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CONCORDANCE AND HOMOTOPY, I:
FUNDAMENTAL GROUP

M. A. GUTIERREZ

We study the effect of a concordance on the fundamental
group of the manifolds involved.

DEFINITION (A). Two submanifolds X, Y of M" are said to be
concordant if there is an embedding ¢: X X I — M x I(I = [0, 1]) which
is transversal on M X oI and ¢ (M"x0l) = Xxol, e(Xx0) = X = 0,
(X x1)~ Y x1.

In [11], a similar definition—that of I-equivalence—is given for
subcomplexes X, Y of a complex M by simply dropping all smooth-
ness hypotheses from definition (A) and replacing them with cellu-
larity hypotheses.

Let now G, be a group and G, its lower central series (cf. §1).
Define G, = NG, and G = G,/G., (“group G, made residually nilpo-
tent”). Observe {G,/G,, p;} is an inverse system where p;: G,/G,,, —
G./G,; is the obvious map. Let G be its limit (nilpotent completion)
which is, in general, uncountable. There is a natural inclusion G—
G. In particular, if S is a space, define =(S) = 7,(S)/[%,(S)].. and
#(S) = [7(S)]™.

DEFINITION (B). Two (finitely generated) groups are I-equivalent
if their nilpotent completions are isomorphic.

Let now X, Y be subcomplexes of M. If we have some sort
of Alexander duality (v. gr. M a manifold), so that we can prove
HM—- X)~H(M — Y), then [11], If X and Y are I-equivalent
so are n(M — X) and n(M — Y). The moral here is that we might
as well work with residually nilpotent groups. This we shall assume
hereafter so that we have no need of writing “G,” for a group G.
We have in mind extending the above results to concordances: let
be the free group in letters «,, ---, z,. Define G(z,, ---, z,) (or G(x))
as the free product G+®@. Let 0,: G(x) — Z be the map defined by
0,|G =0, 0,(x;) = d;;. Let now W= {w, ---, w,} be an 7r-element
subset of G(x), and let NW be the smallest normal subgroup of
G(x) containing W. Assume the integral matrix ||o,w,|| satisfies

(1) det ||d.w;]| = £1.

Define G(&, -+, &), (or G(&),) as the quotient G(x)/NW. Let
G(&) = G(£),/G(8).,, a residually nilpotent group. If 7: G — G(&) is the
map G — G&) — Gx)/ NW — G(£),/G().., we prove ¢ is monic and

75



76 M. A. GUTIERREZ

G < G. If we identify G with (@), G(&) is generated in G by G
and the &; = x;- NW. By analogy we say G(&) is an algebraic exten-
sion of G. For residually nilpotent groups, the Artin approach, as
outlined in [6; VI, §§1, 2] shows the existence of an algebraic closure
G which, as in field theory, is countable if G is. It is easy to see
that since G(&) < G, for all systems {w,} satisfying (1), then G < G.
This process resembles the algebraic and analytic closures of the
field @ if we write @ = algebraic closure of @ (countable) and Q =
C, the complex numbers (uncountable).
It turns out that if we use the following,

DerFINITION (C). Two (finitely presented) groups are concordant
if their algebraic closures are isomorphic, then we can prove

If X and Y are concordant submanifolds of M, then n(M — X)
and #(M — Y) are also concordant.

Actually something stronger holds: let fZ,, ---, fZ, be generators
of H(M — X) and let ¢, e a(M — X) project on Z,(1 <i =<n). Then
G=nM—X) and H=7n(M — Y) have a common finite algebraic
extension K, obtained from G (or H) by adding roots to equations
of the form vy, v =2; (weGx, --+,2,), J=1,---,7r). We do not
know if all algebraic extensions are of this form, so we make

DErFINITION (D). Two groups G and H are simply concordant
if we can choose ¢, ---, ¢, € @G, v, ---,v,€ H so that G/G,~ HJH, is
generated by the pg; (or the v;) and if G and H have a common
algebraic extension G(&, ---, &)~ H(%, +++,7,) where the £ and 7
are roots to equations

w; = v, and y, = w kit

For PL concordances of submanifolds X, Y the groups n(M — X)
and #(M — Y) are simply concordant.

We describe this in §1 and §2; the generators and relations
added to G correspond to the minima and saddle points of the con-
cordance. Those generators and relations added to H (or removed
from G(&)) correspond to singularities of index % and #n — 1 (maxima
and saddle points). In §3 we study the case G = free and we give
an application to links in §4. In [4] we study a generalization of
the algebraic problem.

We use the following conventions: Z means x is to be deleted, #
is the connected sum of manifolds, -+ their disjoint union. All
homology is integral.

This is the first of two articles; in part II we hope to study
the homotopy system of M — X in the sense of [13].

