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UNIVERSAL DERIVATIONS AND UNIVERSAL
RING CONSTRUCTIONS

GEORGE M. BERGMAN AND WARREN DICKS

If a ϋΓ-ring S is constructed from a iΓ-ring R by adjoin-
ing certain new generators and relations, then the S-bimodule
Ωκ(S) with a universal ϋΓ-derivation d: S -+ΩK(S) can be con-
structed from the corresponding ϋN-bimodule ΩK(R) by extend-
ing scalars to S, and adjoining formal derivatives of the new
generators and relations. By studying this bimodule it is
shown that a large number of natural universal construc-
tions preserve the class of right hereditary iΓ-rings (K semi-
simple Artinian), including the constructions of universal
localization (which had resisted earlier techniques) and
certain direct limits of known constructions. The same
technique gives information on Euler characteristics of
modules (Lewin-Schreier formulas). To study universal local-
izations of a ring R which may not contain a semisimple
Artin ring K, a different technique is used.

Let R be a ring (associative, with 1) and /: P —> Q a homo-
morphism of finitely generated protective right iϋ-modules. Then
there exists an ϋί-ring S = R < f~ι > having a map of projectives,
f"1: Q (8)RS->P(g)RS inverse to /(more precisely, inverse to /(g^S),
and such that S and f~ι are universal for this property. This con-
struction generalizes that of adjoining to R a universal inverse of
an element feR. We may simultaneously adjoin such inverses to
a whole family of maps. We shall call an i?-ring S so obtained a
universal (2-sided) localization of R. The main result of this
paper—of which we shall prove two versions by two different
methods—is:

(0) A universal localization S of a right hereditary ring R is
right hereditary.

Universal localization was one of a large class of constructions
examined in [2] and [3], including also the formation of the
coproduct S of a family of rings Ra, the universal adjunction to a
ring R of an isomorphism between two given finitely generated
projective J?-modules P and Q, and the adjunction to R of a uni-
versal idempotent endomorphism of a finitely generated projective
module P. For these last three and many others, it was proved
that when the construction is performed "over" a semisimple Artinian
base ring K, a large part of the module theory of the constructed
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ring S reduces to that of the given rings. In particular, if the
given rings have right global dimension <*n for some positive n,
then so does S.

However universal localization, and the similar constructions of
universal right and left localization (adjoining 1-sided inverses to
elements or maps) were stubbornly resistant to the techniques used
there.

The first of the proofs of (0) that we give here, will yield the
result "if the given rings are right hereditary then the constructed
ring is right hereditary" not only for 2-sided localization, but also
for universal right and left localization, for all the constructions
treated in [2] and [3], and for a large class of direct limits of such
constructions. But like the methods of [2] and [3], this approach
requires the assumption of a semisimple Artinian base ring K, over
which the constructions are performed. Indeed, most of these con-
structions are sensitive to base ring, and fail to have such good
properties when performed over other sorts of base ring, such as
Z. Gf. [18], and [2] Example 12.1. For another example, if k is
a field, the coproduct of two copies of the polynomial ring k[t] over
the common subring k[t2] will, like the example from [2] just cited,
have global dimension 2, though their coproduct over k, a free as-
sociative algebra, is hereditary.

However, for reasons of general nonsense (see last paragraph of
§2.9 below) the construction of universal 2-sided localization is inde-
pendent of base ring. Our second proof of (0) will establish (0) for
this construction only, but without reference to any subring K.

Let us now sketch the approach of the first proof. If K—>R
is any ring homomorphism, there exists an iϋ-bimodule ΩK(R) with
a universal iΓ-derivation d:R->Ωκ(R) (cf. [6]). This fits into a
short exact sequence (recalled below, (61)) which is intimately con-
nected with the module theory of R. In particular, when K is
semisimple Artinian there is a simple criterion in terms of ΩK(R)
for R to be right hereditary (Proposition 3.1). But for all the
universal constructions in question, the bimodule ΩK(S) associated
with the constructed ring S can be neatly described in terms of
the corresponding bimodules for the given rings (shown in § 2). It
will follow that if the given rings are right hereditary, so is the
constructed ring (Theorem 3.3).

This method does not yield the detailed information on the
category of S-modules that was obtained in [2] and [3] for most of
these constructions. However, the conclusions that if the given
rings Ra are semihereditary or of global dimension ^n (for n > 0)
then S will also be so can again be obtained if we assume S is flat
over the Ra. In fact, the constructions treated in [2] and [3]
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always do yield flat extensions; but universal localization may not!
We give examples in § 4 of a semihereditary ring (in fact, a semifir)
having a universal localization that is not semihereditary (nor even
1-hereditary), and of a ring of global dimension 2 which has a uni-
versal localization of global dimension oo.

A nice feature of this approach is that it is fairly easy to keep
track of what happens when one goes to a direct limit of construc-
tions, because Ωκ respects colimits. As an application, we shall be
able to strengthen a result of [3] to conclude that any abelian semi-
group satisfying some obvious necessary conditions can occur as the
full semigroup (under 0 ) of isomorphism classes of finitely generated
protective right modules over a hereditary ring (Theorem 3.4 and
paragraph following).

We shall also generalize some results of J, Lewin [20] on Euler
characteristics of modules (§ 3.8).

We now sketch our other method of proving (0), this time
without a base ring. One knows that if R —> S is a flat ring epi-
morphism, then one easily obtains r.gl.dim. S <; r.gl.dim. R. We
shall show that if one only wants this inequality for the case
r.gl.dim. R — 1, then the condition "S is flat" can be weakened to
Torf (S, S) = 0. We then prove that the latter equation holds for
all universal localizations. To do so we borrow a trick from [2],
[3]: Verify the result in a "generic" case, and reduce the general
case to this one via pushouts and matrix rings. The hardest work
is in showing that our generalization of flatness (unlike flatness
itself) respects pushouts of rings.

1* Conventions and general observations. All rings will be
associative with 1.

Let us fix a ring K. Then a K-ring will mean a ring R given
with a homomorphism K^R. Homomorphisms of j£-rings are ring
homomorphisms R —> Rr forming commuting triangles with the given
maps from K.

If £ is a bimodule over a J£-ring R, then a K-derίvatίon from
R to B will mean a homomorphism of abelian groups, δ: R—> B,
which satisfies

δ(xy) = (δx)y + x(δy) (x, yeR)

δa = 0 (aeK) .

Let (R, B) denote R(& B made a i£-ring using component-wise addi-
tion, and with multiplication and iΓ-structure given respectively by

(r + δ)(r' + 60 - ττf + (rV + br') (r, r' e R; 6, V e B)

UίR,B) = OLR + 0B (aeK) .
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Then a JSΓ-derivation J? -> B can be characterized as a map d
such that the map r\-+r + δr is a homomorphism of if-rings
R —> (jβ, B). (Compare the characterization in [6], Introduction.)

Given a iΓ-ring R9 there exists by general nonsense an
iϋ-bimodule ΩK(R) with a universal i£-derivation ώ: R—> ΩK(R). (This
is the i2 = S = T case of the (S, T)-bimodule called Ω[K>R)(S, T) in
[6].) If R is presented as a if-ring by a set of generators X and
a set of relations J£, then ΩK(R) will be presented as iϋ-bimodule
by a set of generators {dx \ x e X} and the relations obtained by
formally differentiating the equations of Z. (E.g., if R is given by
two generators x, y, and one relation xay = β for some a, β eK,
then the iϋ-bimodule ΩK(R) will be presented by generators dx and
c?2/ and the one relation {dx)ay + xa{dy) = 0.) Hence, if S is a
iΓ-ring obtained by adjoining to R additional generators X' and
additional relations Zr, ΩK(S) may be obtained from ΩK(R) by first
tensorίng on both sides with S to get an S-bimodule, then adjoining
the corresponding new generators and relations.

If P is a right module over a ring R, and S is an i2-ring, then
the S-module P(g)BS will, when there is no danger of ambiguity,
frequently be abbreviated P®. Likewise if P is a left module we
will write ®P for S (x) P and when β is a bimodule, ^E® for
S (x) 2? (x) S. (Aside from the advantage of brevity, this will have
the syntactic value of allowing us to refer to P® while S is being
defined.)

The ring of n x n matrices over R will be denoted MJJR). If
B is an iϋ-bimodule (possibly R itself), then mBn will denote the set
of all m x n matrices with entries in B, which is in a natural way
an (MJJR), ikf%(JB))-bimodule; equivalently, a right ikfw(i?)-module on
which Mm(R) acts on the left by endomorphisms, or a left Mm{R)-
module on which Mn(R) acts on the right. When one of m or n is
1, this superscript will be omitted, so for instance, mR denotes the
free right ίί-module of rank m, represented by column vectors of
height m, and its endomorphisms are represented by members of
MJJR) acting on the left. More generally, of course, we can
multiply nonsqnare matrices of appropriate sorts, e.g., mRn x nBr —>
mBr, and also form rows or columns of elements of 1-sided
J?-modules.

Added in proof. If AemRn, the image of nR under A will be
written AnR. We did not realize that a superscript cannot be
brought close to the left of an italic letter. So the reader must
keep in mind that expressions like AnR should be read as A(nR),
not as (An)R. Likewise, RmA means (Rm)A, the image of Rm under
the right action of A.)
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If A = ((<%)) e mRn and δ:R-+B is a iΓ-derivation, we shall
write δA for the matrix ((δaid)) emBn. It is easy to check that for
matrices as for elements:

δ(A + A') =δA + δA'

(δAAf) = A(δA') + (δA)Af

δA = 0 if A e mKn .

Note that if δA = 0, it does not follow that δA' — 0 for any
similar matrix A! = PAP~\ (The reader may obtain the correct
formula relating δA' and δA by differentiating the relation PA — A'P.)
Hence we cannot speak of "applying δ to a module homomorphism",
but only to a matrix representing a homomorphism of free modules,
written in terms of specified bases.

2* The behavior of ΩK(JR) under universal constructions*

Construction 2.1. Universal 2-sided localization. In the "clas-
sical" form of this construction one takes a subset θ of the given
ring R, adjoins a new generator ua to R for each a eθ, and imposes
relations uaa = aua = 1, getting a ring R < a~ι (aeθ)> or briefly,
R(β~ιs). The more general case where θ consists of matrices over
R (not even necessarily square) offers no essential complications: if
Aeθ is an mxn matrix, we introduce an nxm matrix UA of new
indeterminates and the appropriate matrix relations.

Inverting a morphism of finitely generated protective modules,
a:P->Q is a bit more complicated. We first choose representations
of P and Q as direct summands of free modules

P = EmR where E2 = E, EeMm(R),
( } Q = FnR where F2 = F, FeMn(R),

say with complements P' = (/ - #)mi2, Q' = (/ - F)*j?. Then α can
be represented by a homomorphism mR -> wi? which kills Pf and has
image in Q, i.e., by an wxm matrix A satisfying

(2) AE^A^FA.

A map from Q to P inverse to a would be represented by an
mxn matrix U satisfying

EU = U - UF
( 8 )

So to introduce such an inverse universally, we adjoin nm in-
determinates ui3- and impose the relations (3). (Cf. [3], § 3.) The
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matrix U over the resulting ring S will determine an inverse u to
the map a®: P® —> Q®. Though our construction was based on the
nonunique choice of the identification (1), the result is unique up to
canonical isomorphism because of its universal property. Likewise,
generally, given a family Θ of morphisms a: Pa —> Qa of finitely
generated protective right i?-modules, we get a ring

S = R (θ-1) = R (a~ι: Qf > P®a (α e θ)> .

We shall now show

(4) If R is a i£-ring and S = Bζβ"1} a universal 2-sided localiz-
ation, then ΩK{S) = ®ΩK(R)® (that is, the S-bimodule
S(g)RΩκ(R)(g)RS).

We shall do this by showing that ®ΩK(R)® has the correct uni-
versal property. First, to obtain a derivation ds: S —> ®Ωκ(R)®t con-
sider the ring homomorphisms

By the universal property of S = R(θ~1} there will exist a
homomorphism making the diagram commute if and only if each of
the iϋ-module homomorphisms α: Pα —> Qa in β becomes invertible on
extending scalars to the ring (S, ®ΩK(R)®). But note that ®ΩK(R)®
is a nilpotent 2-sided ideal of (S, ®ΩK(R)®), and by construction of
S, the given maps are invertible modulo this ideal. Inverses of
morphisms of protective modules lift modulo a nilpotent ideal ([1],
Prop. IΠ.2.12(a), p. 90), hence the desired ring map exists, and its
second component will be the desired derivation.

