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T AS AN ¥ SUBMODULE OF G

W. J. WICKLESS

Let G be a mixed abelian group with torsion subgroup
T. T is viewed as an € submodule of G, where € =EndG.
It is shown that T is superfluous in G if and only if, v,
either 7', is divisible or G/T, is not p divisible. If G is not
reduced, 7 is essential in G if and only if T contains a Z(p~).
Let I(G) [I(T)] be the &€ injective hull of G [T']. Then I(G) =
I(T)@® X with X torsion free divisible and 7 is a pure sub-
group of I(G). This can be used to obtain several results;
for example, if Q £ I(T'), TFAE: 1. Tess G, 2. I(G) = I(T) as
abelian groups, 3. @ £ I(G). The condition T ess G is charac-
terized if 7 is a summand or if G is algebraically compact.
If T is bounded or if T is a p-group, 7' = (0) and G is re-
duced cotorsion, 7T is not essential. In fact, for bounded 7
there is an & isomorphism I(G) = I(T)® I(G/T). Some in-
formation is obtained on the p-basic subgroups of I(T') as a
function of those of 7. A condition is given for I(T) 2 @, Q.
These last theorems specialize to I(z:T), where £ — End T.

Preliminaries. In the last fifteen years several authors have
written papers concerning an abelian group G viewed as a module
over £, its ring of endomorphisms.

Let G be a mixed abelian group with maximal torsion subgroup
T. In this paper we consider T as an ¥ submodule of G. We
determine when T is superfluous in G and then study the more dif-
ficult question of determining when T is essential in G. (If (0) =
T + @G, it is easy to prove that T is neither essential nor superfluous
as a Z submodule of G.)

The latter question leads to consideration of the injective hulls
I(T), I(G)—taken with respect to &.

Our notation, with minor exceptions, is that of [1].

1. T as a superfluous submodule of G. Henceforth, let G be
a mixed abelian group, T = t(G) its torsion subgroup and & = End G.
To avoid stating the trivial cases of our results we always assume
(0) # T+ G. We begin by characterizing those mixed G for which
»T is superfluous in -G (T < G). In our context T € G if and only
if whenever K is a fully invariant subgroup of G with K + T = G,
then K = G.

LEMMA 1. Let T=@ T, be a decomposition of T into its p
components. Then T < G if and only if T, < G, Vp.
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Proof. The only if part of the implication is immediate since
submodules of superfluous submodules are superfluous.

Suppose T, € G, Vp, and T' ¢ G. Then we must have T+ K = G
for some fully invariant K - G. Clearly, K 2 T, for some p. Let
K' =K+ >,,:,T,. Since K’ is fully invariant with K’' + T, =G,
K =QaG.

Let te T, and suppose that ¢ has order o(t) = p'. Writet = +y
with z€ K, o(y) =n, (n,p) =1. If a, b€ Z with ap’ + bn = 1, then
t = (ap’ + bn)t = bnt = bne e K. Thus, T,< K, a contradiction.

THEOREM 1. T < G if and only if, Vp, either T, is divisible or
G/T, is mot p divisible.

We prove the contrapositive in both directions.

Proof. Suppose Ip with T, not divisible and G/T, p divisible.
Then T,ZpG and G = pG + T,. Thus, T, < G and, by Lemma 1,
T 4 G.

Conversely, suppose T'¢ G. Then Ip with T, € G. Let K be
a proper fully invariant subgroup with K+ T, =G. We cannot
have T, divisible, for then K2 Hom (G, T,)K = T,. (If z € K, o(x) = <o,
and te T,, the map Zx — Zt extends to G.)

G/T, is p divisible if and only if K< pG + T,. Assume that
G/T, is not p divisible. Then there is an x € K\pG + T,. Therefore,
vte T,, the p-height of z + ¢ in G, hi(x + t), is zero.

Thus, for every positive integer I, T = x + p'G must have order
exactly »' in G/p'G. But then, vie T,, we can construct an endo-
morphism of G mapping ¢ —Z — ¢t. This implies K2 T,, a contra-
diction. The theorem follows.

2. T as an essential submodule of G-basic results. We next
consider the more difficult problem of deciding when . T is essential
in .G(TessG). We first dispose of the nonreduced case.

THEOREM 2. Let G be a nonreduced group. Then TessG if and
only if T contains a Z(p~).