1<j<s, 15kt 1< 45,0 =7, v;€Gk), w,e H(y).
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1. Algebraic extensions. Let G, be a group and let A and B
be subsets of it. Define NA (or N A if the context is not clear) to
be the intersection of all normal subgroups of G, containing A. The
group NA is called the normal closure of A. If C is the subset
{[a, b]=aba""d": a € A, be B}, we write [4, B] for NC. Notice [A, B]
is a normal subgroup even if A or B are not groups.

Inductively the lower central series of G, is defined by G, =
[G, G;—] and G, = NG,. We say G, is residually nilpotent if G,.=
1. We work with residually nilpotent groups. For any group we
write G = G,/G., and G is always residually nilpotent. If G, has a
presentation (x;: 7;>, we write {(x;:7;», for a presentation of G of
the form (x;: 7;, 8,), where G, = Ng({s;}. If S is an arc connected
CW-complex, zn(S) is 7,(S)/[7.(S)]..-

The inclusions G,,, £ G; induce maps p;: G,/G., — G,/G, and
{G,/G; p} is an inverse system. Let G be its limit. We justify
this notation: a typical element of G is a sequence (9.G):s, Of cosets
7. = 9.G, ¢ G,/G, subject to the condition that p,(G,.,) = g, Let J, =
{(g)e G:g,€G,_, for i = 2}. Then J, is a central series (i.e., G = J,,
[J, J._.] S J.) and so G, S J, because {G,} is the lower central
series [7; Ch. 5]. Since NJ, =1. G is residually nilpotent. Notice
g— (g, g, -+-) defines a homomorphism G, — G with kernel G. so
G < G. Further, if G is finitely generated then (&), = (G,)~ = J,
and G,/G, ~ G/G,. A proof can be found in [O].

In our applications we deal with fundamental groups of compact
complexes and so, unless otherwise specified, all our groups are
finitely generated. In particular G need not be finitely generated if
G is, in fact G tends to be of a cardinality bigger than that of G.

If A, is any group and if we have a family «.: G,/G, — A,/A,
of isomorphisms which commute with the p, then the a; define an
embedding a: A — G with G Z @(4). The converse however, is not
true.

If AC G is a subgroup and ¥ S G is a subset, let A{3} be the
subgroup generated by 4 and 3.

LEMMA 1. Let G be a residually nilpotent group and let W =
{wy, «++, w}EG@, ---, x,) satisfy (1). Then the map G—G(&, -+, &,)
s momnic.

Proof. Sequence 1 — NW — G(x) LR GE),—1 gives rise to a
homology sequence

(2) HG@ -5 HGE), — NW/IW, G@)] —— HG@)
2 HGE), — 0
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(4'y 3" are induced maps) (cf. [11; (2.1)]). Let 4: G — G(&), be the
map j|G. Since H,G(x) = H,G and H,G(x) = HGD Z7, and 5" =",
73" =1 + 0(0: Zr — 0), sequence (2) becomes

HG 2 BGE), — NW/[W, G@)] —— 27— 0.

If ve NW, by definition we may write v = [], v,w{}v;'. Then,
if & =317 v =wit--wymod[W, G(x)] and then e(v)= (e, ---, ¢,)
is an isomorphism. Thus, by (2), ¢': H,G — H,G(&), is onto. On the
other hand, by (1), ¢: HG — H,G(), is an isomorphism. In that
fashion I: G — G(&) satisfies the hypothesis of [11; Thm. (3.1)] and
so G = G(8),/[G®)].. and so G S G(&).

Hereafter we deal with G(¢) only.

We say the &, ---, & are solutions of the system of equations
wy =1, -+, w,=1. If £eG we use isomorphism G/G,~ G/G, to
define &% as £G,e G/G,. If & 79eG, & =7 iff &% =5® for all k.

Consider W = {w;}, W' ={w} (¢ =1,---,7) subsets of G(x,
---,x,) satisfying (1). We say that W is equivalent to W' if we
can get from one to the other by finitely many steps involving

(i) A permutation of the z,,

(ii) A permutation of the w;,

(iii) Replace x; by zx; (1 % J, ¢ = ®£1),

(iv) Replace w; by w,w; (1 #+ j, € = *=1),
or their inverses. (cf. [7; §3.3].)

Clearly the operations described above establish a Nielsen trans-
formation (loc. cit.) of G(&) into G(¢’) which is, in particular, an
isomorphism. Matrix ||0,w;|| is a permutation matrix times a pro-
duct of elementary matrices. By an operation of type (ii) we change
||0,w;|| to a product of elementary matrices and operations of type
(iv) finally reduce it to the identity, that is we may assume our
system is equivalent to one of the form {xv;'}, where 9, = 0 for
all 7, k. Generally we write this as

(3) wz:xz:/vi(xa) (iya:]-, "'7/")'

If 0,v, =0, we may write v, as [[; M;;(g., x.)-9;,, Where the M
are commutators involving one of the z. and ¢g,€ G (see [7; p. 352
eq. (7) Thm. 5.14]).