The universal property of this derivation is shown similarly.
Given a i£-derivation δ: S -> B where B is an S-bimodule, we first
use the universal property of ΩK(R) to factor δ\R through ΩK(R),
then the universal property of extension of scalars to factor the
resulting map through an S-bimodule homomorphism (dotted arrow
in (6)):

( 6 )
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This makes the upper triangle of (6) commute. We need com-
mutativity of the lower triangle; to get this recall that R —• S is
an epimorphism in the category of rings, i.e., any two ring maps
Sz% T agreeing on R must be equal. (This is because the image of
S under any ring homomorphism is generated over the image of R
by the components of 2-sided inverses of module-maps, and 2-sided
inverses are always unique.) Applying this to maps S —> (S, B) we
see that any two derivations S —> B agreeing on R are equal. This
proves the required commutativity and completes the proof of (4).

Let us now find explicit formulae for the action of d on the
generators we have introduced.

If Θ consists merely of elements of R, we can apply d to the
equations aa~ι = 1, α-1α = 1, getting

( 7 ) (da)a~ι + a(da~ι) = 0 , {da~ι)a + a'1 (da) = 0 ,

either of which is equivalent to

(8) da'1 = -a-\da)a~l .

Again the matrix case is essentially the same. For the general
case, let us apply d to the last equation of (3), getting A(dU) +
(dA)U=dF, then left-multiply by U, getting E(dU) + U(dA)U= U(dF).
If we now apply d to the equation U — EU to get dU = E(dU)J

Γ

(dE)U, and eliminate E(dU) between this and the preceding equa-
tion, we get

( 9 ) dU= U(dF) - U(dA)U + (dE)U

the desired formula. (Cf. (8).)
Equation (9) (or in the "easy" case, (8)) shows how when one

goes from R to S, the new relations introduced in Ωκ reduce the
new generators to S-bimodule expressions in the old generators.
Now, one can also verify a converse result, that (9) implies all the
relations obtained by applying d to (3) (assuming (2) and the result
of applying d to it as given). Hence the new relations in ΩK(S) do
nothing but reduce the new generators to expressions in the old
elements, and this yields an alternative proof of (4). However, the
verification alluded to, though immediate when Θ £ R, where it is
just the observation that (8) <=> (7), is a rather opaque computation
in the general case, which is why we preferred to give a conceptual
proof of (4).

Having the above description of Ωκ(S)f we could now prove
that if R is right hereditary, so is S. (The reader who wishes
may turn directly to § 3 for this proof.) However, we wish to get
similar results for other universal constructions, and for those such



300 GEORGE M. BERGMAN AND WARREN DICKS

as 1-sided localization which depend nontrivially on the base ring,
the development of a corresponding description of ΩK(S) will take
more work. Subsections 2.3 if. will be devoted to this development.

First, however, let us note a natural "appendage" to the con-
struction just considered. It was noted in [3] that the construction
of universally annihilating a finitely generated protective module
P — EmR, i.e., dividing out by the idempotent ideal generated by
the entries of E, was a special case of universal localization, equi-
valent to universally inverting the zero endomorphism of P, or the
m xm matrix I — E. Hence (4) applies to this construction. But
there is a more general result:

Construction 2.2. Dividing out by an idempotent ideal.

(10) If R is a K-ring and S — R/I, where I is an ideal of R with
Γ = I, then ΩK(S) = ®ΩK{R)®.

For we know that ΩK(S) may be obtained from ΩK(R) by
tensoring on both sides with S and imposing the relations

(11) dl = 0 .

But from the hypothesis / = I2 we see that in ΩK(R)

(12) dl £ (dl)I + lidl) £ ΩK(R)I + IΩK(R)

so the relations (11) become vacuous when we tensor ΩK(R) with
S = R/I; so ΩK(S) is described by (10).

((4) and (10) should not lead one to guess that ΩK(S) = ®ΩK(R)®
for all ring epimorphisms R-* S. In fact a ring map R —> S is an
epimorphism if and only if the natural map ®ΩK(R)® —> ΩK(S) is sur-
jective; this can be deduced from [6], Theorem 18, putting our
present R, S for K, R, and ignoring our "K". Examples where this
map is not injective are given by any factor-map R ->R/I where I
is a nonidempotent ideal and K is, say, a field. This can be deduced
from [6] Theorem 3, taking a = h = I; cf. (97) below.)

Construction 2.3. Coproducts of K-rings. Let {Ra)aeA be a
family of iΓ-rings, and S = MARa its coproduct in the category of
i£-rings. (In old language its "free product amalgamating K".)

S may be presented as a ϋΓ-ring by the disjoint union of
families of generators and relations for the separate Ra's. Hence
ΩK(S) is presented as an S-bimodule by the disjoint union of the
same systems of generators and relations that arise in presenting
the Ωκ{Ra) as ϋJα-bimodules. This yields

(13) If S = MARa , then ΩK(S) = @A ®Ωκ{RaT .
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An immediate generalization of this argument gives:

Construction 2.4. Colίmits of K-rίngs. Let ^ be a functor
from a small category A to the category of if-rings, and S its
colimit. For every object a e Ob(A) we form the ^(αO-bimodule
Ωκ(&(a)), and for every morphism a —> β in A, we get a morphism
of ^(α)-bimodules, Ωκ(&(a))->.Ωκ(&(β)), which on tensoring with
S gives a morphism of S-bimodules ®Ωκ{^{a))® -> ®Ωκ{&{βψ. We
now have

(14) If S=colimAέ%(a), then £*(S) = colim^®£*(^(α))® (where the
first colimit is in the category of if-rings and the second in
the category of S-bimodules).

Construction 2.5. Tensor rings on K-bimodules. Let B be a
if-bimodule, and S the tensor ring over if:

(15) S = K(B) ̂ K®B®(B(g)κB)®.. .

Thus S is generated as a if-ring by elements [b] corresponding
to the elements b e B, with the defining relations

(16) [a + 6] = [α] + [6] , [αδ] = a[b] , [ba] - [b]a (a,beB;aeK) .

In view of (15) and (16) we may henceforth identify B with
its image in K(B), and drop the brackets around elements. From
(16) it follows that ΩK(S) will be generated as an S-bimodule by
{db I b e J?} with relations

d(a + b) = da + db , d(α:&) = a(db) , ώ(&α) = (db)a .

This yields

(17) For any if-bimodule B , one has ΩK(K(B)) = ®ΰ® .

Now let i2 be any if-ring. Then the coproduct of if-rings,
R]LK(B}f can be described as the tensor ring over R on the
Λ-bimodule R®B®Il. Applying (13) to this coproduct we see that
ΩK{R(R <g) B (x) R)) = ®ΩK(R)® φ ®β®. Note that here the tensor
signs in the first summand refer to extension of scalars from R to
S, while those in the second summand refer to extension of scalars
from K to S. Let us put this in a form where both extensions
are from R to S:

(18) If B is a iSΓ-bimodule and B' = R(g)B®R, then
ΩK(R(B'}) = ®

Construction 2.6. Tensor rings on good R-bimodules. Formula
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(18) is in a way deceptive, for the mapd on S = R(B') does not
carry the copy of ΰ ' in S to the J5' of the right-hand side, which
represents R(dB)R. Rather, we see that an element of the form
axb eB' (x e B, a, b e R) goes to (da)xb + a(dx)b + ax{db), of which
only the middle term belongs to this summand. Were it true that
d carried the B' on the left by the natural isomorphism to the Bf

on the right, then we would be able to use the fact that any R-
bimodule is a of quotient a i£-induced one to extend (18) to the case
of arbitrary Jί-bimodules B'\ but the extended statement is easily
shown to be false.

However, let us see how much is true. If B is an ίϊ-bimodule,
consider the natural map

(19) ΩK(R(B)) >ΩR(R(B)).

Comparing the definitions of the two terms, we see that the second
iu<J3>-bimodule will be obtainable from the first by imposing the
relations dr = 0 for all reR. Hence the map (19) is the cokernel
of the map ®ΩK(R)® -> ΩK(R(B}). Also, by (17) the second bimodule
of (19) is ®B®. So we have an exact sequence of i?<J3>-modules

> ΩK(R(B)) > ® B ® > 0 .

Now let & denote the class of jR-bimodules B such that when
"0 —>" is added on the left the above sequence remains exact, and
splits. This condition means that ΩK{R{B)) can be identified with
®ΩK(R)®0®B®, in such a way that for reR, one has dr = (dr, 0) while
for beB, one has db = (*,db). This is just what (18) tells us is
true of any ϋJ-bimodule B' induced by a iΓ-bimodule B, so such
bimodules lie in &.

It is easy to show from (14) that & is closed under arbitrary
direct sums. For our applications we will also want the converse
of this statement, namely

(20) If ^ 0 5 , 6 ^ ' , then B, e& .

To get this, let S = R(B^, T - R(Bi®B2). Since the symbol
®( )® could be ambiguous here, let us instead write s( ) s or τ( ) τ ,
in each case referring to extension of scalars from R. We have
obvious ring homomorphisms

(21) S >T >S

composing to the identity. Using these we may identify S with a
subring of T, or regard S as a T-ring.

Now applying Ωκ to (21), and the hypothesis ^ 0 ^ 6 ^ , we
get maps of S- and T-bimodules, composing to the identity:
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ΩK(S) > TΩK(R)T 0 TBΪ 0 τBl > ΩK(S) .

The second map, going from a T-bimodule to an S-bimodule, factors
through the result of changing scalars by S (x)Γ( ) (x)y S, so we get
maps of >S-bimodules composing to the identity

(22) ΩK(S) > SΩK(R)S 0 sBξ 0 SBS

2 > ΩK(S) .

So ΩK(S) will be isomorphic to the image of the left-hand arrow.
Since S is generated as a Z-ring by R and Bl9 this image is the
S-sub-bimodule of the middle term generated by d(R) and d{B^).
Recalling how d behaves on T (definition of &) we can see that this
image is precisely SΩK(R)S 0 8Bf9 with dr = (dr, 0), db = (*, 6). This
proves (20), and in fact we see

(23) In the context of (20), if S = R(B^, then the behavior of
the universal ^-derivation d: S -»ΩK(S) on the elements of Bx

may be computed by taking the universal derivation for
R(βx@B^y restricting to Blf and replacing the R(B1®B2)-
coefficients in the resulting bimodule-expression by their
images in R(B±) (i.e., equating terms from B2 to zero).

We shall see an example of how this works in the next sub-
section.

Construction 2.7. Adjoining morphisms of projective modules.
We are now prepared to study the construction of freely adjoining
to a ring R a morphism u: P® —> Q®, where P and Q are two given
finitely generated projective right i?-modules. This will be the first
step in several subsequent constructions.

As the discussion of § 2.1 indicated, this is a generalization of
the construction of adjoining an indeterminate, and can be achieved
by adjoining a matrix U of indeterminates and imposing certain
matrix relations. Now when one adjoins indeterminates to a ring R
which is an algebra over a commutative ring k, one frequently
wishes to make the indeterminates commute with k. So we should
set up our results to allow us to impose such commutativity rela-
tions. In fact, the assumption that R is a ^-algebra can be weak-
ened to certain commutativity conditions involving the presentations
of the projective modules P and Q.

Let k be a ring (no connection yet with the K of our earlier
constructions) and R a Λ-ring. By a k-structured projective right
R-module we shall mean a (ft, j?)-bimodule P which is embeddable
as a bimodule direct summand in a direct sum of copies of the
(ft, jβ)-bimodule R. Note that a morphism mR —> nR is a (ft, R)-
bimodule homomorphism if and only if the entries of the associated
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n x m matrix commute with k. Hence /^-structured finitely generat-
ed projective iϊ-modules can be represented as ranges of idempotent
matrices E over the centralizer of k in R, and morphisms a: EmR —>
FnR among such modules are represented by matrices A over this
centralizer, satisfying

(2 ) AE = A = FA .

If we take k = Z, or more generally if R is a fc-algebra, then
every projective right ϋJ-module has a unique Λ -structure, and every
module homomorphism respects this structure. Hence the conven-
tional concepts of projective modules are included in the concepts
we are introducing. To signal that a morphism is to respect
λ -structure, we shall use an arrow with a subscript k: a:P-^kQ.