Proof. If T2 Z(p~) then, Ve e G with o(x) = «, Iae & with
0 # a(x) € Z(p~). This, clearly, is enough to imply TessG.

Conversely, suppose T contains no Z(p~). Then, since G is not
reduced, the maximum divisible subgroup D of G is nontrivial and
torsion free. Hence TN D =0, so T is not essential in G.

From now on we assume G is reduced.

To investigate the question of when Tess@, it is natural to
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consider the & injective hulls. Let I(@G) be the injective hull of the
module .G. Since .T < .G we can regard I(T), the injective hull
of .T, as a maximal & essential extension of T in I(G). If I(T) is
constructed in this way we have an & decomposition: I(G) = I(T) P
X. Clearly, TessG if and only if X = (0).

THEOREM 3. Let X be as above. Then X is torsion free divisi-
ble as an abelian group.

Proof. If t(X), the torsion subgroup of X, were nonzero, then
I(T)yP t(X) would be an & essential extension of T in I(G) properly
containing I(T)—a contradiction. Thus, X is torsion free. Since X
is an injective module, X must also be divisible.

COROLLARY. Tess G if and only if I(T) and I(G) are isomorphic
& modules.

Proof. Suppose 0:I(T)— I(G) is an & isomorphism. Then
O(T)ess I(G). By Theorem 3, (T)N X = (0). Thus, X = (0) and
TessG.

The next theorem is central for our results.
THEOREM 4. T is a pure subgroup of I(G) (T < I(&)).

Proof. Let D(G) be the Z injective hull of G and let A be the
injective left & module Hom, (&, D(G)). Regard GS A via G =
Hom, (%, G) and take I(G) to be a maximal & essential extension
of G in A. It suffices to show T <] 4. Let 6 € T with pé = 0. Suppose
hi(6) = m < o, but § = p™Ma, ac A.

Write 6 = p™d’, 0’eT. Then T = (o' @ T’ ([1], Corollary 27.2).
Let 7 e & be projection onto <¢’y. Then é(z) = n(d) = ¢ = p"Pa(x) =
a(p™tr) = 0—a contradiction. Thus, we have proved: de T[p]-~
hl(0) = hi(6). This shows T <] A ([1], (h), p. 114).

COROLLARY 1. If T is a torsion group, E = End T, then T <]
IGT).

This is proved by putting G = T in the above.

COROLLARY 2. Suppose T G with T' = G, G/T divisible. Then
TessG. (Here T' [G'] denotes the first Ulm subgroup of T [G].)

Proof. Since T <JI(G), G/T divisible, we have G < I(G). If
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G' = T* and X is as in Theorem 3, X NG = (0), so X = (0). Thus,
TessG.

COROLLARY 3. Let TC G with T' = (0). Then I(T) = (0).

Proof. I(T)' is an & submodule of I(T). Since T*' = (0) and
TQLT), (T} NT = (0). Thus, I(T) = (0).

THEOREM 5. Let TC G with QL I(T). Then TFAE:. 1. TessG;
2. I(T) = I(G) as abelian groups; 3. QZLI(G). Moreover, if 1—38
hold, then T'= G

Proof. The implications 1-»2, 2— 3 are obvious. If Q<& I(G),
then the X of Theorem 3 is zero, so TessG.

To prove the additional statement, note that I(T) is an algebrai-
cally compact group ([1], p. 178) which, by assumption, contains no
@’s. Thus, there can be no elements of infinite order in I(T). If
1—3 hold, the same is true for I(G). Thus, in this case, G' = T.

COROLLARY. Let TC G with T* = (0). Then conditions 1—3 are
equivalent. Moreover, if 1—3 hold, then G' = (0).

Proof. If T* = (0), then I(T)' = (0), so Q£ I(T).

Theorem 5 raises the questions: When are I(T') and I(G) isomorphic
as abelian groups? Is this sufficient for Tess G? Here is a partial
result.

THEOREM 6. Let I be the & imjective hull of the factor module
G/T. Write I(T) = HP K, where H 1is the maximal torsion free
divisible subgroup of I(T). Let r =rank H, ¥ =rankI. If r is
infinite and r = 7, then I(G) < I(T).

Proof. Embed I(G) into I(T) @ I in the standard way (via a @ 8
where a and B are the extensions to I(G) of T I(T) and G —
G/Tc I respectively). Then, as & modules, ()P Y =IT)PI.
Since I(G) = I(T) @ X, we have:

(*) ITYeXY=IT)DI.