LEmMMA 3. Let {3, ---, &} and {7, -+, 79,} be elements of G which
are solutions to (). Then & =7n(i =1, ---, 7).

Proof. For any k = 1, consider &% and 7/ in G/G,. Elements
z" and 7{¥ are solutions to (8) in G/G, too; as a result
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&P = T1; M;(9., v.(6¥))g, mod G, .

Now, each M;(g,, v.) is a product NP(9,) Il M;s(9., ®.), Where
N} e G, and Mj; € G(z),.

By repeating this procedure %k times, we obtain
(4) P =TI NfP---TI N¢ P mod G, ,

7 l
where N € G,,, and so &* equals (4) in G/G,. A similar reasoning
applied to 7, shows 7{® is also given by expression (4) and so & =
# for all k.

We now repeat some of the results of [6; VII §1] for algebraic
extensions adapted to the present context. We say that ée G is an
algebraic element if we can find a system (8) with solutions &, ---, &,
and £ = &. Let G C A C G; we say that A is an algebraic extension
of G if there exists a set ¥ of algebraic elements such that A=G{3}.
If ¥ is finite we say A is a finite extension. If A and B are alge-
braic extensions of G, any homomorphism A — B leaving G fixed is
said to be over G.

REMARKS (1). Iiet G be a finitely generated residually nilpotent
group and let A £ G contain G. Then the following are equivalent

(ALG 1) A is an algebraic extension of G,
(ALG 2) N,G = A, and
(ALG 3) inel,: H(G; Z) — H\(A; Z) is an isomorphism.

Clearly (1) implies (2). Assume (2); let a,€ A be generators for A.
Then there exist g,;¢G, a;;€ A (finite j for a fixed ) such that
a, = Il;a ;9,07 Let a,=1;9;;€G. Since a, = (a,a:")T;, o, = a,
mod A, and G/G,— A/A, is an isomorphism. Finally if (3) holds,
let € A. Then H,(G)— H,(G{a}) is an isomorphism. Let x be a
letter and consider the epimorphism over G, G(x) — G{a} which sends
x to a. Let K be its kernel. By hypothesis there exists re K
with 6,7 = 1. Then K = Ng.i{r, s} for some s,cG(x) with a,s, =
0. Consider G(&) = [G()/Ngwyrl, S G. By Lemma (3) G(&) is isomor-
phic to G{a} ([11; (8.4)]). Thus o is algebraic.

(2) If we work with finitely generated A, conditions (ALG 2)
and (ALG 3) are equivalent to “A is a finite extension of G”.

(3) The above remarks show that a finite extension can be
obtained from a finite sequence of simple extensions. We can also
define algebraic elements intrinsically.
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DEFINITION. We say £e G is algebraic if e Ny, G. If not we
say & is transcendental.

(4) A residually nilpotent and finitely generated group A is a
finite extension of G if and only if there exist isomorphisms 64;: G/G,—
A/A,; for all 1 which commute with the p;: X/X,,, —» X/X;. In fact,
if the 6, exist they define and embedding A — G containing G and
A satisfies (ALG 38). Conversely, if G S A < G satisfies (ALG 3)
[4; Lemma 7] implies that H,G — H,A is onto and [11, (3.4)] guaran-
tees that inclusion induces isomorphisms G/G;, — A/A, which, being
canonical, commute with the p,.

DEFINITION. A class & of extensions A S B(GZ A, BZ () is
said to be distinguished if it satisfies the following conditions:

(i) Let G < A C B be a tower of subgroups of G; extension
GC Bisin & if and only if G A and A B are in &.

(ii) If GS A is in & and if B is any subgroup of G contain-
ing G, then B < B{A} is in &

LEMMA 4. The class & of algebraic extensions is distinguished.

Proof. (i) If B is algebraic and A & B, it follows from the
above remarks that all the elements of A4 are algebraic. Conversely,
if A is algebraic and B is algebraic over A, then G/G,—A/A,—B/B,
is an isomorphism and B is algebraic over G.

(ii) If ac A, then a€ NyoG S Ny B and a is algebraic over
B.

Let G be the set of all algebraic elements of G.

PROPOSITION (5). G is a subgroup of G and both G and G are
algebraically closed.

Proof. G is closed by Lemma 1. This facilitates the proof of
the closure of G (which is obviously a group): & 7€ G implies they
are elements of a finite algebraic extension A of G. Thus &p'e A.
Any finite system W< G(x) lies in some G(7,, -+, %,)(x). By Lemma
4 the solutions &; for it are algebraic over G.

Finally a curious note: Lemma 3 implies algebraic extensions
are “purely inseparable” [6]. Thus it is not surprising that “primi-
tive elements” [6, VII. 6] do not exist; that is, given 4 = G(§, )
there does not necessarily exist a { such that 4 = G({). The reason
for this is topological in nature as can be seen in the proof of
Theorem 6 below. On the other hand the fact that A is the top
of a tower of simple extensions G = G(£) S G(&, n) is explained topo-
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logically by the “handle exchange lemma”. This is of course, just
an analogy (but an interesting one).

