THREE-DIMENSIONAL OPEN BOOKS CONSTRUCTED FROM THE IDENTITY MAP

Maurice Gilmore

Abstract

Three-dimensional manifolds are constructed as open books, using the identity diffeomorphism. The open book constructed in this way with (non)orientable page of Euler characteristic χ is the connected sum of ($1-\chi$) copies of the (non)orientable S^{2} bundle over S^{1}

Introduction. We investigate orientable and nonorientable three-dimensional manifolds which are open books according to the following definition of Winkelnkemper [2].

Definition. A manifold of dimension n is said to have an open book description if it can be constructed using a co-dimension 2 submanifold ∂V and a diffeomorphism $h: V \rightarrow V$ of an ($n-1$)-dimensional manifold with boundary $\partial V . \quad h$ is required to be the identity map in a neighborhood of ∂V. The construction is to form the mapping torus $(V \times I) /(v, 0)=(h(v), 1)$ and then to identify $(v, t)=$ (v, t^{\prime}) for all v in ∂V and t, t^{\prime} in I. The image of the copies of ∂V in the resulting manifold is called the binding of the open book and the circle's worth of copies of V are called the pages.

Related results appear in the recent book of Rolfsen [1].
Statement of results.
Theorem 1. If $V=S_{g}-n \dot{B}^{2}$, the surface of genus g with n disjoint, open discs removed from it, then the open book produced by setting h equal to the identity map is the connected sum of $(2 g+(n-1))$ copies of $\left(S^{1} \times S^{2}\right)$. (Adopt the convention that zero copies of ($S^{1} \times S^{2}$) will refer to S^{3}.)

TheOrem 2. If $V=P_{k}-n \dot{B}^{2}$, the 2 -sphere with k cross-caps attached and n disjoint, open discs removed from it, then the open book produced by setting h equal to the identity map is the connected sum of $(k+(n-1))$ copies of the Klein bottle of dimension three. $(k \geqq 1, n \geqq 1)$

By the three-dimensional Klein bottle we mean the nonorientable S^{2} bundle over $S^{1},\left(S^{2} \times I\right) /(x, y, z, 0)=(-x, y, z, 1)$.

Proofs of results.

Lemma 1. Let M be a closed, smooth manifold of dimension $(n+1)$. If an unkotted copy of $\left(S^{1} \times \dot{B}^{n}\right)$ is removed from a coordinate patch on M and the identification $(\theta, x)=\left(\theta^{\prime}, x\right)$ is performed for all (θ, x) in $\left(S^{1} \times S^{n-1}\right)$ then the resulting manifold is the connected sum $M \#\left(S^{2} \times S^{n-1}\right)$.

Proof. Remove a copy of B^{n+1} which contains the bounding ($S^{1} \times S^{n-1}$) and temporarily add a copy of B^{n+1} to it, giving $S^{n+1}-$ ($S^{1} \times \dot{B}^{n}$). The identifications glue all the meridian $(n-1)$-spheres to one copy of S^{n-1} on the boundary of the removed torus. On the bounding ($S^{1} \times S^{n-1}$) in $S^{n+1}-\left(S^{1} \times B^{n}\right)=\left(B^{2} \times S^{n-1}\right)$, the $(n-1)$ spheres are parallels. When these are all identified to one S^{n-1} we obtain ($S^{2} \times S^{n-1}$). Now remove the superfluous copy of \dot{B}^{n+1} and form the connected sum of $M-\dot{B}^{n+1}$ with $\left(S^{2} \times S^{n-1}\right)-\dot{B}^{n+1}$ to finish the proof.

Proof of Theorem 1. Consider the polygonal normal form of $S_{g} a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}$. Punch n holes in it and form the Cartesian product with the unit interval.

Figure 1
We diffeomorph one of the inner cylinders to the outside and form the mapping torus. If we perform the required identifications on the outer copy of ($S^{1} \times S^{1}$) we obtain S^{3}-\{n solid tori\}. The ($n-1$) copies of ($S^{1} \times S^{1}$) which do not come from the $a_{1} b_{1} \cdots a_{g}^{-1} b g^{-1}$ each contribute a connected sum of S^{3} with ($S^{1} \times S^{2}$) when the required identifications are performed. This follows from the absence of linking and Lemma 1.

The remaining ($S^{1} \times S^{1}$) can be surgered out in a \dot{B}^{3} as in Lemma

Figure 2

Figure 3
1 and an extra B^{3} added. Since the a_{i} and b_{i} were meridians on the removed $\left(S^{1} \times \dot{B}^{2}\right)$ they are parallels on the remaining $\left(S^{1} \times B^{2}\right)=$ $S^{3}-\left(S^{1} \times B^{2}\right)$. An identification such as this, pictured in Figure 2, gives the connected sum of $2 g$ copies of $\left(S^{1} \times S^{2}\right)$. The four vertical discs give the union of two S^{2},s joined along a common equator. This configuration is $S^{3}-4 \dot{B}^{3}$ and we now attach two copies of $S^{2} \times I$. A separating S^{2} between the two handles can be constructed using four of the discs with the flanges shown in Figure 3. One quarter of the S^{2} consists of the two curved half-flanges, andthe subdise in a vertical dise from Figure 2.

We now complete the proof by removing the extra B^{3} which we added above and forming the required connected sum.

Proof of Theorem 2. The proof is analogous. The two extra ingredients are to notice that the connected sum of ($S^{1} \times S^{n}$) with the $(n+1)$-dimensional Klein bottle is diffeomorphic to the connected sum of two ($n+1$)-dimensional Klein bottles and that an identification such as that shown in Figure 4 gives a connected sum of two Klein bottles of dimension 3 .

Figure 4

References

1. Dale Rolfsen, Knots and Links, Publish or Perish, Inc., Berkeley, Calif., 1976.
2. H. E. Winkelnkemper, Manifolds as open books, Bull. Amer. Math. Soc., 79 (1973), 45-51.

Received November 28, 1976.
Northeastern University
Boston, MA 02115

