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T AS AN Sf SUBMODULE OF G

W. J. WlCKLESS

Let G be a mixed abelian group with torsion subgroup
T. T is viewed as an if submodule of G, where if—EndG.
It is shown that T is superfluous in G if and only if, v*,
either Tp is divisible or G/Tp is not p divisible. If G is not
reduced, T is essential in G if and only if T contains a Z(p").
Let KG) [I(T)] be the Sf injective hull of G [T]. Then I{G) =
I ( T ) 0 X with X torsion free divisible and T is a pure sub-
group of I(G). This can be used to obtain several results;
for example, if Q % I(T)9 TFAE: 1. Tess G, 2 I(G) ~ I(T) as
abelian groups, 3. Q % I(G). The condition Tess G is charac-
terized if T is a summand or if G is algebraically compact.
If T is bounded or if T is a p-group, T1 = (0) and G is re-
duced cotorsion, T is not essential. In fact, for bounded T
there is an & isomorphism KG) s I(Γ) 0 /(G/Γ). Some in-
formation is obtained on the p-basic subgroups of /(T) as a
function of those of T. A condition is given for I(T) =2 Θc Q.
These last theorems specialize to I(ET), where J51 = End T.

Preliminaries• In the last fifteen years several authors have
written papers concerning an abelian group G viewed as a module
over if, its ring of endomorphisms.

Let G be a mixed abelian group with maximal torsion subgroup
T. In this paper we consider T as an g7 submodule of G. We
determine when T is superfluous in G and then study the more dif-
ficult question of determining when T is essential in G. (If (0) φ
T Φ G, it is easy to prove that T is neither essential nor superfluous
as a Z submodule of G.)

The latter question leads to consideration of the injective hulls
I(T)f /(G)—taken with respect to gf.

Our notation, with minor exceptions, is that of [1].

1* T as a superfluous submodule of G. Henceforth, let G be
a mixed abelian group, T — t(G) its torsion subgroup and i? = End G.
To avoid stating the trivial cases of our results we always assume
(0) Φ T Φ G. We begin by characterizing those mixed G for which
ίfT is superfluous in &G ( Γ < G). In our context T < G if and only
if whenever K is a fully invariant subgroup of G with K + T = G,
then JR: = G.

LEMMA 1. Lβέ Γ = 0 Tv be a decomposition of T into its p
components. Then T < G if and only if Tp < G, Vp.
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Proof. The only if part of the implication is immediate since
submodules of superfluous submodules are superfluous.

Suppose Tp < G, Vp, and T < G. Then we must have T + K= G
for some fully invariant K Φ G. Clearly, K g Tp for some p. Let
K' = ϋ>Γ + Σ^pΓg Since iΓ is fully invariant with iΓ + Tp = G,
K' = G.

Let te Tp and suppose that t has order o(ί) = pι. Write t = x + y
with x e K, o(y) = w, (n, p) — 1. If a, be Z with αp^ + 6n = 1, then
£ = (αp* + bn)t = 6wί = 6nα? e iΓ. Thus, TPQK, a contradiction.

THEOREM 1. Γ < G if and only if, Vp, either Tv is divisible or
G/Tp is not p divisible.

We prove the contrapositive in both directions.

Proof. Suppose 3p with Tp not divisible and G/Tp p divisible.
Then Tp£pG and G = pG + 2V Thus, Γp < G and, by Lemma 1,
Γ < G .

Conversely, suppose T < G. Then 3p with T^ < G. Let if be
a proper fully invariant subgroup with K + Tp — G. We cannot
have Γp divisible, for then i £ 2 Horn (G, Γp)ίΓ = Tp. (If OJ G iΓ, o(x) = oo,
and teTp, the map ̂  -^ Zt extends to G.)

G/Tp is p divisible if and only if KQpG + Tp. Assume that
G/Tp is not p divisible. Then there is an x e K\pG + Γp. Therefore,
Vί 6 Tp, the p-height of x + ί in G, fc?(a? + ί), is zero.

Thus, for every positive integer ί, 5c = a? + pιG must have order
exactly pι in G/pιG. But then, Vί e Tp, we can construct an endo-
morphism of G mapping x->x->t. This implies K^TP, a contra-
diction. The theorem follows.

2* Γ as an essential submodule of G-basic results* We next
consider the more difficult problem of deciding when άT is essential
in ,G(TessG). We first dispose of the nonreduced case.

THEOREM 2. Let G be a nonreduced group. Then ΓessG if and
only if T contains a Z(p°°).

Proof. If T^Z(p°°) then, VxeG with o(x) = °o, Hαeg3 with
0 Φ a(x)eZ(p"). This, clearly, is enough to imply ΓessG.

Conversely, suppose T contains no Z(p°°). Then, since G is not
reduced, the maximum divisible subgroup D of G is nontrivial and
torsion free. Hence ΓΠ D = 0, so T is not essential in G.

From now on we assume G is reduced.
To investigate the question of when TessG, it is natural to
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consider the g* injective hulls. Let /(G) be the injective hull of the
module %?G. Since #T ̂  %G we can regard I{T), the injective hull
of ^Γ, as a maximal gf essential extension of T in I(G). If I(T) is
constructed in this way we have an g7 decomposition: I(G) = 7(T) 0
X Clearly, TessG if and only if X = (0).

THEOREM 3. Lei X 6β as above. Then X is torsion free divisi-
ble as an abelian group.

Proof. If t(X), the torsion subgroup of X, were nonzero, then
J ( T ) © ί ( J ) would be an g7 essential extension of T in I(G) properly
containing I(T)—a contradiction. Thus, X is torsion free. Since X
is an injective module, X must also be divisible.

COROLLARY. Tess G if and only if I(T) and I(G) are isomorphic
g7 modules.

Proof. Suppose θ: I(T) —> I(G) is an g7 isomorphism. Then
#(T) ess I(G). By Theorem 3, Θ(T) Π X = (0). Thus, X - (0) and
TessG.

The next theorem is central for our results.

THEOREM 4. T is a pure subgroup of I(G) (T <\ I(G)).

Proof. Let D{G) be the Z injective hull of G and let A be the
injective left g* module Hom^ (IT, D(G)). Regard G s A via G =
Hom^ (g3, G) and take /(G) to be a maximal g7 essential extension
of G in A. It suffices to show T <] A. Let J G Γ with po = 0. Suppose
hτ

p(ΰ) = m < co, but <5 = pm+ιa, aeA.

Write δ - pmδ', δ' e T. