓs inequality and a well-known interpolation
theorem of Nirenberg. In this case we shall obtain an a priori
estimate which does not depend on time explicitly. From this result
we deduce a number of interesting conclusions concerning the solu-

1 In the sense of Hopf [2].
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tion's behaviour at t = °o.2)

Section 1 is concerned with preliminaries and with the state-
ment of the ί/r-estimates in the case of a bounded domain. The
estimates will be proved in §§ 2 and 3.

In § 4 we prove that the solutions of the Navier-Stokes-equations
are uniformly bounded in x and t, and that an exponential decay
is valid for both

sup \u(x, t) 1 and ([ \Du(x, t)\?dx\/2

In § 5 we prove corresponding results for the Cauchy problem
with the only exception of the exponential decay.

In § 6 we show that the solutions vary continuously in the
space Wt\Qτ) Π L°°(QT) if the data vary appropriately, under modest
assumptions on the data.

Finally, in § 7 we prove that stationary solutions of the Navier-
Stokes-equations can be obtained as limits of instationary solutions
in the space HltS(Ω) Π L°°(Ω) provided the norm in L\Ω) of the
external force is sufficiently small. The convergence in the respec-
tive norms is of exponential type.

1* Statement of the main results in the case of a bounded

domain* The fluid under consideration will occupy a cylinder Qτ

in space-time,

QT = Ω x (0, T) ,

where Ω is a bounded open set in R2 and T a positive real number.
The motion of the fluid will be governed by the so-called Navier-
Stokes-equations^

nά - Δv,j + uiD
iuύ + Djp = fό ,

div u — 0 ,

( 1 )

- u0

for j = 1, 2, where u = (ulf u2) is the velocity of the fluid, f =
(/i»/a) the external force, uQ the initial velocity, and where p is
the (unknown) pressure. We adopt the convention to sum over
repeated indices from 1 to 2.

The linearized form of (1) looks like
2 v. WahΓs estimate depends on time explicitly, so that he cannot control the

solution's behavior at ί=oo.
3 For simplicity we assume the kinetic viscosity to be equal to 1.
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div u = o ,

(2) u\BΩ = o,

u(0) = u0 .

In order to describe our results appropriately we recall the
following standard notations and definitions: Hm>r(Ω), m ^ 0, r ^ 1,
are the usual Sobolev spaces where m indicates the order of diffe-
rentiation; m is allowed to be an arbitrary nonnegative real
number. For m = 0 we obtain the usual Lebesgue spaces Lr(Ω).

If V is a Banach space then 1/(0, T; V) denotes the space of
all Lebesgue measurable functions u from (0, T) into V with finite
norm

1/r

)G T

o o .for 1 ^ r < co and with the usual definition for r =
We denote with W}'\QT) the space of all measurable functions

u = u(x, t) defined in Qτ having generalized derivatives up to order
two with respect to x and up to the first order with respect to t
such that the norm

) ( X N r + \u\r)dχdt +

is finite for 1 <; r < oo, where || |L,r indicates the norm in Hm'r(Ω).
Vector valued functions u have always two components ut and

u2. We remark that we also use the notations for spaces of real
valued functions to indicate spaces of vector valued functions, e.g.,
u e Hm'r(Ω) means uά e Hm>r(Ω) for j = 1, 2.

Finally, let

J0Λ(Ω) ={ue H£>\Ω): div u = 0} ,

let J0(Ω) be the closure of J0Λ(Ω) in L\Ω), and let G(Ω) be the
gradient fields of all real valued functions φeL\QQ(;Ω) such that
DφeL\Ω).

If Ω is a bounded open set in R2 with dΩeC2 then L\Ω) is
decomposed into the orthogonal complements G(Ω) and J0(Ω), i.e.,

(3) L\Ω) =G(f l )0JoW

(cf. [4, Chap. 1]).
With these definitions in mind we can state the first theorem

which is due to Solonnikov [7, § 17].4)

4 Solonnikov proved this theorem in the case n=S. The corresponding result for
n=2 can easily be deduced from it as we shall show in the Appendix.
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THEOREM 1. Let Ω be a bounded open set in R2 with boundary
dΩ e C\ Suppose that feLr(Qτ), u0 e H2~2/r>r(Ω), 1 < r < oo, r Φ 3/2,
such that uo\dΩ = o and div u0 = 0. Then, there exists a unique
solution u, p of the equations (2) satisfying

ueWϊ'\Qτ), DpeL'iQr)

and

( \\u\\w^

^ C-{\\f\\Lr(QT) + 11 Uo 11^2-2/^)) ,

where the constant c depends on dΩ, r and on T.

