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OSCILLATION RESULTS FOR A NONHOMOGENEOUS
EQUATION

SAMUEL M. RANKIN, III

The purpose of this note is to investigate oscillatory pro-
perties of solutions of the equation

(1) y"+P(t)y=f(t)

via the transformation y(t)=u(t)z(t) where u{t) is a solution
of the equation

(2) u"+p{t)u^0 .

Equation (2) is assumed to be nonoscillatory throughout the
paper. This represents a distinct change from most of the
recent work concerning oscillation in equation (1).

The transformation y(t) = Φ(t)z(t) transforms equation (1) into

(3) (φvy + Φ(fKφ"(t) + v(t)Φ(t))z

If φ(t) is a solution of (2) then (3) becomes

(3')

Equation (3') enables us to characterize the oscillatory behavior of
solutions of (1) in terms of the forcing function fit) and the non-
oscillatory solutions of equation (2). The need for "explicit" sign
conditions on pit) is eliminated. However, some implicit sign con-
ditions will be assumed, that is, the solution φ(t) of equation (2)
will be given properties that are implied by specific sign conditions
on p(t).

In recent articles Macki [10] and Komkov [7] have pointed out
the usefulness of the transformation u(t) = φit)z(t) in studying quali-
tative properties of the differential equation

ir(t)u')' + P(fi)u = 0 .

As usual a nontrivial solution y(t)(u(t)) of equation (1) [resp.
(2)] is oscillatory if on each ray (α, oo)(α > 0) there exists a toe(a, <χ>)
with y(tQ) — 0 (u(tQ) = 0). Equation (1) [resp. (2)] is oscillatory if
all solutions are oscillatory. A solution y(t) [resp. u(t)] of equation
(1) [resp. (2)] is nonoscillatory if it is eventually nonzero. It is
well known that all solutions of equation (2) are either oscillatory
or nonoscillatory. The functions pit) and fit) are assumed to be
continuous on [0, °°), so only solutions on the interval [0, oo) will be
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considered.
There has been considerable interest in the oscillatory properties

of equation (1) and some of its nonlinear analogues, for example,
Abramovich [1], Grimmer and Patula [2], Graef and Spikes [3] [4],
Hammett [5], Jones and Rankin [6], Lovelady [8] [9], Rankin [11]
[12], Singh [13], Skidmore and Bowers [14], Tefteller [15] and
Wallgren [16]. In each of these papers, except [2] and [11], a sign
condition is imposed on p(t), and in all but [6] and [8] the unforced
equation is either implicitly or explicitly assumed oscillatory.

To motivate our first theorem, consider the following examples:

EXAMPLE 1. u" + (1/A)r2u = 0 y" + (l/4)r2τ/ = £(1/2) sin t and

EXAMPLE 2. u" = 0 y" = t sin t.

It is seen below that the nonhomogeneous equations in the
above examples are oscillatory.

THEOREM 1. // there exists a positive solution φ(t) of equation
(2) such that for each T > 0 and for some M > 0

rt rt
( i ) Uin\ f(s)φ(s)ds — — c>o and liml f(s)φ(s)ds = <*>,

t-+'oo J T ί-^oo J T

\ ds ^ M\ ds/φ\s) and(ii) [ l/φ\s)\f(r)φ(r)dr
rt

(iii) liml ds/φ2(s) = w, then equation (1) is oscillatory.
t->co J T

REMARK. In Theorem 1 and the theorems given below, it is
easily seen that if fit) satisfies our hypothesis, so does —fit). The
transformation v = — y changes (1) into an equation of the same
form preserving the assumptions of the theorems. Therefore, when
we assume a solution y(t) of equation (1) is nonoscillatory, we will
assume y(t) > 0 on some ray (α, oo).

