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CHARACTERS OF AVERAGED DISCRETE SERIES
ON SEMISIMPLE REAL LIE GROUPS

REBECCA A. HERB

Let G be a real simple Lie group of classical type having
a compact Cartan subgroup. Then G has discrete series repre-
sentations. The purpose of this paper is to establish explicit
formulas for certain sums of discrete series characters. These
“averaged’’ discrete series characters have simple formulas
which can be used for certain problems in harmonic analysis
on G, for example, for the computation of the Plancherel
measure on G.

1. Introduction. Let G be a connected, acceptable, semisimple
real Lie group with finite center. Suppose that G has a compact
Cartan subgroup 7. Then G has discrete series representations.
The characters of these representations were initially deseribed by
Harish-Chandra in [2]. The characters have simple formulas on 7.
On the noncompact Cartan subgroups, the formulas are complicated,
and contain certain integer constants which Harish-Chandra did not
compute.

Using the procedure described in [2], these constants can be
computed if related constants are known for each type of simple
root system which is spanned by a strongly orthogonal set of roots.
These are the root systems of types A, B,, C,, D,,(n = 2), E,, E;, F,,
and G,, and they correspond to the complex simple Lie groups for
which the split real form has a compact Cartan subgroup, and hence
discrete series representations. Partial solutions to the problem of
computing these constants have been given in [4, 5, 6, 7, 8, 10, 11,
12]. A complete solution is now available in work of T. Hirai
[11]. Hirai’s formulas express discrete series constants for groups
of arbitrary rank in terms of constants for groups of real rank one
and two.

Explicit formulas for discrete series characters, besides being of
interest for the representation theory of G, are needed for harmonic
analysis on G. However for some of these problems, for example,
computation of the Plancherel measure on G, it is necessary only
to have certain sums of discrete series characters.

Let g and t denote the Lie algebras of G and T respectively,
and g and t. their complexifications. Then the discrete series characters
of G are parameterized by regular elements 7z in a lattice L, <
V/=1t*. The Weyl group W of the pair (g tc) acts on L,. Instead
of the characters (—1)%(7)f, defined by Harish-Chandra in [2], we
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consider the sum of characters
(=1 > e(wr)b,. = (—1)%(7) >, det wh,. .
wew wew

Here ¢ = (1/2) dim (G/K), K a maximal compact subgroup of G, and
e(t) = *+1 satisfies e(wr) = det we(zr). Note that if ¢ € L, is singular,
invariant eigendistributions 6, are defined by Harish-Chandra in [3].
However, for singular 7, >),.» det wé,. = 0.

These averaged discrete series characters are sufficient for the
Fourier inversion of stabilized invariant integrals

F () =wz;,wdet wF{(w™t,), f€CZ(G), t,e T".

Here T’ is the set of regular elements in T and F'% is the invariant
integral of f with respect to T defined in [1]. F%(¢,) can be regarded
as the integral of f over the orbit of ¢, in G under the adjoint action
of G. Z#;%(t,) is the integral of f over the orbit in G under the
adjoint action of G, a complex Lie group with Lie algebra g.. Fourier
inversion formulas for .#/7(t,) can be used to derive the Plancherel
formula for G.

For the Fourier inversion of &7, it is necessary to have explicit
formulas for the averaged discrete series characters. These formulas
could in theory be obtained by summing the formulas given by Hirai
in [11]. However, the formulas for the averaged discrete series for
the classical infinite families (B,, C,, D,,) having discrete series can
be established independently of Hirai’s general results. The simplicity
of the averaged formulas in these important cases is not obvious
from the general treatment in [9].