Now, to adjoin to R a k-centralizing indeterminate x is equi-
valent to forming the tensor ring R(B} where B is the i?-bimodule
freely generated by one Λ-centralizing generator x. This bimodule
can be represented as R (x)fc R, with the generator 1 (x) 1 called x.
(Note that as k is not assumed central in R, not all elements of
this bimodule need be ^-centralizing.) More generally, the result of
adjoining to R an n x m matrix X of fc-centralizing indeterminates
xί3 may be written R(Rn (g)k

mR).
Let P and Q be finitely generated A -structured projective right

iϋ-modules, given by matrices E, F as in (1). A morphism α: P® -» ζP
corresponds to a matrix A of ^-centralizing elements satisfying (2).
To understand what happens when we impose (2) on a matrix of
indeterminates, we need some general observations:

If X = ((&„•)) is an n x m matrix of elements of any jB-bimodule
J5, (for example, of an iϋ-ring) we have the decomposition

(24) X = FXE + F^E' + F'XE + F'XE' >

where we define

(25) FXE - FXE , FXE, = FX(I - E) ,

F.XE = (I - F)XE 9 F,XΈ. = (J - F)X(I - E) .

Here we note

(26) FXE = FFXEE , FXE> — FFXE,{I — E) ,

Λ = (/ - F)F.XEE , ^ , = (I - F)F.XE.(I - £?) .

Conversely, if we are given any four nxm matrices EXFf F>XE,

FXEr, FrXEr satisfying (26), and we define X by (24), we see that (25)
will hold. Thus, to give four matrices over B satisfying (26) is
equivalent to giving one arbitrary matrix, via the correspondence
established by (24) and (25). Further, X will be fc-centralizing if
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and only if FXEy F,XEy FXE,f and WXF, all are, since E and F, the
matrices defining P and Q, were assumed fc-centralizing.

It follows that if we let FCE denote the jβ-bimodule generated
by a universal n x m-tuple of ^-centralizing elements forming a
matrix FXE satisfying FXE — FFXEE, and if FCE,, F,CE, F>GE, are
defined analogously, then the i?-bimodule with a universal unrestrict-
ed nx m-tuple of ά-centralizing elements Xwill be their direct sum,
under the correspondence given by (24) and (25). Thus, FCEQ)FCE,

Θ F'CE Θ F CV = Rn 0k

 MR.
Let Q* denote the /^-structured projective left J?-module RnF

(that is, the image of Rn under the right action of F, isomorphic
to Ή.omB(Q9 R) made an (R, yfc)-bimodule in the natural way). Then
one easily verifies

(27) The iί-bimodule (called FCE above) presented by an n x m-tuple
of ^-centralizing generators ui3- subject to the matrix relation
U = FUE (equivalently FU = U = UE) embeds as a direct
summand in the i2-bimodule freely generated by an n x m-
tuple of fc-centralizing generators xii9 via the identification
U — FXE. Its image can be written

(RnF) (x), (EmR) = Q* 0k P £ (Rn) (g), (mR) .

Hence,

(28) The ring obtained by freely adjoining to R a morphism of
Λ-structured projective right modules, S = R(u: P Θ —•,. Q®)
can be written R(Q* (x)fcP>. In fact, the isomorphism
i?<Q* (g)k P) r^ R(u: P® ̂ k Q®) is given by q (x) p h^ qup (p e
P G P®, qeQ* Q(Q*)*.)

(Digression: It may appear that there is something wrong with the
variances in (27) and (28). To see that they are correct, note that
the tensor algebra S = R(Q* (x)A P> is characterized by having a
universal iϋ-bimodule map v: Q* (g^P-^S. This clearly has the cor-
rect variances in P and Q to correspond to a map u: P® —>fc Q

Θ.
What is causing the confusion is the notorious duality between
elements and coordinates I As a vague but useful principle, when
one performs a universal construction, the object constructed is
co variant in the system of elements adjoined, but contra variant in
the item for which these are to be universal coordinates. The
trouble is that our notation sometimes shows this item (u above)
and other times does not (v above). The reader may wish to check
the following simpler case: If R is a commutative ring and P a
finitely generated projective J?-module, then the commutative
iϋ-algebra with a universal element of P®, which we could call
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R[xeP®], is the symmetric algebra R[P*].)
Now once again suppose that R is a iί-ring as in previous con-

structions; and take for the k of the above discussion a subring of
K. Then the iϋ-bimodule (Rn (x)fc

 m'R) is induced by extension of
scalars from the if-bimodule (Kn (x)fc

 mK). Thus first (18) gives

(29) If S = R(X) is the lϋ-ring universally generated by an
wm-tuple of ^-centralizing elements xij9 then ΩK(S) ~

And applying (28) and (20) to the above we get

(30) If P and Q are ^-structured finitely generated protective
right j?-modules, and S = R(u: P® —>k Q®} is the extension
of R by a universal Λ-structured module morphism between
them, then ΩK(S) = ®ΩK(R)® 0 ΘQ* ® t P®. The summand
®Q* 0k P® is generated by the entries of the matrix
Z = F(d U)E, which are Zc-centralizing and subject to the
relation Z — FZE. The action of d on S = R(u) extends
the action on Rf and is described on the entries of U by

(31) dU = (dF)U + Z + U(dE) .

To get (31) we follow the prescription in (23), and in R(X)
compute d(FXE) = (dF)XE + F(dX)E + FX(dE)9 then substitute U
for X and Z for F(dU)E.

Given E and F as above, we shall call a matrix U of elements
of a i?-bimodule an (F, Eymatrix if it satisfies U = FUEf an
(F',E)-matrίx if (I - F)UE = U, etc.; and call ^ the (ί7, £?)-
component of X, etc. It can be suggestive to think of these com-
ponents into which we decompose a matrix as "blocks". For example
a matrix whose decomposition (24) is A + B + C + D might be

thought of as (Q ^ j. (But we shall not make important use of this

idea because in the absence of additional conventions it conflicts with

usual matrix notation.)
Note that if we combine (30) with (4) we get:

(32) If P and Q are fc-structured finitely generated protective
right i2-modules, and S = R(u, w1: P® = Q®) is the ring
obtained by universally adjoining to R a ^-structured module
isomorphism between them, then ΩK(S) ~ ®Ωκ(R)®φ®P* (x)fc P®.

Construction 2.8. Adjoining idempotent module-endomorphisms.
Let k be any subring of K, and m a positive integer. Suppose we
adjoin to our iίΓ-ring R an m x m matrix of λ -centralizing indeter-
minates, E, and further impose the relation
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(33) E2 = E .

Thus, over the resulting ring S, we have a universal decom-
position of mS into a direct sum of two ^-structured protective
modules,

where P = EmS , Q = (I - E)mS .

We see that ΩK(S) will be obtained by adjoining to ®ΩK(R)® an
m x m matrix dJS' of fc-centralizing bimodule-generators, and the
relations

(34) (dE)E + E(dE) = dE .

To study (34), let us take its (E, E)-9 (E, E')-, {E',E)- and
(E'9 £")-components. Only the first and last of these turn out to be
nonvacuous; these are respectively

(35) E(dE)E - 0 , (I - E)(dE)(I - E) = 0 .

(0 *\
* Q j in the language of the

end of the last subsection. We should pause to note that the above
computation holds for any idempotent matrix E over any ring. For
instance, we may apply it to both E and F in (31). Recalling that
U was an (F, i£)-matrix, we conclude that the term (dF) U of (31)
represents an (Ff

9 £?)-matrix over ΩK(S), and U(dE) an (F, E')-
matrix, so (31) has the "block" form:

(36) d V (
K } \{dF)U 0

Returning to the universal case of (35), we see that as we have
no further equations, the two other components E{dE){I — E) and
(I - E){dE)E will be universal λ -centralizing (E, E')~ and {Ef, E)-
matrices of S-bimodule elements. Calling these Z and Zr, we get

(37) If S is the jR-ring obtained by adjoining to R a universal
fc-centralizing idempotent m x m matrix E, and we define
P = EmS, Q = (/ - E)mS, then

ΩK(S) = ®ΩX(R)® Θ (P* ®k Q) θ (β* ®* P) .

If we write Z and Z' for the canonical (E, E')- and (£", J^)-
matrices of generators of the last two bimodule summands,
then the universal derivation d is determined by dE = Z + Z\

As a more general case, we may adjoin to R an idempotent
endomorphism E of an already existing /^-structured finitely generat-
ed projective right ίJ-module P = FmR, getting a universal splitting
p = P1φP2 = EmR 0 (F - E)mR. Here the defining relations are
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(38) E = FEF

(39) E = E2 .

Now by (30) and (31), equation (38) alone yields a decomposition
dE = (dF)E + Z + E{dF) where Z is an (F, i^-matrix. On the
other hand, (39) yields (35), into which we substitute the above
formula. By reasoning essentially like that which gave (37) we get

(40) Let P = FmR be a ^-structured projective right jβ-module,
and S the iϊ-ring with a universal decomposition P® =
P&P^EP® 0 (F-E)P®. That is, S=R(e: P®->4 P® | e2 = e>.
Then ΩK(S) = ®i2*(#)® 0 (Pί <g)4 P2) 0 (P2* (x)fc PJ. If we write
Z1 and ^ 2 for the canonical {E, F - E)- and (F - £/, E)-
matrices of generators of the last two bimodule summands,
then dE = (dF)E + Z1 + Z2 + ^(djp7). Here the block form,
in terms of the decomposition Im = E + (F — E) + (I — F), is

/ 0 Z, (dF)E\

dE = l Z2 0 0 I .
\E(dF) 0 0 /

Construction 2.9. One-sided localization. Again let P = EmR,
Q = FnR be yfc-structured finitely generated projective right J?-modules,
and let us be given a morphism a:P^kQ, described by an (F, E)-
matrix A. Suppose we adjoin to R a universal left inverse u of a,
to get the #-ring S = R(u: Q® ->k P®\ua = lpS)>. This means
adjoining an mxn matrix of ^-centralizing indeterminates, Z7, and
imposing the relations

(41) U - EUF ,

(42) UA^E.

The corresponding equations in ΩK(S) are

(43) d U = (d#) f/ + ^(d C7)F +

(44) (dJ7)A + U(dA) =

Now we have seen that the adjunction of U satisfying (41)
alone enlarges ΩK(R) by a direct summand ®P* (g)* Q0, whose (.27, ί7)-
matrix of generators is the middle term of (43). If we now sub-
stitute (43) into (44), and make use of the properties of dE, dA,
etc., as well as the hypotheses on U, A etc., we find that the re-
sulting equation is equivalent to

(45) E(d U)(A U) - - U(dA) U .

Now notice that because u is a left inverse to α, the product
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an is an idempotent endomorphism of Q® — F*S, giving a splitting
Q® = Q i θ Q2 = (AU)nS®(F - AUyS. We now see that (45) takes
the originally universal (E, .F)-matrix E(dU)F, and equates its
(E, A ?7)-component with an (E, AC7)-matrix having entries in
®Ωκ(Rf>.. This "removes" part of our summand ®P*g)fcQ

Θ, leaving
only ®P* ®hQz. In summary:

(46) Let P = EmR and Q = FnR be finitely generated ^-structured
projective right jβ-modules, and α:P—>Q-a (A;, isomorphism.
Over S = R(u: Q® ->„ P® | ua = lPs>, let Q® = Qt 0 Q,=
(<m)Q® 0 (1 - αu)Q's. Then βx(S) = ®Xk(.β)® 0 ®P* (x), Q2.
Here the second summand is generated by the entries of the
(β9 F - AE7)-matrix Z = E{dU){F - Af7). Further

(47) dU = (dE)U- U(dA)U+ Z +

REMARK. Suppose α already has a r i ^ ί inverse v over R.
Then adjoining a left inverse is equivalent to adjoining a 2-sided
inverse. Then we will get an = lρs>, so Q2 and F — AU are zero,
so (46) and (47) reduce to (4) and (9). In particular, the description
of Ω.K(S) ceases to depend on k, which is why there was no loss of
generality in treating 2-sided inversion before introducing A -struc-
ture. (The general principle is that if a morphism a in any category
satisfies an equation aa = aa', then a 2-sided inverse to a will satisfy
(a~ι)a = α'(α"0 Hence if a module-morphism a respects ^-structure
on P and Q for some k, any 2-sided inverse to a will automatically
do the same, so it makes no difference to specially impose such con-
ditions.)