We shall prove a corresponding result for the solution of the
Navier-Stokes-equations, namely,

THEOREM 2 Let the assumptions of the preceding theorem be
satisfied for 2 <; r < oo. Then, the equations (1) have a unique
solution u, p such that for 2 ^ r < oo

ueWi'XQr), DpeLr(Qτ)

and

, κ . I I M I I ^ 1 ^ ) + \\Dp\\Lr{Qτ)

where the constant C depends on dΩ, r, T,

\ (\ \f\2dx) dt, and on \ \uo\
2dx .

In the special case r = 2 we can prove

THEOREM 3. Let u, p be a solution of the equations (1). Then,
the following a priori estimate is valid

, \\u\\w2

2>hQT) + \\Dp\\L2iQτ)

^ AUTXl + Co c1.J2(Γ) exp(co cϊ /1(Γ))} ,

where the constants only depend on Ω, and where

= ( \Duo\
2dx + Γ( \f\2dxdτ

}Ω )Q}Ω

and

I2(t) = sup [ {ul'dxλ'i \Du\2dxdτ .
O^r^ί JΩ )O)Ω
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The proof of the theorems will be accomplished with the help
of the following lemmata.

LEMMA 1. Let feL\0, T\L\Ω)) and uoeJQ(Ω). Then the solu-
tion u of the equations (1) satisfies the estimate

(7)

with some numerical constant c, where

\u\Qτ: = sup (\ \u\2dx\/2 + ( Π \Du\2dxdt)1/2 .
1 0£t^T \jΩ I \Jθ JΩ I

LEMMA 2. Let ueL2(0, T\H^\Ω))y ΩczW. Then

( 8 ) \\U\\IMQT) ^ c \u\Qτ

with some numerical constant c.

LEMMA 3. ( i ) Let ue L4/3(0, T; H2Λ/\Ω)), where Ω is a bounded
open set in 1R2 with Lipschitz boundary. Then

1/3

(9) (Γ|«(ί)l ι<Zί^e.Γ||B||ί:;,,dί sup (( \u\*dx)
JO JO O^t^T \JΩ /

where the constant c depends on Ω, and where

\u(t)\: = SUPIMGE, t)\ .
xe Ω

(ii) Let Ω be as above and let «eL !(0, T; H2 \Ω)). Then

(10) Γ|u(ί)|4c£ί :g<v sup ί \u\2dx'\T\\u\\l2dt
Jo QSt^T JΩ Jo

where c0 depends on Ω.

LEMMA 4. Lβί ^ δβ the projection operator from L2(Ω) onto
J0(Ω), where ΩaM2 is a bounded open set with dΩeC2. Then for
any vector ualued function u 6 JOyl(Ω) we have the estimates

(11) \\&4u\\L2{Ω) ̂  \\Δu\\LHΩ) ^

where the constant c only depends on Ω.

Lemma 1 can easily be derived by multiplying the equations
(1) with u, integrating over the cylinder Ω x (0, t), using the fact
that the integral containing the nonlinear term vanishes, and apply-
ing GronwalΓs inequality, finally.
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Lemma 2 is an immediate consequence of a general interpolation
theorem of Nirenberg (cf. [6, p. 126] and [1, Thm. 10.1]). The esti-
mate (8) can be found in [5, p. 75, formula (3.4)].

Lemma 3 also follows directly from Nirenberg's interpolation
theorem.

Lemma 4 will enable us to give a proof of Theorem 2 in the
case r = 2 being independent of the general result of Solonnikov.
The lemma is proved in [4, p. 67].

2» Proof of Theorem 2* We shall only give a priori estimates
since we can always assume to work with a solution u e W2Λ{QT)
by assuming u0 and f to be sufficiently regular. As we shall show,
this will imply ueW2Λ{Qτ) for any r e (2, oo) provided feLr(Qτ)
and u0eH2~2/r'r(Ω)f]J0Λ(Ω).

We shall consider the cases r = 2, 2 < r < 4, and 4 <; r < oo,
separately.

case, r = 2. We observe that the nonlinear term utD*u
in (1) is summable to the power 4/3 in Qτ since

(12) ( Iu |4 / 3 IDu\4/3dxdt ^ ([ \u\4dxdt Y* ([ \Du fdxdt
)QT \}QT / \}QT I

( I | I \ ^ ([ \\ ([ \Du fdxdY*
)QT \}QT / \}QT

From Lemma 1 and Lemma 2, and from Theorem 1 we thus obtain

(13) l|M|Lj;J(QΓ) ^ C { | | f | | L 4/3 ( Q r ) + || Uo ||H2-.3/2,4/3{ίϊ) + 1}

where c depends on Ω, T, ί |iιo|
2<te, and on Γ ί ί \f\2dx\/9dt. Apply-

ing Lemma 3(i) we then get the estimate

(14)

the constant cι depending on the same quantities as the right-hand
side of (13).

