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SOLUTION FOR AN INTEGRAL EQUATION WITH
CONTINUOUS INTERVAL FUNCTIONS

J. A. CHATFIELD

Suppose R is the set of real numbers and all integrals
are of the subdivision-refinement type. Suppose each of G
and H is a function from R X R to R and each of / and h
is a function from R to R such that f(a) = h(a), dh is of

S x Cx

H2 = I (?2 = 0 for x> a.
a Ja

The following two statements are equivalent:

S x

H exists,

\ G exists, (RL) \ (fG + fH) exists, and
Ja ja

fix) = h(x) + (RL) [' (fG + fH)
Ja

(2) If a ^p<q^x, then each of pU
g (1 + H) and

pTLq (1 — G)'1 exists and neither is zero,

(R) \" [tΏ* (1 + H)(l +

exists, and

fix) - f(a) all* (1 + H)(l - G)-

J5Γ)(1Γ [iΠ3

Introduction* In a recent paper [4], B. W. Helton solved the
rx

equation f(x) = h(x) + (RL) I (fG + /ff) using product integration.
All functions involved were required to be of bounded variation and
the existence of various integrals was also required. In a sub-
sequent paper [9], J. G. Helton was able to reduce the conditions
placed on h to being a quasicontinuous function although other
conditions such as requiring G and H to be of bounded variation
were maintained. In still another paper [7], J. C. Helton was able
to reduce the restrictions placed on G and H to that of being
product bounded but he also used other restrictions not used in [4]
or [9] such as requiring h to be a constant function and G(r, s) =
— G(s, r), a condition not unlike that of being additive. In this
paper we are concerned with obtaining a solution for the equation
f(x) = h(x) + (RL) \* (fG +fH) without requiring either G or H to

Ja

be of bounded variation or that G(r, s) = —G(s, r) or that h be a
constant function. Instead, our major restriction placed on G and
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S x Cx

G2 = 1 H2 = 0) and in this
a Ja

respect, we note that we have shown in an earlier paper [3] with
rb

W. P. Davis that neither of the two statements, (1) \ G2 = 0 and (2)
ja

G is of bounded variation on [α, 6], is a consequence of the other.
Also, some functions are either required to be product bounded or
shown to be product bounded and we note that the set of function
having bounded variation on an interval is a proper subset of the
set of functions which are product bounded on the same interval.

The reader is also referred to recent studies of D. L. Lovelady
[15], [16], J. S. MacNerney [17], J. W. Neuberger [18] and J. C.
Helton [8] for related results and to put the present result in
perspective. For examples of solutions of integral equations using
product integrals and heretofore known results, the reader is referred
to [4, page 319-322] and [2].

DEFINITIONS AND NOTATIONS. All functions will be functions
from R x R to R or R to R where R is the set of real numbers.
All integrals are of the subdivision-refinement type and we will use
upper case (G) for functions from R x R to R and lower case (g)
for functions from R to R. If G is a function from R x R to R then
the statement that G is (a) product bounded, (b) of bounded varia-
tion, (c) bounded on [α, b] means there is a number M and a sub-
division D of [α, b] such that if D' — {xj?=1 is a refinement of D,
then

(a) if 0 < v £ Q £ n, \UU1 + G(x^lf a>,)| < M.
(b) ΣU\G(Xi-»^)\ < M.
( c ) if 0 < i <; n, then \G(Xi-ι, xt)\ < M, respectively.

The statement that the function G from R x R to R is (a) product
integrable, (b) sum integrable on [a, 6] means there is a number A
such that if ε > 0 then there is a subdivision D of [a, b] such that
if Π = {xt}i=0 is a refinement of D, then

(a) IΠΓ-i [1 + G(*i-i, a?,)] - A\ < ε.
(b) |ΣΓ=i G{Xi-ιy xt) — A\<e, respectively.
If h is a function from R to R then dh denotes the function G

from R x R to R such that for each x < y, G(x, y) = h(y) — h(x).
If G is a function from R x R to R and G(x, y) exists, then x is
assumed to be less than y.

The following notations will be used to facilitate writing:

Π [1 + Gto-i, a*)ϊ = Π (1 + G*) ,
i = l D
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dht = h{x%) - hfri-t) ,

and

where D = {α?<}*=0 is
 a subdivision of some interval and 0 < i <̂  n.

Further, left and right integrals are used extensively and the ap-
propriate approximating term is indicated by ^ .

(LR) \(fH+ fG) f
Ja

(B) Γ Π (1 + GW~\U a + Gil/fa) -Λxt-ι)]
Jo ί L H Λ

(RR) \\fH + fG) ~ jXxtMx^, x4) + Axt)Gίxt-lt xt) .

