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SOLUTION FOR AN INTEGRAL EQUATION WITH
CONTINUOUS INTERVAL FUNCTIONS

J. A. CHATFIELD

Suppose R is the set of real numbers and all integrals
are of the subdivision-refinement type. Suppose each of G
and H is a function from R X R to R and each of f and %
is a function from R to R such that f(a) = h(a), dh is of

bounded variation on [a, z], and : H = : G*=0 for x> a.
The following two statements area equivalaent:

(1) If x> a, then f is bounded on [a,x], SxH exists,
r G exists, (RL) Sz (fG + fH) exists, and ‘

fl@) = hiz) + (RL) S (fG + fH) ;

(2) If a=<p<q=vux, then each of ,I1°(1+ H) and
171 — G)™* exists and neither is zero,

(B S LII* (1 + H)1 + @I — G)~1dh

exists, and
F@) = £(@) JJI* (L + H)(1 — G)-
1 (R) S LI (L + H) + @)L — &)Idh .

Introduction. In a recent paper [4], B. W. Helton solved the
equation f(x) = h(x) + (RL) Sx( fG + fH) using product integration.
All functions involved were rgquired to be of bounded variation and
the existence of various integrals was also required. In a sub-
sequent paper [9], J. C. Helton was able to reduce the conditions
placed on % to being a quasicontinuous funection although other
conditions such as requiring G and H to be of bounded variation
were maintained. In still another paper [7], J. C. Helton was able
to reduce the restrictions placed on G and H to that of being
product bounded but he also used other restrictions not used in [4]
or [9] such as requiring % to be a constant function and G(r, s) =
—G(s, r), a condition not unlike that of being additive. In this
paper we are concerned with obtaining a solution for the equation

flx) = h(z) + (RL) Sz (fG + fH) without requiring either G or H to
be of bounded variation or that G(r,s) = —G(s,r) or that h be a
constant function. Instead, our major restriction placed on G and
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H is that each be continuous (i.e., SZG Sz H*?* =0) and in this
respect, we note that we have shown in an earlier paper [3] with
W. P. Davis that neither of the two statements, (1) \ G* =0 and (2)

G is of bounded variation on [a, b], is a consequence “of the other.
Also, some functions are either required to be product bounded or
shown to be product bounded and we note that the set of function
having bounded variation on an interval is a proper subset of the
set of functions which are product bounded on the same interval.

The reader is also referred to recent studies of D. L. Lovelady
[15], [16], J. S. MacNerney [17], J. W. Neuberger [18] and J. C.
Helton [8] for related results and to put the present result in
perspective. For examples of solutions of integral equations using
product integrals and heretofore known results, the reader is referred
to [4, page 319-322] and [2].

DEFINITIONS AND NOTATIONS. All functions will be functions
from R X R to R or R to R where R is the set of real numbers.
All integrals are of the subdivision-refinement type and we will use
upper case (G) for functions from R X R to R and lower case (g)
for functions from R to R. If G is a function from R x R to R then
the statement that G is (a) product bounded, (b) of bounded varia-
tion, (¢) bounded on [a, b] means there is a number M and a sub-
division D of [a, b] such that if D' = {x,}-, is a refinement of D,
then

(a) f0<p=qg=mn, |[[li-, 1+ G, x) < M.

(b) S Gy, x| < M.

(e) if 0 <7 < n, then |G(x;,—, x,)| < M, respectively.

The statement that the function G from R X R to R is (a) product
integrable, (b) sum integrable on [a, b] means there is a number A
such that if ¢ > 0 then there is a subdivision D of [a, b] such that
if D' = {x,}1-, is a refinement of D, then

(a) M= + Gy, 2)] — Al <ee.

(b) > G-y, ;) — A| < &, respectively.

If  is a function from R to R then dh denotes the function G
from R X R to R such that for each z <y, G(zx, ¥) = h(y) — h(x).
If G is a function from R x R to R and G(zx, y) exists, then z is
assumed to be less than y.

The following notations will be used to facilitate writing:

1+ Glaey 2] = [+ G,

iMs s

G(@y @) = X G
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ah; = h(x;) — h(x:) ,
and
f@) = f;

where D = {x,}i~, is a subdivision of some interval and 0 < ¢ < n.
Further, left and right integrals are used extensively and the ap-
propriate approximating term is indicated by ~.

LR) || FH + 16) e 5 )G s, 2) + F2G @ins, 20
® | 1@+ @dr~ 1+ 6| - Ao

RB) | (FH + 16) ~ @)@, 2) + F@)G(@1my ) -

- THEOREMS. The following lemmas are needed in the proof of
our main results. '

LemmA 1.1, If G is a fu;nction from Rx R to R, ,JI'(0 + @)
exists and 1s mot zero, and S G exists, then G 1s bounded on [a, b]
[12, Theorem 6].