2.10. Coproducts, matrices, antimatrices, and products. We
shall end this section of the paper with a few results that will not
be used in our main result, but which are not hard to derive. We
will be less detailed in our arguments than above. We begin with
some constructions that change not only "i?" but also "i£".

First a generalization of (14). Let A be a small category, and
let us be given two functors 3ίΓ and , ^ from A into the category
of rings, and a morphism J%Γ-+&. Thus, for each a, &{a) is a

We easily see

(48) If we write L = colim^ SΓ(a), S — colim^ ,^(α) , then
ΩL(S) =

Next, let K be a ring, and K\ R two ίΓ-rings.

(49) If we put S = R]LKK', then ΩK,{S) = ®ΩK(R)®.
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This may either be seen directly by "generators and relations",
or gotten from (48) by taking for A the diagram •< • , for JΓ
the functor K+-K-+K', and for & the functor R+-K-+K'.

The behavior of universal derivations on a matrix ring MJJR)
is likewise easily described if we simultaneously apply Mn to the
base ring K. Considering Mn(R) an ϋί-ring by the diagonal map, we
have

(50) ΩMn{κ)(Mn(R)) = ®Ωκ(Rr = Mn(Ωκ(R))> with d: Mn(R)->Mn(Ωκ(R))
given by entry-wise application of d: R-* ΩK(R).

Indeed, the homomorphism (1B, d): R—> (ϋJ, ΩK(R)) induces a
homomorphism Mn{R) -* Mn((R, ΩK{R))) = (Mn(R), Mn(Ωκ(R))), which
is easily shown to have the correct universal property.

Now let R be a iΓ-ring and n a positive integer, and let S
denote the coproduct, over K, of R with the matrix ring Mn(K).
Then S is an Mn(K)-τmg. But any Mn{K)-rmg has the form of
nxn matrices over a i£-ring. So we can write S — Mn{T) for some
iΓ-ring T. Following [3], § 7, T will be called ϊon(R). The functor
ti)n is a left adjoint to the functor Mn from if-rings to i£-rings.
(The "antimatrices" of the title of this subsection.) That is, ton(R)
is universal among all ϋΓ-rings T' with a ϋΓ-ring homomorphism
R—> Mn(T'). Equivalently, T is such that there is a universal re-
presentation of the ίΓ-ring R by endomorphisms of the right T-module
nT, or of the left T-module Tn.

Since Mn(T) =S = RMMn(K), we can apply both (49) and (50).
Together they give an S-bimodule isomorphism

(51) Mn{Ωκ{T)) = ®ΩK{R)® .

To get from (51) a description of ΩK{T) we need to know how, for
any ring ϊ7, one recovers from an Mw(T)-bimodule MJβ) the
Γ-bimodule B. In fact, this is achieved by tensoring on the left
by the (Γ, Mw(T))-bimodule Tn and on the right by the (Mn(T), T)-
bimodule nT. When we apply this to the right side of (51), which
arises by extending scalars from R to Mn(T) = S, the effect is that
the above Tn and nT are considered as (Γ, R)- and {R, !Γ)-bimodules,
via the universal representation of R over T referred to above. So
we get:

(52) Let T — ϊΌn(R). Denote the universal representation R —>
Mn{T) by π->((r<y)) (so that for reR,rn, •• , r ^ e T ) and
the canonical right and left T-bases of nT and Tn by e,, rjά.
Then ΩK(T) = Tn ®BΩκ(R)®R

nT, and the universal ϋΓ-deri-
vation d on T is characterized by
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(53) d(rtj) = ex <g) (dRr) <g) ηό .

The behavior of Ωκ on finite direct products, as on matrix rings,
is very simple if we simultaneously apply the construction to the
base rings K. We claim

(54) If Rx is a i^-ring and R2 is a i£>-ring, and we consider Rγ x R%

as a K.xK.-ring, then Ω^^R.xR,) = ΩKι(R,) © ΩK2(R2).

Note that this statement that our ΩKχXK2 is the direct sum of
an (Rlf iϊj-bimodule and an (R2, ϋ!2)-bimodule means that, if we write
E = (1, 0) eRtxR2, then our bimodule is spanned by just its (E, E)-
elements and (E\ E')-elements (degenerate case of the term "(F, E)-
matrix"). This follows from the corresponding fact for the ring
RγxRz itself, together with the fact that E and 1 — EΊie in K^K^
so that dE and d(l — E) are zero. (See (31), which holds for any
(F, £?)-matrix U.) On the other hand, when we take a direct
product of iΓ-rings over a fixed K, we also get (E, Ef) and (E\ E)
parts. The reader can verify

(55) If R and S are iΓ-rings, then Ωκ(RxS) = Ωκ(R)ζ$(S(g)κR)ξ&
(R0K S) 0 ΩK(S). Writing this direct sum as a matrix

\S6ζ)R Q(S) ) w e c a n ^ e s c r ^ e the universal derivation on

R x S by:

I dr r(x)l\ / 0 —1(5?
(56) d{r, 0) = ( ^ ) , d(0, s) = ( ^

\ — l(g)r 0 / \ 8 0 1 ώ

More generally, if* S — R±x xi2», then iijp(S) is a direct sum
of ?̂ 2 bimodules, namely the (iZ^ iϋ^-bimodules Ωκ{R%){i ^ w) and the
(Rit JfZ^-bimodules R, ®κ R3 (i ^ i).

Finally, let us obtain a description of Ωκ(Mn(R)), where R is a
i£-ring and w a positive integer. Note that we may construct Mn{R)
as follows. Start with the if-ring

(57) S = RxKx- xK (one R and w - 1 K's) .

Let us write e« e iS for the idempotent with 1 in the ΐth place and
zeroes elsewhere, in anticipation of the way S is to be mapped into
our matrix ring. Now universally adjoin n — 1 isomorphisms of
i£-structured projective right S-modules, eίt: β̂ S® —>j5:βnS

Θ (l<i^n),
with inverses which we shall denote en: enS®-^.>κeuS®. The verifica-
tion that the resulting iΓ-ring is Mn(R) is not difficult. (The element
rei5 (reR) can be obtained as e^e^-e^.)

Now by (57) and the preceding discussion, ΩK(S) is the direct
sum of ΩK{R) and the n2 — n bimodules Seu (x)̂  e3ΊS. When we
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adjoin the eiL's and their inverses, (32) tells us that this has the
effect of extending scalars and throwing in n — 1 bimodules
®Seu 0X enS®. But our extension process has also made all the
protective modules euS® isomorphic, and likewise for the correspond-
ing left modules. Hence the (n2 — n) + (n — 1) summands that have
been added in to our universal derivations bimodule become iso-
morphic:

(58) Let R be a if-ring, T = Mn(R), and let P denote the pro-
jective Γ-module enT. Then ΩK(T) ~ ®Ωκ(R)®ξB(P*®κ P)n2~1^

2.11. REMARKS. The reader may have noticed that in the
formulas by which we described the action of a universal derivation
d on the morphisms introduced in our universal constructions, there
were generally just one or two terms involving the new generators
of ΩK(S), and a large number of "automatic" terms. An appendix
to this paper, § 7, describes a formalism for working with deriva-
tions on morphisms of projective modules, by which one can eliminate
most of these "automatic" terms, and thus put those equations in
simpler form.

Let us note that not every important i£-ring construction S
yields a conveniently describable ΩK(S). Examples of some con-
structions for which there does not seem to exist a nice description
of this bimodule are:

(a) The tensor product, over a commutative ring K, of two
given EΓ-algebras.

(b) Infinite direct products Π Rύ formal power series rings
jβpj. For these we doubt that there is even a reasonable normal
form description of Ωκ(β).

(c) The construction (R, B) = R(B)/(B2) — ironical in view of the
importance of this construction in characterizing and studying
ΩK{R) (cf. §1,2.1)!

(However, there is always a "nice" description of ΩK{R) in
another sense: that given by (61) below. In fact, we shall use the
results of this section by playing them off against that description.)

Observe that ΩK(R) will always be generated as a right i2-module
by its iΓ-subbimodule dR (which by definition generates it as an
ϋ?-bimodule). This follows from the formula

(59) a(db) = d(ab) - (da)b .

The following description of ΩK(R), which is obtained from the
splitting of (61) below, will not be used here but may be of in-
terest:
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(60) Let Λ be a if-ring. Then as (K, J?)-bimodule, ΩK(R) ^
(R/K) 0K R, where dr = (r + K) (g) 1. The Ze/ί ^-module
structure of ΩK(R) is determined by (59).

As a consequence, if i2 £ S is a iί-bimodule direct summand,
S = RφB, then as (iΓ, S)-bimodule, J2*(S) = ^ ( Λ ) ® φ (5(g)* S).

3* Applications: Hereditary rings, and Schreier formulas* Let
K-+R be a ring homomorphism. The usefulness of the universal
derivation bimodule ΩK(R) to us will come from the following
exact sequence ([11], Proposition IX. 3.2; cf. [10], p. A III. 132 or [6]).

(61) 0 > ΩK(R) > R(g)κR > R > 0 .

Here the first map takes dr to r (x) 1 — 1 ® r, and the second is
multiplication.

Since the last term of (61) is projective as a left ϋJ-module,
(61) is left iϋ-split, so for any right iZ-module M, (61) remains exact
under M®B. This gives us a presentation of M:

(62) 0 > M (g)B ΩK(R) >M®K R > M > 0 .

Suppose M(g)κR is projective as right i?-module. Then M will have
homological dimension <;l if and only if M®RΩK(R) is projective.
Let us record the result in the case where M (g)κ R is projective
for all M. We recall that a ring L has all right modules projective
if and only if L is a semisimple Artin ring, that is, a finite direct
product of matrix rings over skew fields.

PROPOSITION 3.1. Let R be a K-ring. Suppose that K is semi-
simple Artinian (or more generally, that the map K—>R factors
through a semisimple Artin ring, or still more generally, that for
every right K-module H, the right R-module H®KR is projective).

Then a right R-module M has homological dimension <I1 if
and only if M (g)R ΩK(R) is projective.

In particular, R is right hereditary if and only if M®RΩK(R)
is projective for every right R-module M.

Note that under the hypotheses of the above Proposition, if k
is a subring of K, then for every right fe-module H, we have
H®kR — (H®kK)®κR projective. It is easily deduced that if P
is any A -structured projective right ϋJ-module, H®kP will likewise
be projective.

We now set things up so that we can apply the results of the
preceding section:
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COROLLARY 3.2. Let K be a ring, (Ra)aeA a nonempty family
of K-rings each satisfying the condition of the first paragraph of
Proposition 3.1, and S a K-ring given with K-ring homomorphisms
φa\ Ra —> S. Suppose that ΩK(S) can be written as a direct sum of
copies of the S-bimodules ®Ωκ(Ra)® and of S-bimodules of the form
N®kP, where the k are subrings of K, the N are (S, k)-bimodules,
and the P are k-structured protective right S-modules.

Then S again satisfies the conditions of Proposition 3.1, and if
a right S-module M has homological dimension <^1 over each Ra,
it has homological dimension <̂ 1 over S.

In particular, if all Ra are right hereditary then so is S.

Proof. The first conclusion states that if H is any right
if-module then H®KS is a protective S-module. And indeed, choos-
ing any aeA we can write H(x)^S as (H(x)#Ra) ®BaS and apply
our hypothesis on Ra to H®κRa.

Now if M is a right S-module, M (x)s ΩK(S) will be a direct sum
of modules of the forms M (x)5 (®Ωκ(Ra)®) and M(g)s (iV(x)fcP). Those
of the first sort can be rewritten M ®Ra Ωκ{Re)^9 and hence are pro-
jective if M has i2α-homological dimension <; 1. Those of the latter
sort can be written (M ® 5 N) 0* P, and so are protective by our
preceding observations.

REMARK. We have allowed possibly more than one Ra in order
to cover the coproducts construction.

In stating the remaining consequences, we shall for brevity as-
sume K semisimple Artinian, though the more general hypothesis of
Proposition 3.1 could be retained. We shall also refrain from re-
stating results proved in [2] and [3].

First, our promised main result. Note that if an iϊ-module is
referred to as ^-structured, morphisms are understood to mean (k, R)
homomorphisms.