Thus the purpose of this paper is to establish the formulas for
the averaged discrete series for the classical families of real simple
Lie groups. These formulas will be used for work to appear on the
Fourier inversion of stabilized invariant integrals and Plancherel
theorem. -

2. Averaged discrete series characters. We first establish some
notation. For any reductive group G and Cartan subgroup H, define
W(G, H) = Ny (H)/H where Ny H) is the normalizer of Hin G. Let
D(gc, be) denote the root system of the complexified Lie algebras of
G and H. Let W(®) denote the Weyl group of the root system @.
We regard W(G, H) as a subgroup of W(®(g. bc). For nebi, we
define &, on H; by &(exp H) = exp (M(H)), H € ¥, whenever this gives
a well-defined character of H.,. Let @*(g., 9.) denote a set of positive
roots for @(gc, Hc). Let 6 = (1/2) S ¢, x € @ (gc, Hc). Then if G is
acceptable, & is well-defined on H, and we define
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Ah) = &(h) I (1 — &(R)™) -

Let H’ denote the set of regular elements in H; that is, H' =
{h € H|4(h) # 0}.

Let G be as in §1. Let K be a maximal compact subgroup of
G containing 7, and denote by 6 the Cartan involution of G with
fixed point set K. Then g has Cartan decomposition g = | + p where
f is the Lie algebra of K. Let H be a #-stable Cartan subgroup of
G with Lie algebra 5. Write § and H according to their Cartan
decompositions as § =9, + 9, and H = H H,. Let ycG, satisfy
ady (tc) = . Then y induces a mapping from tf to §Hf which we
denote by © — ¥z.

Let he H. Write b = hxh, where hy€ Hy, h,c H,. Let Hy be
the connected component of H, containing %,. Assume Hz & 7. Let
3 denote the centralizer in g of Hjf, Z the connected subgroup of G
with Lie algebra 3. Let @ = @(3., t.). We consider @ as a subset of
D(gc, tco). Let 07 ={ac@|a(log h,) > 0}. Let ve L, and denote by
8. the corresponding invariant eigendistribution defined by Harish-
Chandra. Then it follows from [2] that:

(2.1) O.(hgh,) = 4(h)™ p dett >, detse(s:tr: @M)s,,. (¥ 'h).

te W(Z,)\WI(G,T) Sei (®)
The ¢(s: 7: @%) are integers satisfying:

(2.2) c(su:z: 0%) = ¢(s:uc: 0%, ue W(Z, T).

LEMMA 2.3. Let W =W(g, t.), other notation as above. Then
>, det wl,.(h) = [W(G, T)]4(h)™ X, det w ¢(wz: )&, (y'h)

we W

where ¢(T: OF) = Dcwwurn (s s7iT: @),

Proof. The formula follows directly from (2.1) and (2.2) since
W(G, T) and W(®@) can both be regarded as subgroups of W.

The constants ¢(c: @*) have the following properties which can
be deduced from their definition and from the corresponding properties
of the constants c¢(s: 7: %) proved in [2].

(2.4) C(st: s@%) = ¢(z: @F) for se W(9).

Let {ay, ---, @} be a set of simple roots for @*. Let 4, ---, 4, in
L, satisfy {4,, &;> = 6,;. Then:

(2.5) c(z: %) =0 if (r,4,)>0 for any 1<:=<1.
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Let «¢c®* be a simple root. Let a, = 'a e ®(3;, h). Let X, and
Y,, denote the root vectors for @, and —«, in g satisfying [X,, Y, ] =
2H,./{a, @) where H, ) satisfies B(H,) = (B, a,) for all 8 D(gc, Ho).
Let v =exp ((—nV' —1(1)/4) ad (X,, +Y,)). Then it =v(Hhc)Ng is a 6-
stable Cartan subalgebra of g. Let @,={8ec®|{(B, a)=0}, Of =0,ND*.
Let s denote the reflection in W(®) corresponding to «. Then:

(2.6) c(t: @F) + ¢(st: @) = ¢(c: OF) + ¢(st: OF) = 2¢(z; DF)

since ¢(st: @F) = ¢(z: s@F) = ¢(r: @F) as sB = B for all e d,.