Now, multiplying the equations (1) with —^Δu and integrating
over Qt = Ω x (0, t) we obtain

\Du(t)\2dx
(15)

Iu|21Du\2dxdτ + I \f\2dxdτ+\ \Duo\
2dx

with some numerical constant c2, where we used an appropriate
version of Cauchy's inequality and the fact that u( , t) e JOtl(Ω) for
a.e.t.

We conclude that for any t e [0, T] the inequality
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\Du{t)fdx ̂  c jΓ|uOOI2 t \Du\2dxdτ
(16) Ja * β

+ |ί>«0|
2dίc + |f|"da;dr

is valid. GronwalΓs inequality then gives

\Du(t)\2dx ^ <v \ lDuo|
2dx + | f 2 ω r

• exp(e2- \Du\2dxdτ) .
\ Jojx? /

Inserting this estimate into the right-hand side of (15) and
using (11) and (14) we obtain a bound for

(18)

To get the final estimate, we multiply (1) with ώ, thus deriving
a bound for

\ύ\2dxdt

in view of (16) since «( , t)eJOfl(Ω) for a.e.t.
The estimate for \\Dp\\L2{Qτ) then follows directly from (1).

Second case. 2 < r < 4. As u e Wl\Qτ) and Ω c JR2, we know
that α 6 Lq(Qτ) for any finite q, and that

where the constant c depends on g and on vol Qτ. This follows
either from a general result in [3, p. 186, Thm. 3.4], or can easily
be proved directly by using Stampacchia's version of De Giorgi's
truncation method taking into account that u0 e H2~2/r'r(Ω) for r > 2
implies uQeL°°(Ω).

Moreover, from Nirenberg's interpolation theorem [6, p. 126] we
deduce

x^cWuWU' \ \Du\2dx,

where c depends on Ω, thus getting an a priori bound for

(20) \\Du\\LHQτ)

in view of (17) and (18).
Holder's inequality then shows that the nonlinear term u^u

belongs to Lr(Qτ) for any 2 < r < 4 with an a priori bound for the
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norm depending on \\u\\w2A{Qτ), vo\Qτ, and on r.

Hence, applying Theorem 1 we conclude that u e W2]\QT) and
that an estimate of the kind (5) is valid.

Third case. 4 <; r < oo. We already know that u e W2fl(Qτ)
for any 2 <̂  q < 4. Therefore, u is bounded in Qτ and DM G LS(QT)

for any s e [1, oo), where the respective norms can be estimated by
s and known quantities (cf. [3, p. 186, Thm. 3.4]). Thus, we know
that ujy u 6 Lr(Qτ) for any r 6 [4, oo) with a known a priori bound
for the norm. The final result then follows from applying Theorem
1 once more.

3* Proof of Theorem 3. From the considerations in the first
part of the proof of Theorem 2 we immediately conclude

li,
(21)

[ \f\2dxdτ+ Γί \u\2 \Du\2dxdτ\
oJβ JθJi2 )

where the constant cx depends on Ω only. The last integral on the
right-hand side of this inequality can be estimated from above by

Du\2dxdτ

= 2 "

where ε is any positive number.
Now, we apply (10) and choose ε equal to

\c [
{ ° l Ogrgί JΩ

to obtain

\u\\2

wy{Qt) ^

( 2 2 ) fVf V
+ c0 cx sup 1 I u \2dx \ I I Du \2dx) dτ

O^rgί }Ω J O \ J Ω /

for any 0 ^ t ^ Γ. Jx(ί) is defined as in Theorem 3.
On the other hand, we have the trivial estimate

, t)\2dx ^ \\DuQ\2dx + \\u\\2

wγ{Qt) .

Assuming cλ to be greater than 1 we therefore deduce from (22)
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f \Du(x, t)\2dx ^ cr J3-Ji

Γ<23) Γ fvr v i
+ co β ι s u p l \u\2dx ( jZ)«|2(ίx )dτ\ .

Ogrgί Jβ JoVJ.O / j

GronwalΓs inequality and (22) yield to the desired estimate (6).