THEOREMS. The following lemmas are needed in the proof of
our main results.

LEMMA 1.1. If G is a function from R x R to R, α Π 6 (1 + G)

G exists, then G is bounded on [a, b]

[12, Theorem 6].

C'b

LEMMA 1.2. // \ Gz = 0, then the following statements are
Ja

equivalent:
(1) αϊlδ (1 + G) exists and is not zero.

\ G exists.
( 2 ) \

JaJa

Furthermore, if either (1) or (2) is true, then In α Π δ (1 + G) =

G [3, Theorem 3].

LEMMA 1.3. If G is a function from R x R to R such that
rb

\ G2 = 0, then there is a subdivision D of [a, b] and a number M
Ja

such that if Df = {#J?=0 is a refinement of D and 0 < i ^ n, then
(1 - Gt)-1 exists and |(1 - G,)"1] < M.

rb

Proof. This lemma follows directly from the fact that I G2 = 0.
Ja

LEMMA 1.4. Suppose G is a function from R x R to R such
that \G\ < 1 on [a, b], α Π δ (1 + G) exists and is not zero, and there
is a subdivision D of [a, b] and a number M such that if Ώ* is a
refinement of D then [f[D, (1 + G*)"1] and |Πz>' (1 + G*)"1! < M. Then,
there is a subdivision D of [a, b] and a number M such that
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if D' = {Xi}?=0 is a refinement of D and 0 < p < q <* n, then
|Π?=p (1 + GO"1! < M [13, Lemma 1].

LEMMA 1.5. If G is a function from R x R to R such that
G2 = 0 and \ G exists, then there is a subdivision D of [a, b] and

a Ja

a number M such that if Df = {#J?=0 is a refinement of D and
0 < V < q ^ n, then |Π?=P (1 + G,)""1! < M.

S b rb

G2 — 0 and I G exists, then from
a Ja Cb

Lemma 1.2, α Π δ (1 + G) exists and is not zero. Hence, since \ G2 = 0
implies that \Gt\ < 1 for any refinement D' = {Xi}7=0 of an appropriate
subdivision of [α, 6], then Lemma 1.5 follows from Lemma 1.4.

LEMMA 1.6. If G is a function from R x R to R such that

\ G exists and for each x < y, H(x, y) — I G — G(x, y) , then I H

exists and is 0.

This lemma is due to A. Kolmogoroff [14]. For related results
the reader is referred to W. D. L. Appling [1, Theorem 1.2] and
B. W. Helton [4, Theorem 4.1].

LEMMA 1.7. If G is a function from R x R to R such that G
is bounded on [α, 6], α Π δ (1 + G) exists and is not zero, and H is a
function from R x R to R such that for each a <̂  x < y <; 6, H(x, y) =

S b

H exists and is 0 [6, Lemma 1.4].
a

LEMMA 1.8. // each of H and G is a function from R x R to
R such that α Π δ (1 + H) exists and α Π δ (1 + G) exists and neither
is zero, then α Π δ (1 + H)(l + G) exists and is not zero.

Proof. The proof of this lemma is straightforward and we omit it.

LEMMA 1.9. If G is a function from R x R to R, \ G exists,
Ja

and G is bounded on [a, b] then there is a subdivision D of [a, b]
and a number M such that if Dr = {ccj£=0 is a refinement of D and
0 < p < q ^ n, then |Σ?=* GA < M.

Proof. This lemma follows from Lemma 1.6.

The following algebraic identity is used frequently and it may
be established by induction.
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LEMMA 1.10. If each of {α<}?=1 and {δj?=1 is a sequence of numbers
and n > 1, then

Π α< - Π 6, = Σ (Π h\at - δ,)( Π aλ .
ί=l i=l i=l \j=ί / \i=ΐ+l /

THEOREM 1. Suppose each of G, H, and J is a function from

J b

G2 =
S a

iJ 2 = 0, I J exists, for each a <> x < y <J δ, eαcfe o/ a Π2' (1 + G) and

xf[
y (X+H) exists and neither is zero, (RR) Γ J [ J Γ G^tΠ

exists, and for each a ^ x < y <Lb,

K(x, y) = J(x, y) - (RR) [ J[yW (1 + G)][tTiy (1 + H)}

Ja
Then, \ K exists and is 0.