"b
LemmaA 1.2. If S G* =0, then the following statements are

equivalent:
(1) .JI*QA + @) exists and is not zero.
" b

(2) S G ewists.
\ Furthermore, if either (1) or (2) is true, then In JI°1 + G) =
S G [3, Theorem 3].

, LEMMA 1.8. If G is a function from R X R to R such that

G* =0, then there is a subdivision D of [a, b] and a number M
such that if D' = {x}, s a refinement of D and 0 <1 < n, then
(1 — G)™ exists and |(1 — G)™Y < M.

b
Proof. This lemma follows directly from the fact that ‘ G =0.

Ja

LEMMA 1.4. Suppose G is a function from R x R to R such
that |G| <1 on [a,b], JI°(A + G) exists and is not zero, and there
1s a subdivision D of [a, b] and a number M such that if D’ is a
refinement of D then [I[I, (1 + G) ] and |II, A + G)™ < M. Then,
there is a subdivision D of [a,b] and a number M such that
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if D ={x}t, is a refinement of D and 0< p<q=<mn, then
I, @ + G)™ < M [13, Lemma 1].

\ LEMMA 1.5’33 If G is a function from R X R to R such that
S G* =0 and \ G exists, then there is a subdivision D of [a, b] and

a number M such that if D ={x}t 18 a 7refinement of D and
0<p<g=mn, then [l 1 + G)7'| < M.

b b
Indication of proof. Since \ G* = 0 and S G exists, the? from
Lemma 1.2, ,I]*(1 + G) exists and is not zero. Hence, since | G* = 0

implies that |G,| < 1 for any refinement D’ = {x,}%, of an appfopriate
subdivision of [a, b], then Lemma 1.5 follows from Lemma 1.4.

, LemMMA 1.6. If G is a function from R X R to R such that
b

S G exists and for each © <y, Hz,y) = H”G — G, v)|, then S H

exists and is 0. ’ *

This lemma is due to A. Kolmogoroff [14]. For related results
the reader is referred to W. D. L. Appling [1, Theorem 1.2] and
B. W. Helton [4, Theorem 4.1].

LEmMMA 1.7. If G is a function from B X R to B such that G
18 bounded on [a, b], JI°A + G) exists and is not zero, and H is a
Sunction from R X R to R such that for each a <« <y = b, H(z, y) =

b
1+ G, y) —.II* A + @), then S H exists and is 0 [6, Lemma 1.4].

LEMMA 1.8. If each of H and G is a function from R X R to
R such that JI*(1 + H) exists and JI°(L + G) exists and neither
18 zero, then JI° (1 + H)A + G) exists and is not zero.

Proof. The proof of this lemma is straightforward and we omit it.

b
LEMMA 1.9. If G is a function from B x R to R, S G exists,
and G is bounded on [a,bd] then there is a subdivision D of [a, b]
and a number M such that if D' = {x;}r-, is a refinement of D and
0<p<q=mn, then |34, G| < M.

Proof. This lemma follows from Lemma 1.6.

The following algebraic identity is used frequently and it may
be established by induection.
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LEMMA 1.10. If each of {a;}i-, and {b;}’, is a sequence of numbers
and n > 1, then

ﬁai—ﬁb¢:ﬁ<ﬁib>(a )(H a)

THEOREM 1. Suppose each of G, H, and J is a function } from

Rb X R to Ibif such that J is of bounded variation on [a, b], Sa G =

aH2 =0, SaJ exists, foreacha < x <y < bz each of ,JI*1 + G) and

1Y (1+ H) exists and neither is zero, (RR) S,,J[”Ht A+®]LIIY 1+ H)]
exists, and for each a < x <y < b,

K@, ) = |J@, ») — @B | JLI* @ + GILIT @ + D) -

b
Then, s K exists and s 0.

a

b
Proof. Let ¢ > 0. Since | J exists and J is of bounded varia-

tion on [a, b], then, from Lemma 1.6, there is a subdivision D, of
le, b] and a number M, such that if D’ = {x;}*, is a refinement of
D,, then

(1) SITI<M.
and
(2) s r-a) <&

b
Since SbGZ - S H* = 0 and each of I1* (1 + G) and ,[I’(L + H) exists
and neither is zero then, from Lemma 1.2, S G and H each ex1sts,

and there is a subdivision D, of [a, b] and a number M, such that
if D' = {x,};-, is a refinement of D,, then

(3) lexp SG[ <M,

(4) |exp S_IH\ < M,,

(5) Gy 2l < gl (1+ 7iom).
and

(6) \H(z,_,, #)] < %m (1 + 4]12M§> .