Proof of Theorem 1. Suppose equation (1) is nonoscillatory so
that there exists a solution y(t) of equation (1) such that y(t) > 0
on (α, c>o) for some a > 0. The function z(t), defined by y(t) —
φ(t)z(t), is a nonoscillatory solution of equation (3'). After integrat-
ing (3') and applying (i), we have that l i m ^ Φ2(t)z'(t) ~ — oo. Now
choosing Tλ> T such that φXTJz'iTJ < -2M, we have by integra-
tion that

z(t) - z(TJ + ΦXTJZXT^ ds/φ\s) + Γ l/08(s) Γ fir)φ{r)drds .
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From (ii) we obtain

z(t)< z{Tλ) - M^ dsjφ\s) ,

and by (iii) the solution z(t) is eventually negative. This contradicts
y(t) > 0 on [Γ, co).

REMARK. In Example (1), choose φ{t) = t1/2 and in Example (2),
φ(t) - 1.

THEOREM 2. If there exists a positive solution φ(t) of equation
(2) such that for T sufficiently large

( i ) HmΓ l/φ\s) \* f(r)φ(r)drds = - oo and

lim\ l/φ\s) \ f(r)φ{r)drds — oo and

(ii) lim\ ds/φ\s) < oo £/̂ w equation (1) is oscillatory.

Proof. Suppose there exists a solution y(t) of equation (2) such
that y{t) > 0 on (α, oo) for some a > 0, then the function #(£), defin-
ed by y(t) == φ(t)z(t), is a positive solution of equation (3') on [Γ, oo)
for some T > a. Integrating equation (3') twice we have

z(t) = z(T) + ^(ΓK(Γ)Γ cϋs/92(s) + Γ W(s) ίS f(r)φ(r)drds .

By conditions (i) and (ii), z(t) satisfies z(Q < 0 for some ί0 > T9

thus contradicting the positivity of y{t) on (α, °°).

EXAMPLE 3. The equation y" — y ~ eu sin ί illustrates Theorem
2 where φ(t) = e*. Also for y" = ί3 cos ί choose ^(ί) = ί.

EXAMPLE 4. For the equation y" — y — sin t all of the condi-
tions of Theorems 1 and 2 are not met. This equation has the
general solution y(t) — — 1/2 sin t + cxe~ι + c2eK Notice that all
bounded solutions on [0, oo) can be written in the form y(t) = —
1/2 sin t + Cjβ"* for some ct. It is easily seen that these solutions
are oscillatory. The following theorem can now be stated.

THEOREM 3. // there exists a positive bounded solution φ{t) of
equation (2) and an a > 0 such that

( i ) lim^(ί) [ds/φ2(s) = lim [' ds/φ\s) = oo for each T > a and

(ii) there exists a sequence {Tn}n=i such that limΛ̂ oo Tn = oo,
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limΓ f(s)φ(s)ds = 0, limΓ 1/Φ2(s)[' f(r)φ(r)drds=- <*>, fim Γ Vφ\s)

f(r)φ(r)drds = oo, and φ(t)\ l/φ2(s)\ f{r)φ{r)drds is bounded,

τn # J5fΛ )τn

then all bounded solutions of equation (1) are oscillatory.

Proof. Suppose there exists a bounded solution y(t) of equation
(1) such that y(t) > 0 on [T, oo)(Γ> α ). Integrating equation (3')
from Tn to t for some TΛ > T, we have

( * ) Φ\t)z\t) = φ\Tn)z\Tn) + Γ f(8)φ(8)d8 .

φ\TJz'(Tn) is greater than 0, for each n, for if φ\Tn)z'(TJ = 0, a
second integration yields

= «(ΓJ + (' W(s) Γ f(r)φ(r)drds and by (ii)
J Γ Λ J Tn

«(ί) = — co 9 a contradiction. If φ\Tn)z\Tn) is negative, then
choose ε > 0 such that φ\Tn)z\Tn) + ε < 0. By (ii), it is true for

t > T for some T > Tn that Γ f(s)φ(s)ds < ε and from (*) z\t) <
J T

φ\Tn)z\Tn) + ε/^2(ί), for t ^ Γ'.* Integrating the above inequality

from T to t gives «(ί) < (φ\Tn)zr(Tn) + ε) Γ ^/^2(s) + z{T'). Apply-

ing (i), it can be seen that z(t) will eventually be negative.
Now, integrating (*) from Tn to t and multiplying by φ(t) gives

y(t) = φ(t)z(t) - φ(t)z(Tn) + φXTJz'V

rt cs

+ φ(t)\ 1/Φ\s) \ f{r)φ{r)drds .