2. Concordances. We now prove our main result:

THEOREM 6. Let X, Y be two concordant submanifolds of S™;
then w(S™ — X) and n(S* — Y) are stmply concordant (n = 5).

Proof. If the codimension is not 2, there is nothing to prove.
Notice we may prove the same result on any simply connected
manifold instead of S*. For the sake of simplicity we prove 6
only for S~.

Secondly, as remarked by Giffen (6) holds for PL I-equivalences
since any PL concordance fails to be locally flat at finitely many
points where cell replacements in the sense of [10] take place. They
do not affect #(M — X) (ibid.) and so the algebra for the PL case
is the same as that of the PL locally falt case where Morse theory
can be defined.

Let now ¢: X x I — 8® X I be a concordance. A point (z,t)eS"
I is a regular point of ¢ if either (x,t)¢Ime¢ or there is a neigh-
borhood J of ¢ in I, a manifold X’ and a level preserving embedd-
ing e: X’ X J— S* x J onto a neighborhood of (z,t) in Ime¢ [8; §2].
A value tel is regular if (x,t) is a regular point for all xe S~
If ¢t is not regular we say t is a e¢ritical value.

If there are manifolds X, () and X,(f); neighborhoods J, and .J,
of ¢ in [0, ¢t] and [¢, 1] respectively and isotopies g: X, X J.— S" X
J. (=0, 1) such that Ime¢ N {S" X (J, U J)}=Im g, U Im g, U h?, where
h? < 8" x {t}, we say t is a standard critical value of index p (0 <
p <n — 1) if we have a smooth (or PL locally flat) isomorphism

(h*,h*NImg, X NImg,)— (D* X D",0D” X D", D* X 6D") ,

where D? is the p-disk, 0D* = S and p + 7 = n — 1, and where
the intersection Im g, N Im g, is the closure of Img. — & for ¢ = 0,1.
The result is a p handle attached to X, in S* x {t} defining a surgery
to X,. See [8; pp. 433-434] especially Figure 1.

By [8; Lemma 2], we may assume there are finitely many
criticaly values (all standard). Reordering, addition and cancella-
tion of embedded handles are possible and the corresponding re-
sults are proved in [8; §2] under the hypothesis # =5. Let
t, < --- <t, be the critical values of ¢. Write ¢, =0, ¢, =1 and
let 0 <e=1/2minlt, —t,_,|. Assume Indext, < Index¢,,,. If p: S*x
I— I is the natural projection, let Z, = S — (Imc¢ N p7(t)). If ¢, t' ¢
(¢, t;11), then Z, and Z, are diffeomorphic. Let G, = n(Z,); then
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G, changes only at the critical values of index 0,1, (» — 38) or n —
2. By duality (turning ¢ upside down) it suffices to describe the
effects of passing through values of index 0 and 1.

The contention is that these changes are algebraic in the sense
of §1. In fact we prove that for some a, -+, @, B, *++, B, Iin
G, Golay, -+, @} = GuiniBy, - -+, Ba) is an algebraic extension of G,
and G.,. As we shall see the equations for « and g are of the
form described in Definition D.

If Index ¢, =0, let H = G,_,,, H = G,;.,. At ¢, we introduce
a handle 4° of index 0 or a minimum. This means Z,,.=Z,_.—o0,
where o, is an unknotted sphere in codimension two in Z,,_.. As a
result H' = H(y,), where y, is represented by a small loop in Z,, .
with linking number 1 with o,.

We assume Index ¢, < Indext,,,; let s be the largest subscript
with Indext¢, = 0. For convenience, let Z = Z Z'=1Z,,,. and
let K, K’ be the corresponding groups. Then

(5) KZG{)(yly“"ys)'

Let now v be the largest number such that Indext¢,,, = 1. Clearly
v = s since at least s handles of index 0 must be cancelled. Let X,
be the connected components of X, then Z = 8S" — [X, + --- + X+
o, + --- + 0} (t is disjoint union). Z’ then can be of two forms
(4 is connected sum)

(a) Z’=S”—{X1+"‘+(X¢#Uji)f|""'+Xm+01+°”
+ 8, e o,

tgte?

or
(b) Z'=8 —{X,+--+X/+ - +X,+0,+ - +0},

where X, is obtained from X, by removing two small disks and
identifying the boundaries by a tube in Z. These are the two
standard forms of a saddle point since possibilities X;#X; and 0,40,
are excluded.

Now =,(Z') = n(Z)/R, where R is the normal closure of an
element of the form

(6) wa,wty;t if (a) is the case
or
(7) wa,w a;t if (b) is the case,

where we w,(Z) and a, is represented by a fiber of the circle bundle
of X, S" (appropriatedly based).
It follows from (5) and (6) that in case (a), K’ is of the form
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Gy Gipy »*» ¥}, where 7; is the root of equation (5)
which is of form (8). For case (b) by Alexander duality HyZ) =
SH*(X;) and H(Z') = 3. H"(X;) + H*(X)).