REMARK 1. There is still another variant of estimating the
nonlinear term

Γ( \u\2ΊDu\2dxdτ
Jejj2

in (21). Namely, from Nirenberg's interpolation theorem it follows
that

[ I u |21 Du \2dx ^ ([ I u\4dx Y/2 ([ \Du\<dxY*
(22) 1 Q K ] Ω ' K ] Ω '

where c = c(Ω). Hence, we obtain from (21)

\\u\\w2>ι{Qf) ^ Ci •{\ \Duo\
2dx + \ \ |/Ί2cϊccά!τ7

9 (Jΰ Joji2 )

'( \Du\2dxλ \u\'dxdτ

from which we deduce an a priori bound as before, since

\ \u\*dxdτ ^ c-\u\Qr.

0 JΩ /

4+ Boundedness of the solutions in the case of a bounded
domain* Assuming the conditions in Theorem 2, the boundedness
of a solution u of the Navier-Stokes-equations in any finite cylinder
QT, 0 < T < oo9 would be guaranteed provided r > 2. But, unfor-
tunately, the bound will depend on T since the Lr-estimate for u
depends on T in general. Though we are convinced that one must
be able to prove (4) with a constant independent of T, the estimates
in [7] are not of this kind.

Nevertheless, we shall be able to prove uniform boundedness of
u with respect to x and t for all t, 0 <; t <; w, and even an ex-
ponential decay with respect to t assuming some further restrictions
on f. The proceeding is as follows:

First we shall prove that

(24) Π \ύ
JO JΩ

'dxdt < const
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for all 2 ^ r ^ 4. Then, in the second step, we look at the station-
ary equations

(25) -Δu + Dp = F

obtained from the instationary's by shifting the nonlinear term and
ύ to the right-hand side.

For solutions of (25) it is known (cf. [5, p. 67]) that

(26) \\u\\n.,rm + \\Dp\\mΩ) ^ c-\\F\\Lr
iΩ)

for all r, 1 < r < oo, where the constant depends on Ω and r.
Combining (24), (26), the condition on f, and the a priori estimates
for the nonlinear term, we conclude

(27) \\u\\wγ{Q^ + H^IU^oo) ^ const

for some r ^ 2, where

Qeo = f i X ( 0 , OO) .

From this estimate the boundedness of u in ζL follows immediately.
In a third step we shall repeat these proceedings showing that

the same results are also valid for v = ueλt where λ is some (small)
positive constant depending on Ω. Thus, we shall have proved the
exponential decay of the solution, and not only the exponential
decay of the supremum's norm but also the exponential decay of

[ I Du(x, t) \2dx .

The first precise result is the following

THEOREM 4. Let u0eH2-2/r>r(Ω), f, feL\Q, oo; L\Ω))y and fe
I/2(Qoo) Π Lr(Qoo) for some r > 2. Then, the solution u, p of the
equations (1) satisfies the estimates

(28) IIKIIH^CO) + \\Dp\\L8[Qoo) £ const

and

(29) \\u\\L~iQoo) ̂  const

for s = min (r, 4), where the constants depend on the data.

Proof. According to what was said above it will be sufficient
to prove the estimates not for u and p but for w — u r), and q=p-7],
where 0 ^ τj{t) ̂ 1 is a smooth real valued function vanishing in
the interval [0, 1] and being identically equal to 1 for values of
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t ^ 2. ιv satisfies the equations

(30) iv — Aw + uDw + Dq == f 3? + 11-97 = # .

We note that w e Wt\Qo.) since u has this property, that

(31) ir(0) = ιfc(0) - 0

and

!

oo / r \ 1/2

\\Q\ff\2) dxdt^ const
in view of the assumptions on f, and due to the fact that ή has
compact support.

Thus, multiplying the differentiated version of (30) with w and
integrating over Qt we obtain

\w(x,t)\2dx + [[ \Dw\2dxdτ

(33)

where we used the relation

uDw — wDu — u ήDu

and an appropriate version of Cauchy's inequality after integrating
by parts in a couple of terms.

Moreover, increasing the constant by the factor two we see
that we can replace the left-hand side of (33) by \ώ\Qt. Then,
using the interpolation inequality for Lp-spaces we estimate

\2dxdτ < II ύ
oJώ

for some a 6 (0, 1). Young's inequality and (8) now yields

+ f"f {u^dxdτ + Π

Hence, we conclude

(34) I w L, ^ const
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and

(35) w e L\QJ) .

Thus, we settled the first step of the announced proceeding.

For the second step we first note that in view of (34)

I Dw(x9 t) \3dx ^ 3(1 I Dw | 2 dxdt ( \Dw \4dxdτ ) ^ const .

Ω \JQoo / VjQoo /

Nirenberg's interpolation theorem then shows

Π \Dw\5dxdt ^ C'(T\\w\\l2dtJ5 (Γ[ \Dw\*dxdτJ/0

(36) ° ^ °
• sup ( 1 I Dw 3 ) <S const .