THEOREM 3.3. Let K be a semisimple Artin ring and R a
K-ring. Then if R is hereditary, so is any ring S obtained from
R by universal {2-sided) inversion of any family of morphisms of
finitely generated protective R-modules, and universal right and
left inversions of families of morphisms of k-structured projective
R-modules, for subrings k of K.

Next, we take advantage of the good behavior of Ωκ under
colimits (14):
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THEOREM 3.4. Let K be a semisimple Artin ring. Then any
K-rίng constructed from right hereditary K-rings Ra by a possibly
trans finite sequence of the following steps is again right hereditary.
{The k of (i)-(iii) refers to any subring of K. Like P and Q, it
can vary from step to step. At steps indexed by limit ordinals
one forms the direct limit.)

( i ) Adjoining a universal map between k-structured protective
modules: u: PΘ --~>k ζP.

(ii) Universally splitting a k-structured protective module:
P* = P,® Pa.

(iii) Adjoining a universal left, right or 2-sided inverse to a
given morphism of finitely generated k-structured projectίve modules.

(iv) Forming coproducts of K-rings.

In [31, Theorems 6.2 and 6.4, a generally infinite sequence of
steps (ii), (i) and (iii) was used to obtain rings S whose semigroup of
isomorphism classes of finitely generated protective modules, with
distinguished element [S], was an arbitrary abelian semigroup with
distinguished element, satisfying two obvious necessary conditions.
It followed from the results of that paper that if the given semi-
group was finitely generated, S would be hereditary. The above
result shows that S will be hereditary in all cases.1 Thus in [3]
one may drop the words "finitely generated" from Theorem 6.2,
and delete Theorem 6.4 and Question 6.5.

REMARK 3.5. Variant results. It is easy to see from the
proof that Proposition 3.1 will remain valid if, in the last two
sentences, the conditions "homological dimension <Ξ 1", "protective"
and "hereditary" are replaced by "homological dimension <Ξ n",
"homological dimension < n", and "right global dimension <̂  n" for
any positive integer n. The same is true of Corollary 3.2 through
Theorem 3.4 (except, of course, that the projective modules of the
constructions must still be assumed projective), if S is left flat
over all Ra. This is needed so that the property "homological
dimension < n" will be preserved under extension of scalars, for
n > 1. However universal localizations (except for the special case
of Ore localization with respect to a right denominator set, [131)
tend not to give left flat extensions, as the counterexamples of the
next section will show.

REMARK 3.6. Can we not, on the basis of (58), add to Theorem
1 That S would be semihereditary in all cases was asserted in [3], Theorem 6.4; but

the argument was based on the false assumption that a direct limit of semihereditary
rings was semihereditary; cf. Example 4.2 below. Of course, we now know the assertion
to be true.
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3.4 another construction, "Forming full matrix rings Mn{R), where
Mn(R) is made an iu-ring by the diagonal map"? If we could, then
for any hereditary ring R, the direct limit of R-* M2(R)-> M4(R)-+ ,
which we may call M2oo(R), would also be hereditary. But for R =
k[t] one has M^R) = Λfaoo(jfc)[£], which is easily shown not to be
hereditary. The reason this argument fails is that, though Ωκ{Mn(R))
has a direct summand isomorphic to ®ΩK(R)® as a bimodule, this is
not the subbimodule generated by the image of ΩK{R). So a direct
limit such as ΩK(R) —• ΩK(M2(R)) —> will not be a big direct sum,
as required to apply Corollary 3.2.

REMARK 3.7. Tensor rings. If K is an arbitrary ring, B a
i£-bimodule, and R = K(B), then by (17) the exact sequence (61)
becomes

(63) 0 > ®B® > R®KR > R > 0 .

Yu. V. Roganov uses this exact sequence to study the global
dimension of R in [23]. (His hypothesis that B, or in his notation
M, be right protective may be weakened to "right flat" [16],
p. 143.)

3.8. Lewin-Schreίer formulas. If R is a ring, let K0(R) denote
the universal enveloping group of the abelian semigroup of iso-
morphism classes of finitely generated protective right lϋ-modules
under 0 . (The "Grothendieck group" of the category of finitely
generated protective right iϋ-modules [1].) The image of a projective
module P in KJJR) will be denoted [P]. Now if an jR-module M has
a resolution by finitely generated projective modules, 0 —> Pn —• •
- + P 0 ^ Λ f - * 0 , it is known that the element Σ (-1)^-] e^T0(R) is
an invariant of M, called its Euler characteristic %R(M).

If R is a Z-ring, then an iZ-module can also be looked at as a
if-module, and it is natural to compare χκ(M) e K0(K) and χB(M). e
K0(R) when both are defined. J. Lewin [20] obtained a formula
relating these two when R is a free associative algebra over a field
K, or a group algebra of a free group; he showed that this was a
generalization of Schreier's formula relating the rank and index of
a subgroup of a free group. Hence let us make the

(64) DEFINITION. A i£-ring R will be called a right Lewin-
Schreier K-ring if

(a) every right i?-module M which has a finite resolution by
finitely generated projectives over K also has such a reso-
lution over R, and

(b) there exists a homomorphism XR κ: K0(K) —• KQ(R) such that
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for such an M, χR(M) - XR,κχκ(M).

We can use (62) to study this phenomenon. If S is an R-ΐing
we will denote by τs,R: K0(R) —> K0(S) the homomorphism induced by
the functor (x)Λ S on finitely generated protective right j?-modules.
If S is left i?-flat, then (x)7> S preserves resolutions, hence

(65) If S is a left-flat R-τ'mg, then whenever an jS-module M has
a finite resolution by finitely generated projectives, MΘ has
such a resolution as an S-module, and χH(M®) = tSiRχR{M).

From (62) and (17) we easily obtain

(66) Suppose K is a division ring, B a iΓ-bimodule of finite right
i£-dimension d, and R = K(B). Then R is a right Lewin-
Schreier ίΓ-ring with XRiK = (1 ~ d)τR,κ. (Cf. [Ί3|, pp. 85-86.)

Recall that for K semisimple Artinian, a coproduct S of faithful
.K-rings Rt is right and left projective over each Rz \2\. In parti-
cular, it is left flat, so that (65) applies. If we take an S-module
My and compare the exact sequences obtained by applying (62) over
the Rt and over S, then these are related via (13), and we get

(67) Suppose K is a semisimple Artin ring, Rί9 , Rn are faithful
lί-rings, and S= MiR^ Then if all J?̂  are right Lewin-
Schreier iΓ-rings, so is S, and Xs,κ = (ΈJ^τs,Rt^Rι,κ)~
(n - l)τStK. (Cf. [18], Theorem 8.)

Finally, if S is a universal 2-sided localization of R and M an
S-module, we can compare the exact sequences (62) coming from S
and β. In the sequence over S, the first term M ®S(

ΘΩK(R)^')
simplifies to M ®RΩκ(Rψ]. Now the Euler characteristic of this
term can be obtained from that of M®RΩK(R) by τStB if either the
latter module is right projective (which will hold if R is right
hereditary) or S is left jR-flat (by (65)). We deduce:

(68) Let K be a semisimple Artinian ring, R a lί-ring, and S a
universal 2-sided localization of R, Suppose either that R is
right hereditary, or that S is left-flat over R. Then if R is
a Lewin-Schreier Z'-ring, so is S, and λ ^ = rs.!2.,)^)A-.

In particular, from (66) and (68) one can recover Lewin's re-
sults on the Euler characteristic of finite ίΓ-dimensional modules
over free _K"-algebras and group algebras of free groups [20]. Lewin
has made essentially the same observation independently.
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We are not sure how widespread the "Lewin-Schreier" pheno-
menon is. One counterexample useful against naive conjectures is
the if-algebra KxK = K{e\e2 = e) (K a field) which is not Lewin-
Schreier (it satisfies (64) (a) but not (b)). However, one might study-
relations between χκ(M) and χR(M) of more general sorts than that
one be a function of the other.

4* Counterexamples and remarks*

EXAMPLE 4.1. Global dimension 2h->co. (Adapted from [18].)
Let K be a field, and form the if-algebras R1 = K(x), R2 =
K(e, y, z I e2 = e). Rx and R2 are right (and left) hereditary by the
results of [2], or Theorem 3.4 above. Let us map the polynomial
ring K[t] into Rι by ί π f , and into R2 by t\-+yez, and let
S = R^KUI R2 = K(fi, x, y, z\e2 = e, x2 = yez). Since Rx and R2 are

faithfully flat (in fact, free) as left if [£]-modules, we can apply
Corollary 7 and Theorem 9(i) of [18] to conclude that

r. gl. dim. S g max(r. gl. dim. Rλ, r. gl. dim. R2, 1 + r. gl. dim. K[t\)

= max(l, 1, 2) = 2 .

On the other hand, because e is idempotent, *S<(1 — β)""1)^
S/SeS = K(x, y, z \ x2 = 0>, which has infinite right global dimension.
(Since all these ring-constructions are right-left symmetric, these
rings also have left global dimensions of the same values.)

Let us write K(e | e2 = e) as KxK. Then as noted in [2],
S/SeS can be written SlLκxκ (KxK)/(Kx{0}), showing that the re-
sults of [2] on global dimensions of coproducts of faithful i20-rings
(jR0 semisimple Artinian) do not go over to the nonfaithful case.

By Remark 3.5 above, S{(1 — e)"1) must be nonflat as a left
S-module. And indeed, we see that t = x2 is zero in this ring, hence
this ring is a torsion module over K\t\, hence nonflat over K[t],
hence also over the left-flat K[t]-τmg S.

Interestingly, no example is known where the global dimension
shows a finite increment.

EXAMPLE 4.2. Loss of semiheredity. Let if be a field, and
consider the i£-algebra R presented by generators x, yu zt{i ^ 0) and
relations

Vi = xVi+i , Zi = zi+ιx (i ^ 0) .

Note that this is the direct limit of the algebras Rn presented by
similar generators and relations, but with the index i restricted
to be <,n. But it is easy to see that this presentation of Rn allows
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us to eliminate all but three generators, and all relations, and write
Rn = K(x, yn, zn). This is a free associative algebra, hence a fir
(free ideal ring—see [13]. Some of the relevant definitions will be
recalled in Remark 4.3 below). Hence the direct limit ring R is, at
least, a semifir ([13], Exercise 1.1.3, p. 47) and so in particular, semi-
hereditary. We remark that R is the semigroup algebra KU on
the semigroup (with 1) U presented by the same equations as R.
It is easy to check from its "direct limit" description that U can
be identified with the subsemigroup of the free group on generators
%> V, z generated by the elements x, yt — x~ιy, and zt = zx~\

Now let S denote the universal localization R(y^1). This will
also be a semigroup algebra KU{y^1}. But we should not be
tempted to think that Uζy^1) will just be some larger subsemigroup
of the free group on x, y, and z. The point is that when we uni-
versally invert y0 = xιyu this does not lead to inverses of xi and yi9

but only to a right inverse, y^1, of x% and a left inverse, y^x\
of yt.

Now when an element a of a ring R has a right inverse 6, then
ha — 1 is an idempotent, and {ha — 1)R is the right annihilator of
a in R. Hence in the above ring S, the chain of annihilators

(69) rt. ann. s(x) £ £ rt. ann. s(x{) £

takes the form

(y.yό'x - 1)S £ • £ (ViVό'x* - ΐ)S £ .

To study (69) further, we must turn to the rings Sn — Rn(y'oι)~
K(x, yn, zn, u\uxnyn = 1 = xnynu), of which S is the direct limit. A
iΓ-basis for Sn is given by all words in x9 yn, zn, and u not involving
either of the sequences uxnyn or xnynu. (For a general result on
normal forms from which this follows immediately, see [7], Theorem
1.2.) From this it is easy to check that the (ί + l)st term of (69)
does not annihilate xi in Sn (n > i)\ i.e., x\xn~i"ιynuxi+ι — 1) Φ 0;
hence it does not annihilate x{ in the limit-ring S, so (69) is strictly
increasing. We also see that in SH, zn is a non-zero-divisor, hence
the right annihilator of zQ = znx

n is the right annihilator of xn,
hence in S the right annihilator of z0 is the union of the right an-
nihilators of the xn. Since these form a strictly ascending chain,
the right ideal zQS is not finitely related, hence not protective,
hence S is not right semihereditary, though it is a universal local-
ization of a semifir.