Recall X, is obtained from X, by attaching a l-handle, X/ =
X #8732 x S, Thus H(X]) = H" %X, + Za. Let @ H,Z' be the
element that corresponds to @ via duality.

We know that the attached 2-handle must be cancelled by a 3-
handle since X is diffeomorphic to Y and that this 3-handle must
be attached by a map representing @ which must, therefore, be a
spherical element of H,Z'. It follows that z(Z) — #,(Z’) induces
an isomorphism of abelianization and an epimorphism of second
homologies because under the map H,Z' — H,zr,(Z') defined by Hopf,
a goes to zero. By [11; (2.1)], K = K’ in case (b).

In conclusion G,.., = G,(%y, -+, %) Where the 7, are roots of

equations (6). Clearly then G, is isomorphic to G..

COROLLARY 7. If X, YCS" are concordant, G = n(S™— X),
G =n(S"—Y), then G, ---,n,} = G'{&, ---, &} where the 7, & are
roots of equations y, = w,awi', x; = wib;(w,) " and the a;, b; generate
HG and H,G respectively. In other words G and G' are simply
concordant.

3. Algebraic extensions of free groups. Let @ be the free
group <&, -+, X,y and h:® — G, a homomorphism into a finitely
presented group G, which induces isomorphisms H,(®) — H,(G,) for
q = 1,2. In particular G, has a preabelian presentation [7] of the
form

(8> <xir "';x;mbly ""bp:bszu "'7bp:Bp;01:1’ "'5Cq:1>

where the B;, C, are in the commutator of ¥ = &', ---,b,) (@ =
{&y, +++, Zn:>) and where h(x;) = vaiv;* for some v,e¥.

Also (8) defines a group G = (., b;:b;=B;) l=<i=<m1=
J < p) which also satisfies the hypotheses above [5; p. 106]. Further,
the natural epimorphism e:GY — G, induces [11;§2] isomorphisms
G° — G and G° — G and % induces (loc. cit.) an isomorphism & — G.
Equations b; = B; satisfy (1) and so G is an algebraic extension of
D.

Let now &2, = Nglai, «-+, &, -++, ¢} and J.G =_7F = G|,

LEMMA (8). Let G be a group which s simply concordant to
@ and assume (i) 7, = Zux; for all 1, and (ii) h,: H(®,) — H,(G,) is
an isomorphism. Then x,— vxiv;' defines an isomorphism @ — G
Sor some v, € @G.
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Proof. By hypothesis there exist letters v, ---, ¥, 2, ---, 2,
and equations y, = w,xi, wi' (w, € G(¥)), 21 = ww,ur* (w, € O(2)) such that
G®yy oo+, ) ~ O, ---,L,). Infact, G itself is of the form @(w,, ---,
w,) for if 7 = Zx; then B;je Ny{z}: j # 4} for all i. As a result the
B; have the form

(9) B; =TI wyf@., @] wi .
l

In fact recall ¥ = @b, ---,b,); let K =ker (¥ — G) the kernel
of the map described by (8). Then, if R; is the expression on the
right hand side of (9) B; = R; mod K, that is

B, = R;-D

for some De K.

In D the words b,B;'(l =1, ---, p) must appear with zero ex-
ponent sum, that is, De[K, ¥] modulo the C,, which in turn lie in
¥, K] =Kn7YV, since H(G,) = 0.

If G} is

<w': blBl‘ly Cly ct %y qu -D>

then G is an epimorphic image of Gy and since D¢ [K, ¥], Hy(G?)—
H,(G)) is an epimorphism (both are zero) and G° — G’ is an isomor-
phism. Thus we may assume B; has the desired from R; since D
is a relation in G°. Thus we may present G as (w; ¢;;:¢; = wifai,
x| wi; o, where the wi; are obtained from the w,; of (9) by sub-
stituting b; by [I¢;. As in §1, {---), indicates that the presenta-
tion includes the relations G, = 1.

Since wilai, o J(wiy)™ = [wiwl, €] [k, wi;], we may alter the
above presentation to

(10) G = (&, dyy, e diy = [wijes, 2], e = @, wiil,

where the w” are obtained from the w’ by writing ¢;; = (d,;e,;).
Finally, let di; = d,;x.,, e;; = @ije;;. Then (10) has the form

(10a) (i, dig, eyt diy = wigs, (wii) 7 et = (Wi ), (wi') ™,

where transformation d — d'z™*, e -» 2¢’ throws w” onto w’’.
Clearly (10a) has the desired form and G has a presentation
(after relabeling everything)

’ ’ ’ — -
Quly woey Wy 2y o0 e, Byt 2y = Wil wit, 1= 5 < p),
or

’ . . ’ -
G = <xi’ Rk = wjxijw:i15 /rl> ’

where 7, = 7(x, 2) are the remaining relations, N; {r} = G.. Clearly,
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if ¥ =09'(z), re¥,.