From (35), (36) and in view of the assumptions on f we there-
fore conclude

(37) -Aw + Dq = F

where

for s = min (r, 4).
Using (26) we then obtain the desired estimate (28) for w and

hence for u.
u is therefore a solution of the equations

(38) ύ - Δu + uDu = fir ,

w(0) - u0 ,

where # e L^QJ and s > 2.
If s is strictly less than 4 then the nonlinear term could be

absorbed by g but we do not need this.
We shall prove the final result as an extra lemma

LEMMA 5. Let ueL2(0, T; J0Λ(Ω)) be a weak solution of (38),
where u0 e J0(Ω) Π L°°(Ω). Then

(39) s u p Q r iiiI £ V2kQ + c \\g\\Ls{Qτ) {\ \u\*dxd\u\*dxdή

where k0 is any number greater than supfl|iio|. The constant c
only depends on s. T can be any positive number the value plus
infinity not excluded.

Proof of the lemma. Let φ be the vector with components
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φ. = sign i v max (|wj — k, 0)

for i — 1, 2 and for k ^ kQ > sup^ |u o | Then

f uDuφdx = ί uDφφdx = 0 ,
J <2 J <2

so that we get from (38)

—ί \φ(x,t)\2dx + ('( \Dφ\2dxdτ
2 J-Q JoJi2

^ ^ /CtC \(8-ί)/8
(\ )

Let

A ( k , t) = {(x, τ ) e Q t : \ u ^ x , τ)\ > k o r | u 2 ( x , τ ) \ > k )

and denote with \A(k,t)\ the Lebesgue measure of this set.
Since the integration in the last integral on the right-hand

side of (40) is only performed over A(k, t) we conclude with the
help of Holder's inequality

— ( IΦ(&, t)\*dx + Γ[ \Dφ\2dxdτ
2 JΩ JOJΩ

hence

Using (8) twice and Holder's inequality we obtain for

\φ\dxdτ
ι h k \ \ A ( h , t ) \ ^ [ \ φ \ d x d ^ [

(41) JA(h,t) JA(k,t)

£ \φ\Li{Qt)-\A(k, tψ* ^ 4 c> \\g\\mQτ) \A(k, t)r~ι" ,

where c is the constant in (8).
Now, we can apply a lemma due to Stampacchia [8, Lemma

4.1] to deduce

(42) s u P ( 2 ί |ιeI ̂  V2K + crc
2'\\g\\Ls{Qτ)'\ A(k0, t)\1/2~ί/s

where the constant cx depends on s.
On the other hand, it is evident that

I A(k09 t) I ^ &o~4 \ \u\4dxdτ .

Thus, (39) is proved.
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For the prove of the exponential decay, we start with the
equations (30). Let

v = weλt ,

for λ > 0. Then, v satisfies

(43) v - Δv - Xv + uDv + Dq = g ,

v(Q) = o ,

where we have set

q = qeu and g = geιt .

Multiplying (43) with v we deduce

— \ \Ό(X, t)\2dx + Γί \Dv\2dxdτ - λ Π \v\2dxdτ
(44) 2 J" J o ^ U h

Since i2 is a bounded domain, it follows that for small λ the
estimate

ί \v(x, t)\2dx + Γί |Dι?|2dα?dr
(45) ]Ω U]Ω

is valid, where c = c(λ).
We therefore conclude

(46) \ v \ Q t ^

The right-hand side of this inequality is bounded provided

Ct / f \ 1/2

(47) ( \f \2dx) *eXτdτ ^ const

in view of the definition of g.

If (47) holds uniformly for all t ^ 0, we obtain from (46)

(48) \υ\Qoo ^ const

and

(49) Π \v\2dxdτ ^ const ,
Jo }Ω

since Ω is bounded.
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Thus, we deduce from (43) with the help of Theorem 3

(50) WvWwi'hQoo) + \\Dq\\L2{Qoo) ^ c o n s t

having in mind e.g., that

(51) u e Lr(Qoo) for all 2 ^ r ^ <χ> .

We then proceed as in the proof of Theorem 4. Differentiating
(43) with respect to t yields

(52) v — Δύ — Xv + vDύ + iiDv + Dq = g

from which we obtain

\v(x, t)\2dx + \ 1 [Dvfdxdτ
(53) J β J o J β

12 'v KL' ̂  ̂ dx Ydx' (L' ύ ̂ dx Ydτ) *
where c = c(λ).