The left side of the above equality remains bounded while the right
side approaches infinity by (i), (ii), and the fact that φ\Tn)z'(Tn)>0;
the theorem is proved.

It is an easy exercise to see that wit) = yx{t) — y2(t) is a solu-
tion of equation (2) whenever yx(t) and y2(t) are solutions of equation
(1). Thus if equation (2) is nonoscillatory, there are at most a
finite number of points tx" tn such that y^U) = y2(tx) for i —
1, 2, •••,%. Let us further assume that yγ{t) and τ/2(ί) have no double
zeros for large t and that for sufficiently large α, 6, ^(α) = ^(6) = 0
with yλ Φ 0 on (α, 6). Then if y2(t0) = 0 for some ί0 e (α, 6), the
solution y2(t) of (1) has an even number of zeros in (α, 5).

To obtain asymptotic results for nonoscillatory solutions of
equation (1), equation (3) is considered once more where φ(t) is not
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necessarily a solution of equation (2). The following results of
Hammett [5] and Graef and Spikes [3] for the differential equation

(4) (r(t)v'Y + p(t)v = f(t)

will be useful.

THEOREM 4. [Hammett, 5]. //

(i ) r(t) > k > 0 on [0, oo) and [°°dt/r(t) = oo,

(ii) p(t)>Jc>0
(iii) /eL(0, oo)

then all nonoscillatory solutions v(t) of (4) satisfy lim v(t) = 0.

THEOREM 5. [Graef and Spikes, 3]. If

( i ) r(ΐ) > 0 on [0, oo) and [°°dt/r(t) = oo,
Jo

( i i ) p(t) > 0 and I p(s)ds = oo,
Jo

(iii) J"(Jo

W^M«))l /(w) I dw < oo,
M nonoscillatory solutions v(t) of (4) satisfy lim^^ v(t) = 0.

THEOREM 6. // there exists a positive function φ{t) such that
φ(t)f(t)eL(O, oo), φ{φ"(t) + p(t)φ(t)) > Kx φ\t) > Kx for some Kx> 0

and \ ds/φ\s) = oo, then every nonoscillatory solution of equation

(1) satisfies limbec y{t)φ{t) = 0.

Proof. By Theorem 4 and tthe hypothesis, each nonoscillatory
solution z(t) of equation (3) satisfies lim^^ z(t) = 0.

EXAMPLE 5. For the equation

(5) y" + r1!/ = 2r3 + r 2

let φ(t) = ί1/2 and the conditions of the theorem are satisfied. Notice
that equation (5) does not satisfy all of Hammett's hypothesis.

THEOREM 7. If [ ([Sdw/φ2(w)\φ(s)f(s)\ds < oo where φ{t) > 0,

S CO C OO

dw/φ\w) = oo, I fo"(t)0(ί) + p(t)φ\t)]dt = oo, α^d ^'V + #(*V2 > 0
fe W ill l i f i (1) if li ()/() O

αW nonoscillatory solutions of equation (1) satisfy lim y(t)/φ(t) = O.

Proof. Equation (3) now satisfies the hypothesis of Theorem 5
and so l i m ^ z{t) — 0 for each nonoscillatory solution z(t) of equation
(3).
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EXAMPLE 6. The following equation is more general than equa-
tion (1) but illustrates the usefulness of the transformation y(t) =
Φ(t)z(t):

( 6 ) (ty'y + t~1/2y = r 2 + r 3 / 2 .

Equation (6) does not satisfy condition (iii) of Theorem 5. However,
using the above transformation with φ{t) = t~iμ, all conditions of
Graef and Spikes' theorem are satisfied for the equation

(t1/2z'y + (5/16 r1 0 / 4 + t~ι)z = r 9 / 4 + r 7 / 4

and so for all nonscillatory solutions z(t), \imt-+oo z(t) = 0. Since y(t) =

t~iμz(t), all nonoscillatory solutions y(t) of equation (6) satisfy

lim^co t1/4y(t) = 0.

REMARK. The transformation y(t) = φ(t)z(t) maks it possible
not to require p(t) to be positive as required in [3] and [5].
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