Writing w; = w;xf, relation z; = w;x;,w;* becomes z; = u; u;*
that is, we may assume a = 0 or w;€ ;.

Transformations of the form z; — x§2;x;*(k +# ;) are Tietze trans-
formations and by use of appropriate values of @ we may assume
w; has zero exponent sum on z, as well, that is w;e Z,.

Our hypothesis (i) implies G, = N <Z,. Let N = N, {®,} then by
(ii) H®,— N/[N, N]— G,/[N, N] — H,G, is the identity and in parti-
cular G, = N, {9,}. .

Write y; = 2;(xi;)"". By Tietze transformations, (10a) can be
changed to

(10b) <x;: tt x:m Yy ** Yt Yp = [w;’ xgj], ’r’>

and wie N.<Z, so we may write w; = l¢,;ik;cii', (ki;€®,). We may
assume ¢;; € Ny {y,, -++, ¥,}, otherwise c¢;; =d-e, deN{y;}, ec®.
Redefine ¢;; as d and k;; as ek;;e™*. In fact we may assume the ¢;
have zero exponent sum on the y. If not use Lemma 3 to change
the equation y; = [w], #i;] to y; = [w], xi,] where w” is obtained
from w’ by changing y; to [w}, #,]. Since the solutions of the first
set of equations are also solutions of the second set, Lemma 3
implies this change is allowable. Finally write y; = y;[IIk;;, «:,]".
Then (10b) becomes

(10c) QoL » o ey Ty Yoy =05 Yot W5 = [0, 23], 717

and the o; = I1(¢ ;k.;ci})- (IIk;;)™* where the ¢ are obtained from the
¢ by the substitution y; = yi[IIk,;, xi;]. Since the ¢ have zero ex-
ponent sum on the ¥;, the ¢ have zero exponent number on the y;
in particular ¢,; € Ng{y, -+, ¥,}-

Let now 7; be the image of y; in G. We wish to prove that
7;€@G,. By (10c) this is so for » = 2. If 7,e@G, then ¢,;€G, and
then 7;€@G,,, so that 7; = [v;, x;;]€ G,\,. By induction 7,eG. =1
and so % is an isomorphism. This argument is an adaptation of the
proof found in [14; p. 152].

4. An example. Let X be the disjoint union ¥ X, of m copies
of the n sphere S*(n = 3). A link is an embedding &: X — S**2.
The knots .&5=_<"| X, are called the components of &¥ and .~ (X)=
L is sometimes used instead of <. The normal bundle of L < S**
is trivial and so we can extend & to an embedding &: X x D*—
S*+2, Let U = U, be the closure of S"** — L which is a compact
manifold with boundary X x S'. As a result #, = 7, (U) is finitely
presented. Similarly, let U, be the closure of S*** — L, (the mean-
ing of L, L is, hopefully, clear); U = i, U, We say U is the
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complement of &

Inclusion X X 8'— U induces a homomorphism h:® —m, of
fundamental groups; let p,e€ X;. The loops g, = {p;} X S' (attached
by simple arcs v, to a basepoint) are generators of a free group @’
in mw,, and the image of A is in @. Naturally %~ depends on the
choice of the 7,. At any rate & satisfies the hypothesis of [11; (3.1)]
and by §38, # = n(U) is an algebraic extension of @; further

PROPOSITION 9. The group © is simply concordant to O.

Proof. (Kervaire [5]). By Theorem 3 of [5] it is possible to find
a link &', concordant to the trivial link with = = z(U;). From
Corollary 7 it follows that = is simply concordant to n(U.) =9,
where ¢4 is the trivial link. Homomorphism h:® — 7 defines a
subgroup (@) of @ and @'/h(P) is a simple algebraic extension and
so is 7w/@'.

COROLLARY 10. Let & be a link, # =n(U,). If =n(U)=2Z
for 1< i< m, and if h,: H®, — H|[rm, 7] is an isomorphism, then
T 18 free generated by loops p, = {p;} X S' attached to a basepoint.
by suitable ;.

Proof. Immediate from Lemma 8 and Proposition 9.

LEMMA 11. Let <~ be an arbitrary link; then ¥ 1is concor-
dant to a link satisfying the hypothesis of Corollary 10.

Proof. We can write oU = 33X, x S'. Let A be the space
obtained from oU by joining the X; X S" by means of ares 7, to a
basepoint (ef. [3]). Consider diagram

U
(1) i

A2 s

where p(X; x S') is the basepoint for j # 1 and p|X, x S' is the
projection on the second coordinate. Triangle (11) can be completed
if and only if

7, (U)

o2,z

can be completed. The latter is obvious (by using g¢.:7(U)—



CONCORDANCE AND HOMOTOPY, I: FUNDAMENTAL GROUP 87

H((U)~ X, Zx,— Zz,) and so we can find ¢: U— S' extending ».
Let z, be a regular value of ¢; then V, = q7'(z,) is a compact framed
(n + 1)-submanifold of U with boundary »(Z, = X, x 2, CaoU.
Clearly V, is not unique and V., N V;=%¢ (unless w(U) =@ by
Lemma 2 of [3]). We say the V, are Seifert manifolds for &.