Since it e L9(Q«) for some s > 2 and i; 6 Lr{Q^) for all 2 ^ r < oo

the first integral on the righ-thand side of this inequality is bounded

uniformly in t. The integral involving g is bounded provided

(54) f eu, fext e L\0, oo L\Ω))

in view of the definition of g.
Proceeding then in the same way as in the proof of Theorem

4 we have thus proved,

THEOREM 5. Suppose, that besides of the assumptions in Theo-
rem 4, the conditions (54) are satisfied. Then, for small values of
λ the estimates

(55) sup I if (a, ί ) | ^ c-e~u

and

(56)

are valid for all 0 <5 t < oo, where the constant c depends on λ, Ω,
and on the data.

5. The Cauchy problem* The results of the preceding sec-
tions except that of the exponential decay are also valid for the
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Cauchy problem,5) where the equations (1) are to be satisfied in the
whole plane R2. The reason is that the estimates for the corres-
ponding linear problem hold as follows:

Let for r ^ 2 the expressions
through the assignments

u wγ{Qτ)
and |M0 |2_2 / r, r be defined

u\r

wzA{Q_, = Π \u\rdxdt + Π
r Jo JΩ Jo J

Σ \DlDju\rdxdt
Ω i,j=i

and

if r > 2, and

uQ\l2 = \Duo\
2dx .

Note that in our case Ω = ]R2.
Then, for the solution of the linear Gauchy problem the estimate

(57) \\Dp\\LriQτ) ^ c {|iιo |2-- 2 / r, r

is valid with some constant depending only on r. It is the same
estimate as for solutions to the heat equation (cf. [7]). The proof
of (57) is rather simple since the pressure can easily be expressed
with the help of a Newton potential in this case. The Calderon-
Zygmund inequalities and the estimates for solutions to the heat
equation then yield the result.

Moreover, the Nirenberg-interpolation-theorem which we used
so extensively above also holds in Ω = M2 involving only derivatives
of the highest order in the respective norms, e.g., the estimate (10)

is valid with \\u\\2

22 replaced by Σ5y=i( [DWu^dx .

Therefore, the Theorems 2 and 3 are also valid in this case
without any change in the proofs, if we observe that the estimates
should be read as indicated in (57).

Since the estimates hold uniformly in t we conclude from
Lemma 5 that the following theorem is valid.

THEOREM 6. Let uQ e L~(M2) n Λ(R 2 ), DuQ e L2(1R2), and let \ uo\^2/r,r

be finite for some r > 2 . Assume moreover that feL\0, °o; L2(R2))Γ)
L2(Qoo) Γl Lr(Qoo). Then, the solution u, p of the equations (1) 'satis-
fies the relations

5 We shall only prove a priori estimates. For the existence of a solution we refer
to a forthcoming paper treating the Cauchy problem in arbitrary dimension.
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(58) \u\Qoo£ const,

(59) \U\W\-HQOO) + \\DV\\LHQOO) ^ c o n s t

for all 2 ^ s <| ?%

(60) ||M||/~ ( ρ o o,^ const.

6* Continuous dependence on the data* We shall show that
the solutions of the Navier-Stokes-equations depend continuously on
the data in the norms of the spaces W2

2Λ(QT) and L°°(QT). The
value plus infinity for T is allowed.

THEOREM 7. Let uif pif i = 1,2, be solutions of the Navier-
Stokes-equations to the data uoi and fif and let u, p, u0, and f be
the differences of the corresponding terms.

Then, the following estimates are valid

lτ ^

(62) | |if | |8^i ( Q r ) + \\Dp\\lΛQτ) £ c2

and

(63) sup β r IuI ^ λ/2h + cz kόa \u\β

Qτ ,

where cx is a numerical constant, c2 depends on Ω and || W H^i^^,

i = 1,2, c3 depends on \\Ui\\wz>\Qτ) and \\Dpi\\Lr{Qτ)9 k0 is any positive

number greater than \\uo\\L^iΩ)f and a and β are positive numbers

depending on r .

We omit the proof of the theorem since the estimates either
follow directly from the preceding theorems and their proofs, or
can easily be deduced with the help of similar techniques. We only

rtr

note that to prove (62) one has to estimate an integral like I I I ux I
2

JoJβ

\Du\2dxdτ as follows

(64)
Γί lu^ lDufdxdτ £
JoJβ

with some appropriate number a e (0, 1).
As a corollary we obtain
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THEOREM 8. Let the data uoi and fif i = 1,2, be such that the
constants in the preceding theorem are finite. Then, the expressions
on the left-hand side of the estimates (61), (62), and (63) tend to
zero if u20 converges to u01 in L°°(Ω) Π Ho'2(Ω) and f2 to ft in L\QT)f]
1/(0, Γ; L\Ω)). T might be infinite.