Again, from Lemma 1.6 there is a subdivision D, of [a, b] such that
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if D" = {x}}-, is a refinement of D,, then

(7) g‘(G"—Hi)_SZﬂ(G“H)I<%1n<1+M1€Mg)'

Let D=D, + D, + D, and D’ = {x,;}7-, be a refinement of D. Since,
tor 0<izn, (RR)|" JLIA+ @I + H)] exists, then
there is a subdivision DTI: {t;}ei, of [x,,, x;] such that

L[ I I+ G T (L -+ H)J

(8)

-1 ra s ennra - mil<

Therefore, for z,_, < t; < x,,

'S:_1<G —H) — S G — H)I

Erm—y

= S::_l(G’H)‘(Gi—Hi)‘ + IG(xM t)—H(x,—,, t;)— St]_, (G—H)l
(9)  + |Gy, t)] + [H(xoy, t)| + |G, )] + [H(w,,, ;)|

< 6[% tn (1 + 4]1/_/51 M;ﬂ (7, 5, 6)

~1In(1+ 4M€M3> '

Hence, from (9) it follows that

(10) \exp §_ (G — H) — exp S_ G — H){ < 4M€§M1 .
Then,
K = 3= | LI+ @ILIT @+ D))
=31
SRR
SIS M t) = S e 1111 G A+ HD)
S By I (L + @I A H)]
-0 snara s e e+
s+ 3inl oS,
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BB ] 1L = I (L4 ) IT% (L + H)

+ S ®,2)
=53l T

Y S

+ % (Lemma 1.2)
<+ 3 St 8] Iexps G — H)‘

% 'exp S (G — H) — exp S_ G — H)j
= MES 3 i )l e + 5 (1, 10)
< M,- 4;{1 + %
= £.

b
Hence, S K =0.
We now state the main result of this paper.

THEOREM 2. Suppose each of G and H is a function from R X R
to R and each of f and h is a function from R to R such that dh

is of bounded variation on [a, x] and Sm H* = Sx G =0 for x > a.
The following two statements are e:]uivalen%:
(1) If 2> a, then f is bounded on [a, x], SxH exists, SxG
eaists, (RL) S (fG + FH) exists, and ’ :

F@) = h(z) + (RL) S (fG + FH) ;

(2) Ifa<p<q=uw,then each of ,JI°X + H) and ,JI°1 — G)™
ewists and neither is zero, (R)S LIT* (1 + H)A + @I — G)'1dh
exists, and ‘

f@) = flo) JI"QA + H)A - G)*
+ ® | LI @+ B+ G — &) 'ldh .

Proof. 1=2. Let a <p<q=2x. Since Sxﬂz = SxGZ =0 and
each of S H and S G exists, then, from Lemma 1.2, ,J]*(1 + H) and
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J1°(A — @) exist and neither is 0, and hence [,II°(Q — G)]™* =
A1 (1 — G)t exists. Since ’ G? = 0, then, from Lemma 1.3, (1 — G)™*
is bounded on [a, 2] and since dh has bounded variation on [a, x],
then (1 — G)*dh has bounded variation on [a, ]. Let ¢ > 0. Since
dh is of bounded variation on [a, ] then there is a number M, and
a subdivision D, of [a, #] such that if D' = {«,}, is a refinement of
D,, then >, |dh)] < M,. From, Lemma 1.5, there is a number M,
and a subdivision D, of [a, 2] such that if D' = {x,}r, is a refinement
of D, and 0<p<gq=n, then |T[.,(l —G)~| < M, Since SH
exists then, from Lemma 1.9, there is a subdivision D, of [a, ] and
a number M, such that if D’ = {x,};, is a reﬁn;ament of D, and
0<p<gq<n, then |S¢_, H,| < M, Since (RL)S (fG + fH) exists
then there is a subdivision D, of [a, 2] such that if D' = {x,}7-, is a
refinement of D,, then

%

S|@D) " (6 + £H) — (£6 + fuH)

Ti—1

[

< 3Mzexp M,

Also, there exists a subdivision D, of [a, ] such that if D’ = {z,}2,
is a refinement of D, then