The additive group of I is torsion free divisible, since I is the
injective hull of a module whose additive group is torsion free. Thus,
the number of @’s on the right-hand side of (x) is » +7 =, so

rank X < ». But then, I(G) = I(T)® X = I(T).
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ExAMPLE. For each prime p, let T, be the group generated by
{a;11=0,1,2,3, ---} with relations {pa, =0, p*a, =a, n=1,2,3,
-}, Let T=@,T, and let G=QPT. Then 7 =1 and (as we
will see in Theorem 13) » = ¢. Thus, I(G) 2 I(T). Since T is reduced,
T is not essential in G.

3. T as an essential submodule of G—some special cases. In
this section we consider the essentiality of 7 in G in some special
cases. First we consider the situation for bounded 7. The following
theorem shows if T is bounded, then T is never essential in G.

THEOREM 7. Let TC G with nT = (0) and let I = I(G/T). Then:
1. »I(T) = (0);
2. IG) is & isomorphic to I(T)PI.

Proof. Let D(G), D(T), D(G/T) be the Z injective hulls of G,
T, G/T and let A, B, C be the injective left & modules Hom, (&, D(M))
where M = G, T, G/T, respectively. As in Theorem 4, regard TC
GSI(G)S A. Suppressing the obvious isomorphism, write A = B
C—an & direct sum. Under these identifications T = BN G.

To prove (1), recall T<] A, so in this case, TN nA = nT = (0).
Thus, if x€ I(T) with na == 0, then, for some Ae &, 0 A(nx)e
T N nA—a contradiction.

To prove (2), first note that BN I(G) is an essential extension of
T=BNG. Choose I(T)Z I(G) as before—with the additional re-
quirement I(T)2 BN I(G).

Let xeI(T), say x =b +¢, beB, ceC. Since C is torsion free
and nx = 0, we must have ¢ = 0. Thus, I{(T)S B. It follows that
KT) = Bn IG).

Let weHom, (4, C) be projection onto C and let 7’ =7 |;¢.
Clearly, Kern' = BN I(G) = I(T), so write I(G) = I(T) P Y with =’
a monomorphism on Y.

To finish the proof of (2), we claim #'(Y) is an & injective hull
of G/T. To see this, first note that if G/T is embedded in C via
e: g + T — evaluation at ¢ + T, we have e¢(G/T) = #'(G)=='(Y), so
7'(Y) is an injective containing ¢(G/T) = G/T. Furthermore, if 0 =
o' (y)en'(Y), then e & with 0= My)eGNY. Thus, 0= a\y) =
A'(y) e '(G) = e(G/T). This proves that ¢(G/T) ess #'(Y). The theorem
follows.

ExampPLE. Let T = @,.»Z(p), where P is an infinite set of
primes, and let G =Z@T. Then TessG, so I(G) = I(T) and, in
view of Theorem 4, I(T)' = (0). Moreover, it is easy to see that I'=,Q.
Thus, if T is an unbounded group direct summand of G, we need



560 W. J. WICKLESS
not have the decomposition of I(G) given in (2).

The following gives one characterization of T ess G in the splitting
case.

THEOREM 8. Let T=PT,cG. Let k,=1ub{l|G has a Z(p")
summand} and let H={xeG|o(x) = o, hj(x) = k,Vp}. Then:

(1) If H=(0), TessG;

(2) If G=TQPF and Tess@, then H = (0).

Proof. (1) is clear. To prove (2) suppose G = TP F and 0 #
xe H. Then, for some positive integer n, 0 = nec HN F. Clearly,
na cannot be mapped by an endomorphism of G onto any nonzero
element of a bounded T,.

If T, is unbounded, then G has an unbounded p-basic subgroup,
S0 k, = . Thus, hf(nx) = hl(nx) = . If Ae & with 0 = Mnx)e T,
then M\ restricts to a nonzero map of the subgroup {m/p*(nx)|m, k€
Z}<S F into T,. This is impossible since T, is reduced. Thus, nx
cannot be mapped by an endomorphism of G onto a nonzero element
of any T,. The result follows.

It is easy to deseribe when T ess G for algebraically compact G.

THEOREM 9. Let T=DT,CcG with G (reduced) algebraically
compact. Write G as a product of p-adic modules, G = IIG,. Then
TessG if and only if, Vp, either T, =G, or T, is unbounded.