Proof. We only need to prove the third assertion: Since in
view of (61) \u\Qτ tends to zero we conclude from (63)

(65) lim sup (sup | u |) ̂  V~2kQ,
QT

where JcQ can be an arbitrary positive number for lim ||MO||L«>U?) = 0.
Letting kQ go to zero we obtain the result.

7* On the attainability of stationary solutions* It is well-
known that solutions of the stationary Navier-Stokes-equations

— Δυ + vDv + Dp = f ,

(66) div i; = 0 ,

v\dΩ = o

exist and are of class H2>2(Ω) provided that feL\Ω) and that Ω is
a bounded open set with dΩ e Cz. Physically, stationary solutions
are only of interest if they are obtained as the limit of instationary
solutions if t goes to infinity. We shall show in the following that

G \ 1/2

\f\2dx) is sufficiently small de-
pending on Ω and the viscosity.

THEOREM 9. Let u be a solution of the instationary Navier-
Stokes-equations corresponding to the data u0 and fy where uoe
H2~2/r'r(Ω) for some r > 2, and where f = f{x) eL\Ω). Then, if t
goes to infinity u tends to a solution v of (66), which will there-

G \ 1/2

\f\2dx) is sufficiently small.
Ω J

For the difference w = u — v the estimates

G \l/2

\Dw(x, t)\2dxj ^ c-e~λt

and

(68) sup|α?(#, t)\ ̂  c e~u

Ω

are valid, where the constants depend on Ω and the data.

Proof. Let v be a solution of (66) and let w = u — v. w satis-



/^-ESTIMATES FOR SOLUTIONS 393

fies the equations

ιb — Δw + wDiv + vDw + wDv + Dp — o

( 6 9 ) if? I ax, = o ,

ιi?(0) = ιι0 — a? = u?0 .

Multiplying (69) with w we obtain

-M |iφ;, ί)|2cZx + Γ(
2 Jβ JθJ

( I
θJi2(70)

But, from the Sobolev imbedding theorem we obtain

I w\4dx
/2 ^ e, f Dw\2dx ,

1/2

(71)

and from (66)

(72)

or

(73)

Assuming therefore

(74)

we conclude from (70)

(75)

from which we obtain

(76)

We can now argue as in the proof of Theorem 3 to deduce

(77) weWi KQJ), DpeL\Qm),

namely,
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II w\\w2

2>hQt) + \\Dp\\2

LHQt)

(78) ^ c ίί \Dw,\2dx + Γ( l ^ | 2 | ^ ^ | 2 ^ ώ τ + Γ( |r

+ I \ιv\2-\Dv\2dxdτ
JθJi2

Since v is bounded the only difficulty arises from the last
integral on the right-hand side. But, using the Sobolev imbedding
theorem twice we conclude

Γ( \w\2 \Dv\2dxdτ
(79) J o J β

Following now the arguments of the proof of Theorem 3 we
get (77).

Moreover, arguing as in the proofs of the Theorems 4 and 5,
it can easily be checked that the results of those theorems are
also valid for w and weλt if λ is sufficiently small. The estimates
(67) and (68) now follow immediately.

REMARK 2. If p and q are the pressures corresponding to u
and v then pf = p — q is the pressure corresponding to w. In view
of (77) we know Dp' eLXQJ), and the same result holds also for
D(p'eλt). p'eu is the pressure corresponding to weλt. Moreover, let
η = η(t) be a smooth function vanishing in neighborhood of zero
and being identically equal to one for t greater than two.

Then,

w = weλt Ύ] and p — p'eλt 7]

satisfy an equation from which we can rather easily deduce, after
having differentiated it with respect to ί, an a priori bound for

\\w\w2

2>hQoo) + I I ^ I L ^ o o )

For the proof we have only to use the already known estimates
for \w\Qoo and \\W\\WIΛ{QOO).

We therefore conclude

S / f oo Γ . \ 1/2

\Dp(x, t)\2dx ^ 2 (\ \Dp\2dxdt) .
\\Dp\

hence

1/2
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(81) ( j IDp'(x, t) \2dxj2 ^ c e~u

for all t ^ 2.
Thus, we have an exponential decay not only for the velocities

but also for the pressures.
Similar arguments are also applicable in the case of Theorem

5 provided the external force f is such that in addition to the old
assumptions d/dt(feλtη) is square integrable over Q^

Appendix* Here, we shall show, how the Lp-estimates of
Solonnikov valid for solutions of the three-dimensional Stokes-equa-
tions can be used to derive the same estimates in the two-dimen-
sional case.