Proof. Let ε > 0. Since I J exists and J is of bounded varia-
Ja

tion on [a, δ], then, from Lemma 1.6, there is a subdivision D1 of
[a, b] and a number Mι such that if Dr — {a?J?=0 is a refinement of
D19 then

(1) Σi\Ji\<M.
D'

and

(2) Σ | Γ J-Ji <4-

Since ["G* = \"H2 = 0 and each of α IΓ(1 + (?) and α IP(l + IT) exists
Ja Ja Γb Γδ

and neither is zero then, from Lemma 1.2, I G and I H each exists,
Jα Jα

and there is a subdivision D2 of [α, δ] and a number Af2 such that
if D' = {Xi}?=0 is a refinement of D2, then
( 3 )

( 4 )

(5)

and

(6)

exp

exp

r «
Γ H

,_,, *,)!< j in

Again, from Lemma 1.6 there is a subdivision Όz of [α, δ] such that
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if D' = {xj?=o is & refinement of D3, then

( 7 ) Σ
D'

( G < - (G - H)
< l l n ( 1 + ^ 2

Let D = D1 + D2 + Ds and Z?' = {xĵ o be a refinement of D. Since,

for 0 < i £ n, (RR) Γ J ^ I Γ (1 + G)][«Ip' (1 + H)] exists, then

there is a subdivision Z^ = {̂ }5:-0 of [#*_!, xj such that

( 8 )
•s-ι,ti)][.tϊi

t*a + G)][tiπ*<a-

J[XiW (1 + G)][tΠ" (1 + # ) ]
4-2*

Therefore, for

(G-H)- \χ (G - H)

(G-H)-(G<-Ht) t.u tJ-Hfr^, t,)- j^ (G-H)

Cί-i, *<)|

(7, 5, 6)

Hence, from (9) it follows that

(10)

Then,

exp P (G-H)- exp Γ' (G - fΓ)

= Σ J< - P JUIP (i + G)][tip
f (i +

J^i—1

D

+ Σ - Σ /(ίi-i,

ΣIΣ
D' Dt

+ Σ Σ [J(fi-lt tM^W3' (X + G)][tίΠ" (i +

\l JIJΓ (i + G)]!^" (i +

Σ
L>i
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+ Σ (8,2)

tj-i

ε (Lemma 1.2)

exp

x exp p (G -H) - exp Γ (G - if)

4M.MI 4

(2)

(1, 10)

AM,

= ε .

Hence, Γ JSΓ = 0.
Jo

We now state the main result of this paper.

THEOREM 2. Suppose each of G and H is a function from R x R
to R and each of f and h is a function from R to R such that dh

S x Cx

H2 = I G2 = 0 for x > α.
a Ja

The following two statements are equivalent:

S x Cx

H exists, \ G
S a Ja

{fG + fH) exists, and
a

f(x) = h(x) + (RL) [ (fG + fH)
Ja

(2) Ifa^p<q^x, then each of PU
q (1 + H) and P]J9 (1 ~ G)"1

exists and neither is zero, (R) Γ [.Π* (1 + H){1 + G)][(l - GYι]dh
Ja.

exists, and

fix) = f(a) (1 + H)(l -

" [«Πβ (1\ - GΓ]dh .
Ja

Proof. 1 => 2. Let a £ p < q ^ x. Since Γ H2 = Γ G2 = 0 and

S x Cx Ja Ja

H and I G exists, then, from Lemma 1.2, PJJ9 (1 + H) and
α J α
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J P (1 - G) exist and neither is 0, and hence [PU
9 (1 - G)]"1 -

J Γ (1 - G)'1 exists. Since Γ G2 = 0, then, from Lemma 1.3, (1 - GΓ1

is bounded on [α, x] and since dh has bounded variation on [a, x],
then (1 — GY^-dh has bounded variation on [a, x]. Let ε > 0. Since
dh is of bounded variation on [a, x] then there is a number ikfx and
a subdivision A of [α, x] such that if D' = {xt}t=0 is a refinement of
Dlf then Σz>' 1̂ *1 < Λfi From, Lemma 1.5, there is a number Λfa
and a subdivision Z>2 of [α, #] such that if D' = {#J?=0 is a refinement
of A and 0 < p < q S n, then \ULP (1 - G)~'\ < M2 Since Γ Jϊ

Ja

exists then, from Lemma 1.9, there is a subdivision D3 of [α, cc] and
a number Λf3 such that if Όf — {xjΓ=0 is a refinement of A and
0 < p< q £ n, then |Σ?= P ίί,| < M3. Since (ΛL) Γ (/G + fH) exists
then there is a subdivision D4 of [α, α?] such that if D' = {Xi}?=0 is a
refinement of D4, then