REMARK 4.3. On direct limits of semihereditary rings. Note
that the nonsemihereditary ring S = R(y^) constructed above is
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the direct limit of the rings Sn = Rn(yoι), which by Theorem 3.3
are all hereditary. On the other hand we proved R semihereditary
using the fact that a special class of semihereditary rings, the
semiίirs, is closed under direct limits. The following remarks are
intended to throw some light on the seemingly special behavior of
this subclass.

Recall that in [4] a ring R was named weakly semihereditary
if whenever two maps of finitely generated projective right i?-modules
compose to 0:

there exists a direct sum decomposition P = Px φ P2 such that / an-
nihilates Plf and g has range in Px; i.e., in terms of which the two

maps have the "matrix" forms (* 0) and ( ) respectively. (If we

drop the condition that Q1 be finitely generated, the above becomes
the condition for R to be right semihereditary.)

It is easy to see that

(70) A direct limit of weakly semihereditary rings is weakly
semihereditary.

We say that a ring R has ACC@ on finitely generated projective
modules if the semigroup of isomorphism classes of such modules
has the property that there is no infinite chain of direct sum de-
compositions:

It was noted in [4] that a weakly semihereditary ring with ACCΘ

on finitely generated projective modules is right and left semi-
hereditary. (The converse is not true.) Finally, note that

(71) The semigroup of isomorphism classes of finitely generated
projective modules over a direct limit of rings is isomorphic
to the direct limit of the corresponding semigroups for the
given rings.

So if the given rings are semihereditary and if the above limit
semigroup happens to have ACC®, the limit ring will again be semi-
hereditary.

We now turn to semifirs. A semifir can be defined as a right
semihereditary ring whose semigroup of isomorphism classes of
finitely generated projective modules, with the additional structure
of distinguished element given by the class of the free module of
rank 1, is isomorphic to the semigroup of nonnegative integers with
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1 as distinguished element. When we form any direct limit of
semifirs, we see by (71) that the semigroup of isomorphism classes
of finitely generated projectives will still be the nonnegative integers.
Since this has ACCΘ, the limit ring will also be semihereditary,
and hence again a semifir.

(We also see that in the definition of a semifir, "right semi-
hereditary" can be replaced by "weakly semihereditary". Cf. [13],
p. 43, Theorem l.l.l(f).)

In contrast, in the preceding example the idempotent elements
yiVΓ^ — lzRiiy^1) led to a violation of ACCΘ in the direct limit. A
simpler example of a nonsemihereditary direct limit of hereditary
rings is given by the system of commutative algebras over a field K:

K[t] > KxK[t] > KxKxK[t] >

where the ΐ + lst arrow carries (αlf , aiff(t)) to (αx, , α<,/(0),/(ί))
The image, in the limit ring, of ί e the first ring, has annihilator
which is not the annihilator of any idempotent element. (Cf. [4]
Example 3.6.)

We conclude this discussion with the obvious

(72) Question: How does the property of being weakly semi-
hereditary behave under the universal constructions treated
in § 2? In particular is it preserved under universal locali-
zations?

In the commutative case, the characterization of weakly semi-
hereditary commutative rings in [4], Proposition 6.2 leads to an af-
firmative answer to the latter question.

5* Doing without K. (This section, except Remark 5.4, as-
sumes only a small part of what precedes: the first two paragraphs
of § 1, and the material of § 2.1 through (4).)

We shall prove below that universal 2-sided localizations of
right hereditary rings are right hereditary, without the assumption
that our rings contain a semisimple subring K. Our proof is
motivated by that of:

(73) Let R —> S be an epimorphism of rings such that S is flat
as a left .R-module. Then r. gl. dim. S £ r. gl. dim. R. (Cf.
[24], Cor. 1.3.)

Proof. If ¥ is a right S-module and 0 -• PΛ —> -> Po -> M->0
is a protective resolution of M as an iϋ-module, then

(74) 0 > Pn <g)R S > > PQ ®R S > M ®R S > 0



322 GEORGE M. BERGMAN AND WARREN DICKS

is exact by left flatness of S, and

(75)

because R-+S is an epimorphism ([19], [24], [6], Theorem 18 (c)).
Thus hdsM ^ hdRM, and the conclusion follows.

(REMARK. The hypotheses of (73) are satisfied if S is a localiza-
tion of a commutative ring R, or more generally an "Ore localiza-
tion" of an arbitrary ring R with respect to a right denominator
set [13].)

What we shall do in this section is describe a condition on a
ring epimorphism R^ S which is weaker than flatness, but will at
least imply that if r. gl. dim. R is <;l, then so is r. gl. dim. S. We
shall then prove that this condition is (a) preserved by pushouts,
and note easily that it is (b) respected by Morita equivalence and
(c) possessed by the "canonical" example of universal localization:

Z Z\ „ (Z Z\ •
xZ^—> xZ .

0 Z) \Z Z)

By the methods used in [3] we will deduce that it is possessed by
all universal localizations, from which our desired result will follow.

To see the condition we want, note that while the proof of (73)
used the full force of R —> S being an epimorphism in arguing that
for all right S-modules M, (75) holds, less than the full strength of
flatness was used in proving (74) exact. Flatness says

(76) For all right ie-modules M, Torf (M, S) = 0

or equivalently

(77) For all right i2-modules M and all i > 0, Torf(ikf, S) = 0.

But the exactness of (74) only required (77) for M a right S-module.
For global dimension <̂  1 we will in fact only need this for i — 1.

To study this condition we need the following observation.
Let R —> S be a ring homomorphism, M a right S-module and

N a left ϋϋ-module. Write M as a surjective image of a protective
right S-module P. Then the sequence

(78) Torf (P, N) • Torf (Λf, N) > Torf (Λf, S ®B N) > 0

is exact, where the second map is the composition of natural maps

(79) Torf (ikf, N) > Torf (ΛΓ, S ®R N) > Torf (Λf, S ®R N).
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This is [6] (7). Proof in brief: To an exact sequence 0->A-+P—>
M-> 0, we apply Tor*(-, N) -> Tor s (-, S ® Λ N). The resulting map
of long exact sequences gives isomorphisms on Tor0, while on Toτ19

the second sequence has P-term 0. Hence the map of Tor^M, — )'s,
is in fact a cokernel as indicated in (78).

PROPOSITION 5.1. For any ring epimorphism R^ S, the follow-
ing conditions are equivalent:

( i ) The transformation Torf —> Torf ofbifunctors of S-bimodules
is an isomorphism.

(ii) For all right S-modules M and left R-modules N, the map
Torf (M, N) -> Torf (M, S ®R N) is surjective.

(iii) Torf (S, S) = 0.
(iv) For all right S-modules M, Torf (Λf, S) = 0 (cf. (76) above).
(ii*) and (iv*): The right-left duals of (ii) and (iv).

Proof. For any ring map R^ S we get (i) => (ii) by noting
that the composition (79) is surjective by (78), and applying (i) to
its right-hand factor. We get (ii) => (iii) by taking M = S, N — R
in (ii).

Now assume J?->S an epimorphism. To get (iii) => (iv) apply
(78) with M arbitrary, P a free S-module, and N = S. Then (iii)
makes the first term zero, while the epimorphism condition makes
S (g)Λ S = S in the third term, which is thus zero. Hence the middle
term is zero. Finally, assuming (iv) we get (i) by applying the left-
right dual of (78) to left and right S-modules M, N. Here N is
written as a homomorphic image of a free left module Q so that
the first term Torf (Af, Q) becomes zero by (iv), so the second map
is an isomorphism, and its codomain simplifies to Torf(ikf, N) by the
epimorphism assumption. This completes the proof.

(80) Definition. A ring epimorphism R—> S satisfying the equi-
valent conditions of Proposition 5.1 will be called a pseudo-
fiat epimorphism.

(REMARK. The condition that R^- S be an epimorphism has for-
mulations analogous to (i)-(iv): (i') Tor*=Tor0

5, (ii') Tor0

B (M, N) >̂ Tor0

β

(M, S(g)N), (iii') Tor0

β(S, S) - Tor0%S, S), (iv') Tor0

β(ilf, S) ^ Ύoτξ(M, S).)

We now record some easy consequences of Proposition 5.1. From
(i) we get:

(81) A composition of pseudoflat ring epimorphisms is pseudoflat.

(82) The direct limit of a directed system of rings and pseudoflat
epimorphisms is pseudoflat over each of the given rings.
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There is a partial converse to (81).

(83) If a composition of ring homomorphisms R —> S —> T is a
pseudoflat epimorphism, and if R —> S is an epimorphism,
then the map S > T is a pseudoflat epimorphism.

To see this, note that for R —> S any ring epimorphism, (78) applied
to S-modules shows that Tor? -» Torf is surjective. (83) is easily
deduced.

Recall that the n x n matrix ring functor Mn induces equival-
ences of module categories (Morita equivalence), and these necessarily
respect the construction Tor. Hence

(84) A homomorphism R —> S is a pseudoflat epimorphism if and
only if Mn(R) - > Mn(S) is.

From condition (iii) of Proposition 5.1 we see

(85) If R -» S is an epimorphism such that S is either flat as a
right or flat as a left i?-module, then R —> S is pseudoflat.

Finally, from (iv) and our earlier discussion we have

(86) If R —> S is a pseudoflat epimorphism, then for any right
S-module M> (hd^ M ^ 1) => (hd5 M<>1). In particular, if R
is right hereditary, so is S.

(87) Example. A sur jective homomorphism R --> R/I will be a
pseudoflat epimorphism if and only if I2 = I.

For Tor?(i2/I, R/I) = I//2. Such an epimorphism need not be flat.
For example if R is a commutative integral domain, i? —> #// is flat
if and only if / = 0 or I = R. But there are integral domains with
nontrivial idempotent ideals, for instance any nonprincipal valuation
ring. Cf. also Example 4.1 above.

We now want to prove that pushouts in the category of rings
preserve pseudoflat epimorphisms. Let if be a ring, let Rx and Rz

be K-τings, and let S be their coproduct as IΓ-rings, S = RιΆ.κR2t

equivalently the pushout of the given pair of ring maps. Let us
recall a characterization of the underlying if-bimodule of S due to
P.M. Cohn [12]:

Gohn obtains S as the direct limit of a system of bimodule
maps Wo ~->W1 —> . Here Wn represents, roughly, the elements of
S lying in the w-fold product RλR2Rt in S. Precisely, we define
Wo = 0, W1 = Rlf and assume inductively that for some n we have
defined iΓ-bimodules and maps, WQ —> —> Wn (n^l), so that the
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odd terms are in fact (Rίf if)-bimodules, the even terms are (R2, K)-
bimodules, and the maps W4 —> Wi+2 respect these bimodule struc-
tures. Then Wn+1 is defined as the following pushout of (i?*, K)-
bimodules, where R% denotes R1 if n + 1 is odd, R2 if n + 1 is even.

(88) ^ 0 f w ^ / \ w ^
n * ̂  R* (x)z, W/

Here the upper solid arrow is induced by the left i?*-module struc-
ture of Wn-lf and the lower one by the map Wn^ —> Wn. We map
Wn into this pushout via its map into the bottom term of the above
diagram.

Now taking W^ = dir. lim Wn = dir. lim W2m+1 = dir. lim W2m, we
see that this limit object has compatible left K, Rlf and R2 module
structures, hence is a left module over S — Rγ 1LKR2. Further, the
map Wx — Rx —> S is easily seen to extend to a left S-module map
Woo —> S. Since this carries the left S-module generator 1 of W^
to the free left module generator 1 of S, the map is an isomorphism,
so Woo = S, as claimed. Using this description we can now prove

PROPOSITION 5.2. Let K be a ring, and K-+L a pseudoflat
ring epimorphism. Then for any K-ring R, the map R—>S = R]LKL
is also a pseudoflat epimorphism.

Proof. Let us take Rλ = R} R2 = L in the preceding description.
We observe that when n — 2m — 1, so that R* = L in (88), the
upper solid arrow of that diagram is an isomorphism, because K—>L
is an epimorphism. Hence the pushout is simply the other object
in the diagram, i.e., W2m — L ®κ W2m-λ. If we now substitute'this
into the diagram for n = 2m, we get a pushout of modules all
described in terms of W2m.^:

(89) R ^ w ^ ^ ^ ^:;wΛm+ι

We shall now show that for all m ̂  1, and all right S-modules M,

(90) Tor?(M, Wim^) = 0 .