Let u = (u19 u2) be a solution of the equation

ii — Δu + Dp = f ,

(Al)

M(0) = u0

in a cylinder Qτ — Ω x (0, T), where ΩaH2 is a bounded open set
with C2-boundary. p is the corresponding pressure.

We extend (Al) to a three-dimensional problem by setting

ϊι(x\ x\ x\ t) = (u^x1, x\ t), u2(x\ x2, t), 0),

p(x\ x\ x\ t) = p{x\ x\ t) .

ύ0 and f are similarly defined.
Then ύ solves in Qτ = Ω x (0, T), β = flxK the equation

ύ - Δu + Όp = f ,

div ίi = 0 ,
(A2) Λ

M(0) - iίo .

Unfortunately, Ω is unbounded so that the results of Solonnikov
cannot be applied directly. Truncating the domain would yield a
nonsmooth boundary, also.

Therefore, let ζ be a cut-off function, 0 ^ ζ ^ 1, ζ(0) = 1, and
set

v(x\ x2, x\ t) = u(x\ x2, x\ t)-ζ(x3) .

Then, v satisfies



396 CLAUS GERHARDT

div v = D'iuά) - D%ζ + %O% = 0 + ^3 #3C = 0 ,

since %3 = 0, and

Δv = z/u ζ

since DίiDζ — 0.
Hence, v solves

d - Δv + D(pζ) = f ζ

(A3, d ; ϊ S = °

and has compact support with respect to xz.
Applying the estimates of Solonnikov [7, § 17] we obtain for

1 < r < oo, r Φ 3/2, and for all t, 0 ^ t ^ Γ,

\v\r dxdτ + [t[jΔv\rdxdτ j

(A4)

where c = c(r, T, 3i2, ζ).

To simplify the estimates we observe that e.g., \ A|ί>|r<i^ is equal

to

( \uYdx- Γ \ζYdτ .

Thus,

[*[ u\rdxdτ + Π \Δu\rdxdτ

(A5) ^ {

+ Γ( |f |rda?dr + Γ( [uΓdlccdr + Γ( \p\rdxdτ\
JoJΩ JoJΩ hJΩ )

with some new constant c.
To estimate the integral involving p on the right-hand side we

go back to (Al) taking the divergence to obtain

Δp = div f in Ω

^- = f'V + zfu v on 342 .
dv
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Fixing p by requiring that \ pdHγ = 0

we see that

(A6) p(x, t) = [ N(x, y) div fdy + ( N(x, y){f v +
}Ω J dΩ

where N is the Neumannkernel, e.g., if dΩ is straight N(x, y) = c
logflα? — i/l). In any case JV satisfies

?, y) I ̂  :—-—r and | D2N(x, y) \ £
\χ - y\ \χ - v\

provided dΩ is of class C2. The symbol D2N means the second
derivatives of N.

Integrating by parts in (A6) we conclude

p(x, ί) = - ( DyN(x, y)Audy - [ DyN(x, y)fdy
JΩ JΩ

from which we derive (cf. [7, Lemma 9] and observe that n = 2
in our case)

dx

ί \p\rdx £ ε [ \Au\rdx + Λ \Du\rdx
)Ω )Ω )Ω

(A7) + cλ \f\rdx ^ ε( \Au\rdx + ε ( \Au\r

)Ω )Ω )Ω

+ cλ \u\rdx + cΛ \f\rdx ,
dΩ )Ω

where we used Nirenberg's interpolation lemma e.g., to deduce the
second inequality, ε is any positive number.

Inserting this estimate in (A5), where ε is appropriately chosen,
we obtain

Γf \u\rdxdτ + [*[ \Au\rdxdτ + [[ \Dp\rdxdτ
} Q } Ω JoJi2 J o J ώ

Now, using the simple estimate

[ \u(x, t)\rdx £ [ \uo\
r + c f ' f l ύ l - l u l ' ^

}Ω J.Q JoJ.(?

^ ί |uolr + εΓf \ύ\rdxdτ + c,f*ί \u\rdxdτ
JΩ JOJΩ JoJi?

and taking

II Wo IU' ^ c ||wo||2_2/r,r
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into account, we conclude from (A8)

( \u(x, t)\rdx ^ c- j||M0||2-2'r,r + Π \f\rdxdτ + Γ( \urdxdτ\ .

GronwalΓs lemma then yields to

κ(B, τ)\'dx £

for all 0 ^ τ ^ t.
Going back to (A8) with this estimate we obtain the final result.
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