) LA+ HJPA—-@" —TTA+H)L—G) < — &
(1) [ @+ D067 = LA+ H)~ 6)7 | < gt s
and

fo<p<qg=smn,
(2) il (L4 H)L =Gy =TI (L + ) - 6)7 < =S

Let D=D, + D,+ D, + D, + D, and D’ = {x,}’-, be a refinement of
D, then, from the iterative technique of B. W. Helton [4, page
311], we have that

fl@) = fa,)
A L@+ 2 -6y

+I[ 11, @+ 7 - 6y Ja — G)-ian,

+la -6y 11 @+ Hx - 6]

% [(RL) S

Ti—1

(fG + fH) = (G, + foH) |

Hence,
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[f@)—f(@)II* A+ H) JI* A -G = 3 [ [1* A+ )L+ @A~ G )]dh|
= f@III A + H)IA — G)7] = fla) JI* @ + H) JJI* A — @7

+ sl a+m] I a-era -y

j=1

= 2 LA+ H)A + @7A - G)]dR

+olliL e+ m] g a-erfa -6
< D) | (6 + 18) — (76, + Fiu)
€
= VOl s+ 1

+ 31— G ldh - | I (L + H)L - G

— L, IF 1 + H)1 — G)™]

+ Z‘,iexp i H;|-M,-M,-

J=i+1

RO\ (fG+IH)~(FG+fH)

T

& & 15
<f 4Mm,- dh) + M: M[___]
3 L, o Ol Miexe My oo

Hence, (R) S LI* (1 + H)1 + @[ — G)]dh exists and

f(@) = fla) JJI* A+ H)1-G)™ + (R) S LII* A+ H)A+®OIA—-G)"]dh .

2=1. Suppose x > a and ¢ > 0. Since each of ,JI[°(1 + H) and
JI7 (1 — G)™* exists and neither is 0, then, from Lemma 1.2, S H
exists, | G exists, and from Lemma 1.1, each of H and G is bounded

on [a, x].w From Lemma 1.5, (1 — G)™* is bounded on [a, 2] and since
dh is of bounded variation [a, ], then dh is bounded on [a, x].
Therefore, it follows from the boundedness of the functions involved
that f is bounded on [a, x]. Hence, there is a number M and a
subdivision D, of [a, 2] such that if D’ = {x,}/, is a refinement of
D, and 0< i <m, then (1) |f,_,] <M and (2) |1 — G,| < M.

Since (1 — G)™* is bounded on [a, 2] and hence [(1 — G)7'ldh is
of bounded variation on [a, x], then from Theorem 1, there is a
subdivision D, of [a, ] such that if D’ = {x;}7., is a refinement of
D,, then
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5

SI@\" L Ba-6 10 -6h - [0-G) k| < .

Furthermore, since ,[[°* (1 + H)A — G)™* exists and is not zero, then
from Lemma 1.7, there is a subdivision D, of [a, 2] such that if
D' = {x;)r, is a refinement of D,, then

€
sM*

Sile 1A+ H)A — @7 — (A + H)I — G)7 <

If D=D,+D,+ D, and D’ = {;}}-, is a refinement of D, then,
again using the iterative technique employed by B. W. Helton in
[4, page 312], we have, for 0 < ¢ < m,

2

Jfi=F xi_lﬂ’”i(1+H)(1—G)‘1+(R)Sm‘_ LI+ H)1-G)"[A—-G)"]dh

=fiA+H)A—=G) " + fioilo, 11" A+ H)1—G) — A+ H)1—-G) 7]
+ dh(1 — G)™

+mﬂfLHW1+HM—GWM—GWM—dMl—@w.

i—

By multiplying both sides of the preceding equation by (1 — G,)
and then rearranging terms, we have

fi _fi—-l :szz +f7:—1Hz + dh;
+ fiale, I A+ H)A -G — 1+ H)1— G)7'][1 — G

(1) -6 @® " LI+ B - 67l - 6)lan

-M—QWMJ

i—

Therefore,
If(@) = h(x) = 3, (fiG: + fi HD)|
= @) — fla) + k(@) — k(@) — 3 (fiG: + fi- HD)|
= [ (fi = o) = D dhe = 3 (fGs + FiiH))
=< ];‘, dh; — DZ, dh|
+ 2 el 1 =Gl e L (T A+ H)A — @) — (A + H)L — G

-6 @[ Lea+ B - @ - 6
— (L= G| (1)
<0+ Mzg, e, JI7 A + HYA -G — A + H)A — G)7|
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+ M3 1(R) S_ LI A+ H)(1—-G)"[1-&1dh — 1—G)'dh,

2

me-= ML
<Mr T Me

< e€.
x
a

Hence, (RL) § (fG+fH) exists and f(z) = h(z) + (RL) S (fG+FH).
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