Let . Dbe the real subspace of 1/ —1t* spanned by @. Forre
V' —1t*, ¢ can be written uniquely as v = z; + 7,, where 7,€ .4, and
vz, takes purely imaginary values of §). Let &' ={Ne F |\, @) #
0, xc ®}. Then ¢(z: %) depends only on the component & * of 7, in
Z'. We write

2.7 o(F 0% = ¢(r: 0) if T, e T T

If =0,U--- U0, where the 0,1 <7 < s, are simple root
systems, then A €. * can be written uniquely as M =, + --- + ),
where for 1 <7< s, N\ €.,;, the real linear span of the elements
of @,. Let &;" be the component of .F;" = {Me F;[{a, \) # 0, ac®,}
containing \,. Then if & =@, N O™,

(2.8) B 0) = [L 877 07) .

Note that if @(g., t;) is of classical type, so are all the simple com-
ponents @, in the decomposition of @.

We see that the problem of computing constants for averaged
discrete series characters reduces to the problem of computing certain
constants ¢(.# ": @) connected to a simple root system @, a choice
of positive roots @*, and a component . * = 7', the set of regular
elements in the underlying real vector space of @. We will derive
formulas for these constants for the cases ® = B,,C,, or D,,n =1,
where for D, we assume n is even. (Of course, B, = C, = A4,, and

D, = AL)
Let
{*e, > e;, el Zi+j5=n} if & =8,;
d):{{ieiiej,iZeillgiv&jgn} if 0=0C,;
Hte, +ell<t-j5<n} if &6=0D,.
Assume
e, te,exll<i<j<n,1<K<n} if 0 =8B,,
O = {{e; tej, 2|1 <i<j=n,1=<K=n} if 0=C,,
e, £e;ll<i<j<n} if 6=D,.
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Then a set S of simple roots for @* is given by:

{81 T g €y T €yttt €y T Eyy en} it ©= B'n ’
S = {81_62782—337"'7en—1~en728n} if @:Cn7

{el T €y € T €y 0ty Cpy T Cpy €,y 8”} it @ :Dn .

In each case an element \ of % can be written as N = 3%, me,,
m;eR. (If N is in the weight lattice for @, the m,’s will be
integers or half-integers.) In each case the permutation group S,
on n elements acts on @ and on . by permuting the indices of the
e;’s.  With this action, S, is a subgroup of W(®). Let S} =
{ce8S,lo0@2i —1)<a2i),l <t = [n/2]}and Si* = {oeS}|o(l) < 0(8) <
cee < 02[n/2] — 1)), For n = D2 me,;, let N, = my_e, + Mye,, 1 <
1= [n/2]. If nis odd, let n, = m,e,. If @ is of type B, or C,, let
(4 if 0>n>m or 0> —m>n

29) Gne, + me,) = 10 otherwise

2 if n<0
2.10 c(ne) = 1. |
@10 ane) =g it n .
If @ is of type D,, let

4 if —lm
2.11) G (e, + me;) = { tHom < —im]

0 otherwise .

THEOREM 2.12. If Ne o ™, them ¢(F *:0%) = P(\: ®") where

POv 0% = S det o 1] 6,((0-\),)
sast it

iof n 1s even

= X det a@;((a-lmn)"ij’zcg((o—%)i)

oesS,

if n 1s odd.

Proof. The theorem is true for n =1 or 2 because it reduces
to formulas (2.9), (2.10), and (2.11) which are known from averaging
the known discrete series constants for rank one and two groups
[3, 7]. Assume that it is true for root systems of rank less than
n,m=3. We prove in Lemma 2.14 that for any simple root «,
PO @F) ++ P(sh: @) = 26(\: @) where s is the reflection in W(®)
corresponding to « and @, = {Be?|{(B, @) =0} as in (2.6). Then
using (2.6), P(u: @F) + P(sh: @F) = ¢(F . 0") +e(s7 *: 1) for e & T,
We show in Lemma 2.13 that ¢(& % @%) = P(\: @%), v e .7 ¥, for one
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fixed chamber &% of % '. Then ¢(& *: @) = P(\: @%), ve 57 *, for
all chambers, since any chamber .& * can be reached by applying

simple reflections to .7 %,

LEMMA 2.18. Let .5 % ={ne.o |\, @) > 0 for all e @'}, Then
E(F @) = P(n: @) of ve 7 h

Proof. It follows from (2.5) that ¢(& % ¢*) =0. TFor M\ =
>ibamee, ve s ¢ implies that m, > |m;| for1 <1 < j < n. Forany
ogeSy* and any 1 =< 4 = [n#/2], (07'\); = Myipe, + Myupne, Where
0(21 — 1) < 0(2i). Thus M,u_y > |Mees] and using (2.9) or (2.11),
¢,((67\),) = 0. Thus P(\n: @%) = 0.