For simplicity we assume ¢ = 1, m = 2. Observe the surgeries
performed below do not affect L, so if we reduce =, (U,) to Z the
same argument can then be used to reduce x,(U,). The case m = 3
is similar.

Let »: V,— I be a smooth map with A %0) = 0V,. Define W, =
{0, t)e V, X I 0 <t < NP)}. W, is a manifold with boundary V,(0)U
V.Q), where V,(e) = {(v, t)|t = ex(v)}, ¢ = 0,1. Also W, has a corner
along V,(0)N V,1) =0V, = X,. Each V. is diffeomorphic to V,.
Let V.(¢) be the complement in V.,(e) of an open smooth collar of
oVy(e). With the aid of the framing of V, we may embedd W, so
that V,(0) = V,. Let T, be the closure of U — W, with boundary
oW, + (X, x SY). We define maps v:V, - T(¢=0,1) by V,=
VieycoT,cT,.. Let G, ==n(T), H, =7(V,). Then we have induced
homomorphisms v®: H, — G,.

Notice that if we identify V,(0) to V,(1) in T,, we obtain U so
w, = w,(U) is an HNN extension [9; §5.1],

(Gyy o P (h)at = v(h), heH,) .

Define I: H,— Z by l(a) = l(a, X;), the linking number of a and
X,in 8. If l=0, h:®—>x is an isomorphism, where h(x,) = g,
for some choice of ares v, [3]. If [+ 0, let K =ker I, & a gene-
rator of H,/K. Since H, is the semidirect product K x (H,/K), we
may assume « ¢ H,. Define 6(h)=N"(h)M"(h™), and let R= N, {iv(h):
he H,} where 4: T, C U induces i: G, — 7,.

Since [V (k), x'] = o(k)xr (2w (k)x v (k))x,, it follows that o(k) €
[R, ©,] (ke K).

Every element of G, is a product of conjugates of d(k)(k e K),
o) and h(z,). Also (a) = [P (a), x2,]. In particular, v®(k) is a
product of conjugates of the above elements. Since I(k) = 0, h(z,)
and J(«) occur with zero exponent sum and so w{®(k)e[R, w ],
R/[R, ;] is then 0 and by [11; (2.1)], H,(x,/R) = 0.

Consider U x I; attach 2-handles to U x {1} a long representa-
tives of the w®(k). It is necessary to attach finitely many handles
because K is the normal closure of finitely many elements in H,.
In fact, both H, and H,/K are finitely presented [7; I]. The result-
ing space M’ = U x IU X2(h}) has fundamental group =,/R. Since
Hy(w,/R) = 0 all its second homology (which is free abelian generated
by the handles (h}) is spherical [5; §1] that is the generators of
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the 2nd homology can be represented by spheres which, since n>3,
can be taken to be embedded.

Attach 3-handles along these embedded spheres to obtain M =
UxIUZ®)NZMH) which by standard arguments is the comple-
ment in S"*? x I of a concordance between L and a link L” which
admits Seifert manifolds V', V.’ and 7 (V") = Z, V,' ~ V,. Repeat-
ing this argument for V, we may assume L is concordant to a link
L' with manifolds V/, V, with infinite eyclic fundamental groups
generated by a, and «, respectively. Represent «, by a loop a;:
St— V.

We may assume a; extends to an embedding D?*— U, which
misses V, althogh it will intersect X;(j # 1), since l(a,) = 0.

If a;, does not intersect, let B be a loop in U with linking
number —Il(«,, X;) with X, and linking number zero with X,. We
may assume SN V,= @. Let z be a tubular neighborhood of 2,
T =B X D**'. We may alter V, to V,#or the connected sum of V,
and oz along a tube that joins them and that is disjoint with X,.
Now = ,(V.#07) is free in two generators a, and B and «,Q8 has zero
linking number with X, so it can be eliminated as before.

The new link admits a Seifert manifold with infinite cyclic
fundamental group generated by 8. Since B bounds a disk in S"*2
disjoint from X, the assumption on a, is possible. A similar process
for V,.