Proof. It is immediate that T ess G if and only if, vp, T,ess G,.
If 3p with T, # G, and T, bounded, then T, is not essential in G,.
Conversely, by considering projections onto summands of a p-adic
basis for G,, it is easy to see that T, unbounded implies T,ess G,.

We close this section with:

THEOREM 10. Let T C G with G (reduced) cotorsion, T a p-group,
T' = (0). Then T is not essential in G.

Proof. If T is bounded, T is not essential. If T is an unbounded
p-group, (0) = Pext (Q/Z, T) = [Ext (Q/Z, T)]*. Since G is reduced
cotorsion, G = Ext (Q/Z, G) = Ext (Q/Z, T) P Ext (Q/Z, G/T) ([1] H,
p. 234 and Lemma 55.2). Thus G* # (0), T* = (0) and T cannot be
essential in G.

4. The structure of I(T). In this section we prove three
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theorems concerning the structure of I(7T). With trivial modification,
each of these theorems can be rewritten to give the same result for
the injective hull of a torsion group over its own endomorphism
ring.

Since I(T) is algebraically compact, it is natural to try to find
out what its p-basic subgroups look like as a function of the p-basic
subgroups of 7. In the case T* = (0), this information would charac-
terize I(T') as an abelian group. The next result shows that I(T) is
generally large with respect to 7.

THEOREM 11. Let B [B'] be a p-basic subgroup of T [I(T)]. Let
f = final rank B. If Z(p*) occurs in B, then B contains @;..s {zr)
with | .57 | = 2%, o(z;) = p*, V7.

Proof. Suppose B contains a Z(p*). Write G = (b) @ Y, o(b) = p*,
and let @,.,<b,> B with | A| = f, o(b,) = p"Ve.

Choose {4;|Bc .o} a collection of subsets of A such that:
|.%7| =2, if F is any finite subset of .o and B, F then
[As\Uszs,,5cr 4] # ©. (See [1], Lemma 46.2.)

For Be .o define 6, € Hom(@ <b.), b)) by 05(b,) = Xs(a)b— X, the
characteristic function of A;. Extend each 4, to & .

It is clear that the left ideals &6, form a direct sum s in &.
Let {C;|ve .o} be a family of subsets of .o~ with the above
independence property, |.o7| = 2. Consider:
0—S— &
j«lr u’/’/{;
I(T)

Here N\, is the & map defined by M\(3;) = X (8)b, X, the charac-
teristic function of the subset C;, and A, is the map obtained by in-
jectively.

Let z; = A (1). We have 04(2;) = X (8)b. It is easy to see from
this equation that {z; | X €.97} is a p independent set of elements of
order = p*. This can be included as a summand of B'. The result
follows.

Continuing with the same notation we have:
THEOREM 12. If B’ contains a Z(p*) so does B.

Proof. If B contains Z(p*) then I(T) has a Z(p*) summand.
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Therefore, so does Hom (&, D(T)). (I(T) can be regarded as a direct
summand of Hom (&, D(T)). Therefore, so does Hom (&, D(T),).

The pure exact sequence 0 — (&) » & — & [t(&) — 0 yields 0 —
[ZUEN — E* —t(&E)* —> 0, where M* = Hom, (M, D(T),). This
sequence is pure exact, so splits, since all its terms are algebraically
compact. (In this proof “splits” means splits as an exact sequence
of abelian groups.) Since [&/{(&)]* is torsion free, (& )* must have
a Z(p*) summand.

Now #(&)* = [t(&),]*. Let B, be a basic subgroup for #(&),.
Repeat the above procedure with 0 — B, — {(&), -~ {(&),/B,— 0 to
conclude that By must have a Z(p*) summand.

Since B, is a direct sum of cyclics, B, itself must have a Z(p*)
summand. Thus, & and, therefore, Hom (G, T,) have Z(p*) summands.

Let B be a p-basic subgroup for G. The p-pure exact sequence
0 — B— G— G/B— 0 yields the p-pure exact sequence 0 — (G/B)” —
G*— (B)* where M*=Hom, (M, T,). Since (G/B)* =W @ @, Q,, where
W is the p-adic completion of a direct sum of copies of the p-adic
integers, this sequence also splits. It’s not hard to show that (B)’
must have a Z(p*) summand.