LEMMA 2.14. Assume that Theorem 2.12 is true for root systems
of rank less then m. Let a be a simple root for @*. Then for
e T P @) + Plsh: @F) = 26(\: @F).

Proof.

Case I. Suppose & =¢, —e,1 <1 =<n—1. Let @, , denote
the subset of @ contained in the linear span of {e,, -+, €/_y, €11z ***, €},
Dy ,=0,,N0". Let A, denote the rank one root system with
positive root e, -+ e,,,. Then @f = &} ,U Af. For » = >7, me, let
No=N— me — my.e, and N o= (m, + m,)/20e, + e,). Let N\, =
A 4+ A\, Then by (2.8),

c @F) = e\ ADEN: D,5) = €, ((my + myyy)e ) POV @)

by the induction hypothesis. In PO\: @, ,) the sum is taken over
Si* where S,_, is considered as the group of permutations of
t,2, -, 1 —1,1+2,---,n} and (67\), L =17 < [(n — 2)/2] and
(67"\),_s, n — 2 odd, have the obvious meaning.

Let &k = [n/2] so that n = 2k or 2k + 1. In formulas for P(\: @%)
the terms ¢,((c7*\),) are included. For the case n = 2k they are
understood not to appear. If sis the reflection in W(@) corresponding
to @ = e, — e,,,, then s is the permutation which interchanges I and
I+1. POu:0%) + P(sn:0%) = 1/k! 3,55 det o[, ((07N),) [T 6x((07*N),) +
¢,(((s0)7\),) TTEar 65(((50)7N))]-

Let S ={0eS}|sadeS}}. Then sS =S, and

13 k
ng det oc,(((s0)™*\),.) I]l C(((80)7N),) = — Zé det o¢,((67N).,) [[1 ¢,((07N);) -
If 08} and so¢ Sk, then there is an index 7,1 < 7 <k, for which

025 — 1) =1,02)5) =1+ 1. Denote this subset of S} by S(5). Then
for 0e€8(j), sc(2j —1) =1-+1, s6(25) =1, and for 7 =25 — 1, 27,
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s0(i) = 0(3). Further, using (2.9), (2.10), and (2.11), ¢,((67\);) +
C(((80)7N);) = Co(mge, + Mysie;) + Cy(Mipie, + Mae;) = 28, (M + myyy)e,).
Thus

=

S, detaoc,((67\),)
1 0€8(j)

P(\: @) + Pls): 0F) = _le ‘

% 11 a((0™0))28(m + m)e,) -

1=l
(EaF]

For each 1 < j <k,
3, det 07,((0)) 1T (0700
ge Sy =1
i#g

= 3 detor(0"M).o) I 807V = (b — DIV 07 -

>
9eS, o

Thus
P(n: @F) + P(sh: @) = 2¢,((my + myy)e)EN: @F_;) = 26(\: DF)

Case II. Suppose @ = B, or C, and @ = ¢, or 2¢,. Then ®,=B,_,
or C,_,.. For »n=37 me;, let ny, =N — m,e,. By the induction
hypothesis, ¢(x: @F) = P(\,: OF).