(In fact, (89) is equivalent to a description of W2m+1 as U(g)R TF2m_x,
where the (R, i2)-bimodule U is the pushout of the corresponding
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diagram with R in place of Wlm-ΰ and the arguments we shall give
show more generally that for any right S-module M and left R-
module N, Torf(ilf, N) = 0=*Tor?(M, U(g)BN) = 0.) We note that
(90) is true for m = 1, as Wί — R. Now for fixed m, assume (90).
Let us write (89) as a presentation (91) of W2m+1, and then tensor to
get a presentation (92) of M(g)BW2m+1:

(91) R <&, W2m^ > Wlm^ θ(R0κL ®K W2m^) > W2m+1 > 0

(92) M ®κ W2m^

Since the S-module M is in particular an L-module, and K-^L
is an epimorphism, the second summand in the middle object of
(92) collapses to the left-hand object, so that in particular the left-
hand map is 1-1, and (92) with "0—>" on the left is a short exact
sequence. (We can deduce more: this sequence will split, and
M ® Λ Ŵ m-i = M 0B W2m+ί, but we do not see how to use this directly.)
Now though (91) is not similarly "short exact", it is not hard to
deduce from the short exactness of (92) that on applying ΎorE(M,)
to (91) we get a surjection

(93) Tor?(If, Wlm-, θ (R ®κ L 0K W2m^)) > Torf (ikf, W2m+ι) > 0 .

By the hypothesis (90) we may delete the summand TF2m_t in the
first Tor and still have a surjection.

Now consider the commutative diagram

(94) Torf (M, Wz^ι)Z^~ ^~~ ~ — T o r f ( M , W2n+1)

Torf (M, L (x)A-

The term in the top branch is zero, so the composite map is zero.
But in the bottom branch, the first arrow is surjective because
K-+L is pseudofiat (Proposition 5.1 (ii)), the second by (78), and
the third by (93). Hence the right-most object must be 0. This
completes the inductive proof of (90) for all m.

Since Tor commutes with direct limits, it follows that
Torf(ikf, S) = 0. The mapiϋ->S is an epimorphism because pushouts
preserve epimorphisms in any category. Hence by Proposition 5.1
(iv), this map is a pseudoflat epimorphism as claimed.

We may now deduce

(95) Any universal 2-sided localization is a pseudoflat epimorphism.
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Indeed, by (82) (direct limits) we may reduce to the case where
only a single morphism of projectives, f:P~>Q is being inverted:
S = R(f~]). If we write P φ Q as a direct summand in a free
module nR, then by (84) (matrix rings) we may reduce to the case
where n — 1, so that P = eΓR, Q •=• eQR, where eΓ and eQ are ortho-
gonal idempotents. We now regard R as a iΓ-ring where

K = (θ z)xZ> l e t t i n g (e»> 0)> ^ 0 ) ' (βl2> 0 ) ' a n d (0> 1 } i n K g 0 t 0

eQ, er, f, and 1 — eΓ — eQ respectively. Then universally inverting /
IZ Z\is equivalent to forming the pushout over K of R with L = ( Ύ r? I x Z.
\j£t JJ /

This epimorphic if-ring is pseudoflat by (85) because it is right flat.
(Indeed, it is right projective: L = (eu, l ) ί Γ 0 (βn, 0)K.) This gives
(95). Hence by (86):

THEOREM 5.3. Any universal localization of a right hereditary
ring is right hereditary.

We have not been able to obtain any general results on the
structure of the semigroup of isomorphism classes of finitely generated
projective modules over a universal localization. For examples of
nontrivial behavior see [3] pp. 69-70, [8] § III; but for positive re-
sults under good hypotheses see [15] (which corrects and supersedes
[141).

It is amusing that (83) can be obtained as a corollary to Pro-
position 5.2. For from the hypothesis that R —> S is an epimorphism,
it follows that the pushout of the pseudoflat epimorphism R ---> T
along R -> S is S - > Γ.

Let us note

(96) Suppose R —> S is a pseudoflat epimorphism.
(i) If S is generated over R by the inverses of a family
Θ of morphisms of finitely generated projective Λ-modules,
then the kernel of the map R(Θ~]) —> S is an idempotent ideal
of R(Θ-1).
(ii) If R is semihereditary (or more generally, Torf = 0)
then the kernel of R —> S is an idempotent ideal of R.

Indeed, (i) follows from (83) and (87). To see (ii), call the
kernel /, and note that Torf = 0 makes Torf left exact in each
variable, so I/Γ = Toτ?(R/I, R/I) embeds in Torf (S, S), which is 0
by pseudoflatness. The hypothesis of (ii) cannot be dropped, as is
shown by the universal localization K[s, t]/(st, t2) —• K[s, s"1], which
has nilpotent kernel.

REMARK 5.4. Relation between pseudoflat epimorphisms and
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universal derivations. To show this relation we need to do some
calculating. Let K be a ring, and R —> S a map of Z-rings. Then
we have a commuting diagram of (S, S)-bimodules

0 0

(97) Torf (S, S) -> Torf(S, S) -

ΩK(S)-

i
?(g)*S-

I
i "
0

— ΩR(S)-

I
^S0RS-

1
I
0

Here the long horizontal part is the exact sequence (8) of [6],
and the vertical parts are (61). If we follow the upper branch on
the right side of this diagram, while we note that by [6] (13) the
cokernel of the leftmost arrow is Ύor[R'K)(S, S) (relative Tor) we
obtain an exact sequence:

(98) 0 > Ίoτl*'K)(S, S) > ®ΩK(R)® > ΩK(S) > ΩB(S) > 0 .

Now the first stage in our derivations approach to universal
localization was (4), which says that for S a universal localization
of R, the middle map of (98) is an isomorphism. By exactness this
is equivalent to saying that the outer two terms are 0. That the
last term is 0 simply means that R —> S is an epimorphism. Com-
paring the condition that the first term be zero with Proposition
5.1 (iii), we see that (4) is a "J£-relativized" version of the statement
that R —> S is a pseudoflat epimorphism! If S is right or left flat
over K so that the first term of (97) is zero, then Tor^'^S, S) =
Torf (S, S), and (4) then says precisely that R —> S is a pseudoflat
epimorphism.

5.5. Possible generalizations. We observed earlier that the full
strength of R -> S being an epimorphism of rings was needed to
make the assertion (75) that M®RS = M in (74). But in fact one
could adapt the argument there to a weaker hypothesis: that M
embed as a direct summand in the right S-module M (g)Λ S; in the
terminology of relative homological algebra, that M be projective
relative to R. This holds, in particular, if S is an S-bimodule
direct summand in S 0R S. We did not consider this condition be-



UNIVERSAL DERIVATIONS AND UNIVERSAL RING CONSTRUCTIONS 329

cause of the difficulty of establishing equivalent conditions for
pseudoflatness as in Proposition 5.1, without the epimorphism as-
sumption. For similar reasons we did not study analogs of pseudo-
flatness with higher Tor/s in place of Tort. However, someone
might find it worthwhile to look further in these directions.

6* Appendix: universal localizations of R and universal R-
sfields—rectification of some past confusion* We have mentioned
that the Ore localization of a ring R with respect to a right or left
denominator set [13] is a universal localization of R in the sense of
this paper. In particular, this applies to the sfield of fractions K
of a right or left Ore ring R.

However, such a sfield of fractions need not be a universal
R-sfield in the sense of Cohn. (We are adapting Cohn's terminology
to our own preferences by writing "sfield" for his (not necessarily
commutative) "field". For results of Cohn's cited below, see [13,
Gh. 7]. Cf. also [21], [17].) Let us describe the relation between
these two conditions.

Let R be a ring, K an epic Λ-sfield, and let us write Σκ for
the set of all square matrices (of all sizes) over R whose images
over K are invertible. Thus, R{Σjζ

1} is the "best approximation"
to K that we can get by starting with R and universally inverting
a set of square matrices. By results of Cohn, R(Σκιy is a local
ring (possibly a sfield) having residue sfield canonically isomorphic
to K. (One may deduce from this that we would have gotten the
same ring if in trying to best approximate K we had allowed
iterated localizations, and the inversion of maps among nonfree
projectives. Incidentally, Cohn writes RΣ for R(Σ~xy.) Now for
two epic iϋ-sfields K and L:

(99) The following conditions are equivalent (Cohn)
( i ) ΣK^ΣL.
(ii) There exists a homomorphism of ϋ?-rings R(Σi1} —>

(iii) There exists a specialization of itί-sfields K —> L (note
reversed direction!)

(The reader not familiar with specializations of sfields may use (99)
to replace statements about specializations by statements not using
them in the latter part of this appendix.) (Cf. the case R — Z,
K = Q, L = Z/pZ. Since a matrix over a commutative ring is in-
verted by inverting its determinant, one may replace Σκ by Σκ f]R
in considering this example.)

Cohn calls an epic β-sfield K a universal R-sfield if the condi-
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tions of (99) hold for every other i?-sfield L. R can have at most
one universal i?-sfield, up to isomorphism. (It need not have any.)

On the other hand, clearly K will be a universal localization
of R as defined in this paper if and only if the map R(Σκι) —> K is
an isomorphism, i.e., if and only if RζΣϊ1) is a sfield.

The two straightforward relationships that exist between these
conditions are

(100) The field of fractions if of a commutative integral domain
R is both a universal i?-sfield, and a universal localization
of R.

(101) If R has a universal J?-sfield K, then K is the only iϋ-sfield
(up to isomorphism) that can be a universal localization of
R (by (99) (ii)) though it may not be.

For very easy examples of how these conditions are not related,
let K and L be fields, and consider the three commutative rings
R1 = K[ε]/(ε2), R2 = KxL, R3 = R,xL. There is a unique epic i?Γsfield,
RJ(e), so this is a universal i^-sfield, but since Rι is already local,
this field is not a universal localization of Rλ. The two iϋ2-sfields K
and L are both universal localizations, so neither can be a universal
iϋ2-sfield by (101). K and L are also the two epic i23-sfields. Al-
though only one of them, L, is a universal localization, it is still
not a universal i?3-sfield.

A ring R may have a universal iϋ-sfield K, but still have other
epic iϋ-sfields L such that R —> L is an embedding. For example, a
free associative algebra R — k(x, y, z) has a universal ϋJ-sfield, but
also embeds in the universal sfield of k(x, u) by y h-* xu, z κ+ xu2.
In such cases, L cannot be a universal localization of R by (101),
which means that when we localize R at ΣL, certain elements appear
which go to zero in L, though no elements of R do. (In the ex-
ample noted, y~xz — x~]y is such an element.)

On the other hand, examples are known of ϋ?-sfields K such
that K is a universal localization of R, and R embeds in K, but K
is not a universal ϋϊ-sfield. Indeed, let us show that, as claimed
above, there are Ore rings R whose sfields of fractions K are not
universal iϋ-sfields. One class of examples is noted in [13], Exercise
7.2.11 (p. 258). We shall sketch here a few more details than are
shown there. Let Ro be a ring with two nonisomorphic -ffo-sfields
K and L in which it embeds. Since they cannot each be specializa-
tions of the other, say there is no specialization (over Ro) from K
to L. Now adjoin a central indeterminate to K to get a ring K[t],
and let R be the subring thereof consisting of all elements with
constant term in Ro. It is easy to verify that, like K[t], R is right
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and left Ore and has sfield of fractions K(t). But if we make L

an iϋ-sfield by R > Ro —• L, then K(t) cannot be specialized to L
because K cannot, so K(t) is not a universal i?-sfield. If in fact L
was a universal localization of Ro, then one may easily show that
as an i?~sfield it is also a universal localization.

Another example, in which R has polynomial identity, is noted
in [5] Exercise 12.2. Let us describe here a variant in which R is
also Noetherian. Let C and H denote the sfields of complex numbers
and quaternions, and o) e C a primitive cube root of unity. Let R'
denote the C-algebra presented by generators X, Y and the relation
YX = ωXY. Define a homomorphism / from Rf to the matrix ring
MIC) by

( ω 0 0\

0 ω2 01

0 0 1/

One easily verifies that / is well-defined. It is also surjective be-
cause β33 - (/(XT +/(X) + l)/3 and eiS ^f{Yγ-%J{Yγ.

Now let us consider the quaternion sfield H to be the sub-J?-
algebra of M2(C) generated by i = ien — ie22 and j = β12 — e21. Then

M3(C) contains (** £Y and so we may define R = /"'(jf ^) £ β'
One easily verifies that R', and hence also its sub-iί-algebra of

finite codimension R, is a Noetherian domain with polynomial identity
whose sfield of fractions K has dimension 9 = 32 over its center,
C(XZ, Y3). Hence in the language of [5], R, Rf, and K have p.i
degree 3. Also, by construction we have surjective homomorphisms
R-^HxC-^H. But the #-sfield K, of p.i. degree 3, cannot be
specialized onto the iϋ-sfield H of p.i. degree 2 because 2 is not a
divisor of 3 ([9], Cor. 6.9). So K is not a universal iϋ-sfield.

We have dwelt on these points because the temptation to con-
fuse these two types of universality is great, having led Cohn, for
instance, to assume in [13], (p. 254, Example 2) that the sfield of
fractions of a Noetherian domain R is a universal i?-sfield, and the
first author of this paper to assert in the opposite direction (in [3],
p. 70, 9th line from bottom, and various personal communications)
that Ore localizations were not generally universal localizations!

Let us record for reference an explicit example of a matrix
over the p.i. ring R constructed above, which is singular over R,
and hence over its sfield of fractions K, but is nonsingular over
the i?-sfield H. Let c = Γ3 - Y6 and d = 1 - X3. These are central
in R', and their images in M3(C) are zero so that cR' + dR' lies in
R and has image zero in H. Let u — (1 — X)2, v =
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(1 - X)(Y2 - Γ3 - Γ4)(l - X\ w = (1 - X)(Y - Γ2)(l - X). One
checks that these elements lie in R, and have nonzero image in H.
Finally, let p = (l + X+X2)(Y2 + Γ 3 + Y%l-X\ r = 2(1-X)Γ 2(1-X).
These elements will not lie in R; but we note that up = (r — v)d,
wp = wed, and that r2 is also a multiple of d in iϋ' (because it has
left factors (1 - X), (1 - ωX), (1 - ω2X)). So all three of these
products lie in R and have image zero in H. The above equations
immediately yield the singularity result in R

= 0.

But because c and r2 go to zero in H but v and w do not, the above
4x4 matrix has nonsingular image over H.)

6.1. (Added in proof.) Let us partially order the isomorphism
classes of epic B-sfields by writing K < L when the equivalent con-
ditions of (99) are satisfied, and let us call an epic i?-sfield K "weakly
universal" if it is a minimal element in this partially ordered set.
(If R is commutative, for instance, weakly universal i?-sfields cor-
respond to minimal prime ideals of of R.) One can show that every
chain of iϋ-sfields has a lower bound in this partially ordered set,
hence by Zorn's Lemma, every epic iϋ-sfield is a specialization of at
least one weakly universal J?-sfield. In particular, if R has any i?-
sfields it has weakly universal ones, and an J?-sfield K is universal
if and only if it is the unique weakly universal ϋJ-sfield.

It is now easy to see that the proper generalization of (101)
(which holds for the same reasons) is: The i?-sfields which are
universal localizations of R form a subset, possibly proper, of the
weakly universal i?-sfields.

The paragraph following (101) gave easy examples of a ring R
having more than one i2-sfields which were universal localizations,
and a ring R having a universal i?-sίield which was not a universal
localization. We remarked in the preprint version of this paper that
we did not know examples with these properties such that R actually
embedded in the sfield(s) in question. The first author has found
such examples. We shall sketch the first (embeddability in more
than one sfield which is a universal localization) below. The other
example is at present quite complicated, and we will not give it
here.

Let k be a field, and R the Λ-algebra having a universal 3 x 3
idempotent matrix A. Then ί?-sfields K may be classified by the



UNIVERSAL DERIVATIONS AND UNIVERSAL RING CONSTRUCTIONS 333

rank i of the image of A. It turns out that R has precisely 4
weakly universal i?-sfields Kt (i — 0, 1, 2, 3) each universal for R-
sfields over which A has rank i. One finds that each Kt is a
universal localization of R, and that R embeds in both Kt and K2.

(Some details: If to R we adjoin a universal inverse to α13, we
/I 0 0\

find that A becomes similar to I 0 e 0 I, where e — α22 — a2ia^a32; and
\0 0 0/

Rζaΰ1} can be written k(a13, a^1, α12, α23, α33, e|e2 = e). By now inverting
1 — e (respectively e) we get a free algebra with one generator in-
verted, JS ! (resp. S2) = &<α13, αϋ1, α12, α23, α33>. Such an algebra is known
to have a universal sfield which is a universal localization, and in
which it embeds. R is shown by normal form arguments to map
injectively into Sί (resp. S.).)

(That R has precisely 4 weakly universal sfields, as described,
is not necessary to the example per se but may be verifield by
applying [3] to show R hereditary and determine its semigroup of
finitely generated projectives, then using [25] Theorem 23. If one
wishes to modify this example to eliminate the two weakly universal
i?-sfields Ko, Kz in which R does not embed, one may achieve this
by throwing in two more generators, p, g, and the relation
pa13 + aίSq = 1. This insures that α13 does not go to zero under
any homomorphism into a field, but avoids the loss of injectivity
at Kt and K2 that would result if we were to do this by simply
replacing R by

7* Appendix* A simplifying framework for derivations and
projective modules. Let R be a ring, δ: R -> B a derivation into
a bimodule, and u: EmR —> FnR a morphism of finitely generated
projective modules, with matrix U. Recall that if we decompose
UenRm and 8UenBm into their {F,E)-, (F,E')-, (F, E')-, and (F', E')-
components, the resulting decompositions will have the forms

Now considering E, F, δE, δF, and C7as "given", this means that
though δU is not itself an (F, E)-matήx, the "new information"
that it brings is contained in the (F, jEr)-matrix F(δU)E = U—
(δF)U- U(δE) (which is the reason for (30), (31)). This suggests
that the operation U ι-» F(δ U)E might be worth considering in place
of δ itself. Since the description of this operation requires that the
matrix U be given together with idempotents E and F indicating
its intended "domain" and "codomain", this requires a category-
theoretic approach. But we must recall what we noted in the last
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paragraph of § 1, that even for free modules, there is no invariant
concept of applying a derivation § to a module morphism, until
"coordinates" are chosen for the modules. This leads to the follow-
ing formalism: (We shall leave out the "fc-structure" introduced in
§ 2.7 here to allow us to concentrate on what is essential.)

If R is a ring, then we define the category of coordinatized
finitely generated projective right R-modules, denoted jRj, to have
for objects all idempotent square matrices E over R> and for
morphisms all 3-tuples (F, U, E) such that F, E e Ob/RJ and U is
an (F, i£)-matrix over R. The domain and codomain of (F, U, E)
are, of course, E and F respectively, and composition is given by
(F, C7, E)o(E, V, D) = {F, UV, D). Note that /R/ has a natural ad-
ditive structure, and is equivalent to the additive category of all
finitely generated projective right ϋ?-modules.

If j y and ,jy' are j&Z -categories (in earlier usage called "pre-
additive categories") then in the spirit of [22] one may define an
(J&Ί Jtf")-bίmodule to mean a functor . ^ : j / o p χ j / ' - > J / / (the
category of abelian groups). Concretely, this means a function as-
sociating to each pair of objects, XeOb j ^ X ' e O b .s&", an abelian
group &(X, X'), so that morphisms of J ^ , / : Y —> X, carry elements
be<^(X, X') to elements bfe^(Y, X') and morphisms g: X' -> Y'
of J^/" similarly act "on the left" to carry &(X, X') into &(X, Yf),
and these actions satisfy the associative law. (It might seem more
natural to write &(X'f X) for &(X, X') so that the object affected
by left and right actions appear on the left and right respectively.
We have made the opposite choice here for conformity with the
notation for Horn-sets, in which we are following the traditional
order: .j*f(X, Y) = {j^-morphisms from X to Y}. Thus an J ^ -
category, like a ring, becomes a bimodule over itself.)

Now if R is a ring, and B an jβ-bimodule in the usual sense,
we can define an /i?/-bimodule /B/ by taking /B/(E, F) = {(F, E)-
matrices in nBm}. Multiplication of matrices over B by matrices
over R gives the bimodule structure.

If δ:R-> B is a derivation, then for every u ~ (F, U, E)e
/R/(E, F) let us define δu = {F, F(δU)E, E)e/B/(E, F). This opera-
tion clearly respects addition. Furthermore, given u as above and
v = (E, V, D) e /R/(D, E), we find

δ(uv) = (F9 F(δ(UV))D, D) = (F, F(δU)VD + FU(δV)D, D)

= {F, F(δU)E. V, D) + (F, U-E(δV)D, D)

= (δu)v + u(δv)

where the next-to-last step uses the conditions VD = V = EV,
FU' — U" = UE. It is natural to call an operation δ with the above
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properties a derivation from the *$/6 -category JRj to the /R/-
bimodule /B/.

This formalism makes many of the computations we did in § 2
much simpler. Thus, equation (9), for the action of d on the 2-sided
inverse u of a morphism a, becomes

(102) du = —u(da)u ,

exactly like (8). Similarly, (29) simply says that when S=
R<u:P®-»Q®), then ΩK(S) is generated over ®ΩK(R)® by the entries
of due/ΩK(S)/(F, E), subject to no relations, beyond those defining
an (F, £r)-element. The one complication is that a given matrix
U will behave differently under d depending on which /R/-Hom-
set one regards it in. For example, if H is an idempotent (F, F)-
matrix, (i.e., HnR a direct summand in the protective iϋ-module
FnR) then an (H, i?)-matrix U is also an (F, i?)-matrix. However,
it is easy to relate the two ways of looking at U: if we write
u = (H, U, E), and i = {F, H, H) representing the inclusion of the
summand H (the module HnR) in F (the module FnR), then
(F, U, E) = in; and the relation between the derivatives of these
two manifestations of U is given by d(ίu) = (di)u + i(du).

If R —> S is a ring homomorphism, then on the object set of
\R\ one can form a new category /S/i2_proj, in which the morphisms
from E to F are the (F, i£)-matrices over S (where E and F act
via their images in S). This corresponds to looking at the category
of those projective S-modules P 0 induced by projective i?-modules.
The larger category /S/ can be constructed (up to a natural equi-
valence) from /S/̂ -proj by taking for objects all idempotent endo-
morphisms e of objects of /S/B-.vΐ0J, and for morphisms between such
objects the triples (/, u, e) with u = fue. Given a commuting
diagram of rings and derivations

R >S

B >B'

we get a commuting diagram of categories

>/B'/B-piO3 >/B'/.

This allows us to study ring constructions in which new direct-sum
decompositions P® = Pι®P2 appear (e.g., R(u: P® -> P Θ | u2 = u>,
i?<^: QΘ -> P® I α^ = lρ> as in (37) and (46)) without having to go
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back and refer to the way P itself was a summand of a free
module.

Some observations on the "disturbing" fact that the property
du = 0 is not respected by isomorphism in JRj. If we recall that
derivations originated in physics with the study of velocity, we see
that this is analogous to the phenomenon that a particle motionless
in one frame may be moving in another, and if rotating coordinates
are allowed even the property that two particles have the same
velocity is not invariant. Given two coordinate systems rotating
with respect to one another, we can at any instant transform, posi-
tion coordinates from one to another in a well-defined manner, but
not velocities. We can, however, translate pairs: {position, velocity)
from one frame to the other.

Likewise in our context, though "δu" cannot be treated in an
invariant manner, the pair (u, δu) can: Given isomorphisms in /i?/,
i: Ef 2L- E, j : F = F' we get an isomorphism /R/(E, F) x /B/(E, F) ~
/Rf(E', F')x/B/(E', Ff) under which pairs (u, δu) go to pairs « δu'),
namely (r, b) *-* (jri, (δj)ri + jbi + jr(δί)). It is because the second
component does not depend on b alone that δu alone cannot be so
treated!

An interesting case. Let δ: R —>B be a derivation, and EenRn

an idempotent. In general, no conjugate A~XEA need be annihilated
by σ. But one can always find an object Fe/R/ isomorphic to JΛ,
on which the idempotent corresponding to E is killed by δ, namely

7? T Xp)> t h e "external" direct sum of the
U 1 —• Jjj /

objects E and I — E.
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