Γ fH) -
ZMt exp Ma

Also, there exists a subdivision Dδ of [α, ίc] such that if D' =
is a refinement of Dδ then

(1)

and

( 2 )

.IP (1 + H) Jl* (1 - GΓ - Π (1 + iϊ.
7 '̂ E'

Π (1 + HS){1 - GiΓ - . Π (1 +
p-*

Let D = A + A + A + A + A and D' = {x{}U be a refinement of
D, then, from the iterative technique of B. W. Helton [4, page
311], we have that

= /.[Π (1 + Ht)(X - G{Γ]

+ Π Γ Π (1 + HS)(X - G v H α -

+ Π (1 - G4)-( Π (1 + H,)(l - G

x \(RL) \H (/G + fH) - (ffii +

Hence,



SOLUTION FOR AN INTEGRAL EQUATION 55

^ l/(α)[Π (1 + #,)][(! - G,)-1] - f(a) J P (1 + H) J p (1 - <?Π

nji + Hj^πji-Gi)

- Σ [. Π (1 + H)(l + G)- 1]^ -
D' %

+ Σ Γ Π (1 + Hi)! Π (1 - G,)- 1]^ - GJ-;

(RL) ^[ (JG +fH) - CΛGt +/<_1H<;

Σ Id - G,)-1! idΛ, Π
i

Ht)(l - GtΓ

+ Σ exp •Λf, M, (ΛL)t" (fG+fH)-(f&

\— Σ |<2Λ«| + Afϊ exp AfJ_—f——Ί
1 Λ ί 2 *>' L 3ikf| exp Λί3 J

—
3

= e .

Hence, (R) Γ [.Π" (1 + H)(l + G)][(l - G ) " 1 ] ^ exists and
Jα

Gr + (R)

2 => 1. Suppose x > a and ε > 0. Since each of aJΓ (1 + H) and

aΐίx (1 — G)"1 exists and neither is 0, then, from Lemma 1.2, I H

S x Ja

G exists, and from Lemma 1.1, each of H and G is bounded
a

on [α, x]. From Lemma 1.5, (1 — G)"1 is bounded on [α, #] and since
dfe is of bounded variation [a, x], then dh is bounded on [α, &].
Therefore, it follows from the boundedness of the functions involved
that / is bounded on [α, a?]. Hence, there is a number M and a
subdivision A of [α, x] such that if D' = {Xi}?=Q is a refinement of
A and 0 < i ^ w, then (1) | / M | < ilί and (2) |1 - G<| < M.

Since (1 — G)"1 is bounded on [α, x] and hence [(1 — GY^dh is
of bounded variation on [α, #], then from Theorem 1, there is a
subdivision Zλ> of [α, ίc] such that if Dr — {xJΓ=0 is a refinement of
D2, then
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OR) [tTίm

Furthermore, since αΠ* (1 + H)(l — G) x exists and is not zero, then
from Lemma 1.7, there is a subdivision D3 of [α, x] such that if
D' = {Xi}i=o is a refinement of D8, then

Σ (i + - <?Γ - (l + - G*ΓΊ <

If D = A + A + A and D' = {»<}?=„ is a refinement of D, then,
again using the iterative technique employed by B. W. Helton in
[4, page 312], we have, for 0 < i ^ n,

ft = Λ-x ^

-1 +/4_ ι[. i_1π

Γ LIP4 (1 + H)(l - G)"1](l - GΓdh - dhJX - GtΓ .

By multiplying both sides of the preceding equation by (1 — Gt)
and then rearranging terms, we have

ft — fi-i — fiGi + fi-iHi + dht

+ fi-iU-JI'* (1 + H)(X - G)-1 - (1 + Ht)(l - G,Γ][1 - GJ

(1) + (1 - Gj(R) \Xi IW* (1 + 20(1 - G)-1][(l - GΓ]dh

- [(1 - G

Therefore,

/(«) + Ha) - h(x) -

= IΣ (/« - Λ-i) - Σ dht -

^ | Σ dΛ4 - Σ dht\
£' D'

i " V I -P 1 1 1 Π

- (1 - GtY'd

• (1 + 10(1 - G)-1 - (1 + 22«)(1 - GJ-1!

( 1 )

< 0 + AT Σ l. i_1Π" d + 10(1 - GΓ - (1 + J5Γ4)(1
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MΣ,
D'

(Λ CΛ^rlh

< ε .

Hence, (RL) Γ (JG+fH) exists and f(x) = h(x) + (RL) Γ (fG+fH).
Ja Ja
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