Suppose n = 2k is even. Then S} = Ui,S(J) where S(j) =
{o0e8t|0(29) = n}. For oeS(y)), (67\); = (67s\); for i # J, (67*\); =
Mop2i-11€; + My aNA (CTISN); = My, — M. Using (2.9) and (2.10),
CoMgizin)€s + My8y) + CoMgizip€, — M) = 28, (My58;)-

P(\: 0%) + P(sh: @F)

k k
= k_1' >, > det 626,(m,pi-ne,) I E((07N))
1 =1 0eS()) 2:;

k-1
= TS detotiim o) [ (M) = 200w 25)
- « 0€8 =1

n—1

Suppose n = 2k + 1. Define S(j) as above. Then S} = Uz, S(j) U
%, where Sj_, can be identified with {o0eS}|o(n) =n}. For

oe8Si, (07N); = (067\), L=<k, and ¢,((67N),) + €, ((67'sN),) =
¢, (m,e,) + €. (—m,e,) = 2, using (2.10).

P(\: @F) 4 P(sh: @)
@15) =13 S det026,(myusmne)Eumme) T E(07N)

k) =1 6850
LEX]

k
+ 25 deto I[ a((@™V),) -
k! GSS;_I =1
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The second term in (2.15) involving the sum over S}, is exactly
26(N: @F). Foreachl < 7 <k, let S(5)" ={0eSU)|o2) — 1) < a(n)}.
Let S(9)” ={0e8S()|o(2j — 1) > o(n)}. Let T denote the permutation
(25 —1 n) which interchanges 27 —1 and n. Then S(7)” = {ot|0o € S(j)*}
and

ke
egl') det 051(””0(21’—1)31)51(7/‘/1/a(n)61> I]; 52((0._1K)i)
geR(I)— o=1

1% )

k
= - e.g"‘)* + det 0¢,(m,0n)€)C, (1, 155-1)0,) II C((07N),) -
o )

-,

=1
k)

Thus the sum over S(j) in (2.15) is zero for each 7, and P(.: @%) +
P(sh: @) = 26\ @T).

Case III. Suppose @ = D, where n = 2k is even, and & = e,_, + ¢,.
Then & = D) .U A} where A, has positive root ¢,_, —¢,. For » =
Siime;, let N =N —m, e, . —m,e, and N = (m,_, —m,[2)(e,, — €.)-
Let vy =N +)\'. For 1<j5=<k, let S(Y)={oeSo@j—1) =n—1,
0(27) =n}. Note Sk) =S}, For 1135k, let S{ j) =
{oeSilo@l) =n —1, 0(25) =n}. Then S} = U S(J) U Uicreszr SU 7).
For o€S(j5), (67\); = (67's\);, 1 # 7, and ¢,((07\);) + &, ((07s\);) =
c,(m,_.e, + m,e,) + ¢ ,(—m,e, —m,_e,) = 2¢,(m,_, — m,)e,) using (2.10)
and (2.11). For o€ S, 7), (67*\), = (67's\),, © #= j or I, and

52«0“18)’)]')52((0'_13)‘*)!) = 6_‘2(7/"/0(23'—1)61 - 77@7@-162)52(7%0(21—1)91 - mnez)
= 52(m0(2.i—1)el + mn—1ez)'52<’m'a<21—1>61 + /m’nez)

using (2.11).
Then

P(u: @F) + P(sh: @7)
= LS s deto [T a(e N2 ((n,, — m)e)
) =1

k! i=1 685G i=1
LESK)

1 S, deto I[ a0 )

k! 1£5%izk 0650, 4)

(2.16) +

4,1
X[Co(Myi-ney + My 1€)Co(Myimmnye; + M,e)
+ Co(Myipjmls + Myl3)Co(Myior—pe; + W’/n—lez)] .

For each

geS(g)

L<jsh 3 detol[ao™)

det o 11 &,((67 V) = (b — D1E(V: Dy -

0e8, o
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For 1<j=#1=<k, let S, j))* ={oeSU, 7)o@l —1) <0o(2j — 1)}
and S(l, 3)‘ = {aeS(l, Ne@l —1)>0@5 —1)}. Then S({, j) =
{ot|o €S, j)*} where 7 = (27— 1,21 —1). Then the sum over S(I, j)
in (2.16) is zero since the sum over S(I, j)~ will cancel with the sum
over S(I, j)* for each I and j. Thus

P(x: @F) + P(sh\y @%) = 2¢,((m,—, — my,)e)e(N': Difs) = 26 (N OF) .
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