Clearly if a, extends to a disk in U, n,(U,) = Z. To complete
the proof we have to fulfill condition (ii) of Lemma 8. We work
with m = 2 and use the technique of [5, p. 246] to construct an
infinite cyclic cover U, of U by taking a quotient of the disjoint
union of copies Y, of U cut along V, with identifications (V;), =
(V{)uss (loe. cit.). This cover is associated to <2, and H U, ~ Z[x,,
x7']. Let V, be the lift of V, to U,. By cutting U, along V, and
repeating the construction we obtain a cover U of U associated to
F#N R, = [r, ] and HU1 contains 4 = Z[x,, x,, 27, 2;'] ~ HO, as
a direct summand. In fact HU = H,(r, )] = H(@,) P M for a
certain 4-module M. Since H,(U) = 0 we obtain from the spectral
sequence for U that M®, Z = 0 and so every element of M is of the
form m = (x, — I)m, + (x, — 1)m,. If % is a loop in U representing
m then y is of the form [z, v.][x., ¥.] for v, ¥, loops representing
elements in M. Thus if we attach 2-handles to U x {1} to kill M
we observe that the resulting homology is spherical since the new
relations are products of commutators of themselves. This means
our surgical argument can be repeated once more to insure that
h: H(®,) - H([x,, w]) is an isomorphism.

In the remaining part of §4 we assume m = 2 although similar
results hold for all m.
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COROLLARY 12. FHwery link <& 1s concordant to one <&’ which
has mutually disjoint Seifert manifolds.

Proof. We may assume that if U’ = U,, then h:® —zn(U’) is
an isomorphism, where &’ is the link found by Lemma 11. Con-
sider

U'I
(12) i e
L8 ve

where p|: X; x S'— §'V S projects onto the jth circle, j =1, 2.
Triangle (12) extends if and only if the corresponding triangle of
groups

(")

id.

O—0

extends, that is, if there exists an epimorphism g¢,:7 (U’)— @
which is a retract of h. By [11;(8.1)] ¢, induces an isomorphism
q:t(U") —> @ which must be the inverse of h. Thus (12) extends
iff h: @ — w(U’) is an isomorphism. Using regular values of q: U'—
S'V S* we may construct disjoint Seifert manifolds by the same
method used in the proof of Lemma 11.

We say a link < is simple if we can find Seifert manifolds
Vet © U which are g-connected for » =2¢ or » =2¢ + 1. If n =
29(g = 2) the V, are (29 + 1)-discs [5; III].

THEOREM 13. FEwvery link of dimension m =3 1s concordant
to a simple link.

This is a comsequence of the results of [3]. Similar definitions
and results for m = 3. For n = 2q, Theorem 13 generalizes [5;
I11. 6].

REMARKS. (1) In [1] it is shown that group o = {x, 2, b:b =
[, B][xf, x,]> is residually nilpotent and not free if <5 = 0. Map h:
@ — p defined by Ai(x,) = x, is monic and o = N,h(®@). By [5] p =
7,(U.) for some link <. Observe Z =7 but_Z={w, b: b=[x}, b])+#
Z if i #+ 0 as expected from Lemma 8.

(2) Similarly in [12] a link &#: X — 8* is found with 7, (U) =
® but h:® —r,(U) is not onto. Again # = Z but & =<{a,b:a’ =
b*> the trefoil knot group as expected from Corollary 10.

(8) Cappell has pointed out two facts; the first is a



90 M. A. GUTIERREZ

PROPOSITION 14. Let S, S, be spaces with the homotopy type
of finite CW-complexes and let f:S,— S, be a continuous map. If
Fot H(S) — H(S,) 1s an isomorphism for ¢ =1 and an epimorphism
for g = 2 then n(S)) is concordant to ww(S,).

The proof is based on the naturality of Hopf’s sequence
73(S) —— Hy(S) — H,(G) — 0,

where G = 7,(S) (ef [5; p. 106]) which is used to verify that the
attached 2-cells that produce 2-homology actually generate spherical
homology.

The second is more serious: Lemma 3 of [3] states more that
it proves for odd dimensions. Theorem 13 is the best result possi-
ble. However Theorem 18 and the results of [2], yield a descrip-
tion of the concordance group for links.

(4) TUnfortunately our remarks do not work for links in S%
the presence of longitudes ruins everything. In the Notices of the
Amer. Math. Soc. (24 (1977), announcement 77T-G15), J.A. Hilman
exhibits a 2-link < with unknotted components, zero Alexander
polynomial (so f(i, ---, 4,) = 0) which satisfies @ = n(U,). If we try
to imitate the construction algebraically we obtain the group

G, = {x, 2, @, b: 0 = b w2270, b = a7 w2, a) .
Let ¢ = aar*, d = bx;'. Then G, has a presentation
&y, Xy €, A€ = |2y, x7'd,), d = [, 27 'cx,]) ,
eliminate d,

(@, Xy €2 € = [, T3 [0, @1 ]2, ])
= (&, x5, ¢: ¢ =[xy, [ cay, 23]

and ce G, by the Green-Zeeman argument. Naturally G, is not
7(U) because of the extra relation [x, ] =1 (A = longitude) which
causes H,w(U,;) to be 0, and 7, (U,) is not an algebraic extension
of @ = (&, %,;:>. (& is however, nullconcordant). The key point is
that the longitudes A are nonzero in H,([7, w,]) and so hypothesis
(ii) of Lemma 8 fails.
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