Say B = B, @ B,, where B, = @. Z(p'<) is a direct sum of finite
p-power cyclics and B, = @; Z, is free. Then B‘ = (B))*® (B’ so
one of these groups must contain a Z(p*) summand.

If (B)? = Il. T,[p'] has a Z(p*) summand, then B, itself must,
so T does.

If (B)! =11 = I1;(T,); has a Z(p*) summand, again T does. (If
I[[ =<y DY, oy) = p*, then hy(@*'y) =k — 1. If y = [y;], ¥s € (T})s,
then, for some 8, hy»?(p*"'y,) = k — 1 and, therefore, o(p*'y;,) = ».
Thus, y;, is contained in a Z(p*) summand of (T,);,.)

Thus, in either of the above cases, B contains a Z(p*).

In view of Theorem 5, it is of interest to discover when Q = I(T).
(Obviously, we must have T® = (0).) We are unable to decide if
T' + (0) is also sufficient for Q S I(T). We close the paper with a
result in this direction. First, we need two lemmas.

LEMMA 2. Let T=@T,cG and suppose T: =+ (0) whenever
T,+#(0). Then T*ess.T.

Proof. If teT\T', then /I(t) # 0, II the projection onto <(a),
some Z(p*) summand of G. It is easy to construct 6§ € Hom, (a), T
with 671(t) = 0. Thus, T ess T.

Let & = & /t(&). Since t{(&)T* = (0) we can regard T" as an &
module.

LEMMA 3. Let _# be the & injective hull of T* and let D be
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the maximal divisible subgroup of I(T). Then, under the assumption
of Lemma 2, .7 = D.

Proof. By Lemma 2, ,T'ess T, so I.(T") = I(T).

Now 7 is an & essential extension of T!, so we can regard
S cI(TY) = I(T). Since _# is an injective module over a ring
with torsion free additive group, . £ D. But D is an & essential
extension of T*. Thus, . = D.

THEOREM 13. Let E = End T, E = E/t(E) and suppose R: & —
E is onto, where R is the restriction map. Then, if T is unbounded,

I(T)26. Q.

Proof. Let T,={PT,|T,+0}, T.={PT,|T:=(0). Clearly,
T, and T, are & submodules and I(T) = I(T,) @ I(T,). It suffices to
show I(T,)2@.Q, so, without loss of generality, assume T = T,.
Then Lemma 3 applies, so it is enough to construct ¢ independent
elements of infinite order in .# = D.

Choose {x;|7=1,2,3, ---} S T* with {o(x;) = p}} unbounded. For
each fixed ¢, choose distinet @7, <b,;> part of a p,-basic subgroup of
T such that 3, ;{b;;> is direct and such that o(b,;) = pi’. (Each T, is
reduced with T} = (0), thus has an unbounded basic.) Finally, choose
{x;;} ST with pix,; = ;.

Now define 0; € Hom, (@, <b;;», T,,) by 0.b,;) = z,;. Each 4, is a
small homomorphism (see [1], Lemma 46.3) so each 0, extends to an
endomorphism of T, and, thus, to an endomorphism of 7. Still call
this extension 0,.

LEMMA 4. 3, &0, is an & direct sum in E. Here d, = 6, + t(E)
and E is regarded as a left % module in the natural way.

The proof of Lemma 4 is not difficult and is left to the reader.

Let {N,|a e A} be a family of subsets of the natural numbers
with | A|=c such that if F'C A is finite and e, € F' then [No\Uze r,ara, Nal
is countable.

For all @€ A4, consider the diagram of E modules:

0— b ggz —FE
lza 22
v

Here \, is the & map defined by \.(0,) = X, (i)x;, Xy, the charac-
teristic function of N,, and A\, the & map obtained by injectivity.
Set z. = A1), 1 the identity of the ring E. Since R: ¥ — E
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is onto, choose G,€ & with R(G,) = ..

Then G,(2.) = M(d.1) = My(0,) = Xy (i)x,. This equation, together
with {o(z,)} unbounded, easily implies that {z,|« € A} is an independent
set of elements of infinite order. Thus, I(T)2@. Q.

COROLLARY. Let T be a torsion group with T' unbounded and
E=EndT. Then I(T) 26, Q.

Added imn proof. The proof of Theorem 13 can be modified, using
a procedure similar to that of Theorem 11, to construct @,.Q < I(T).
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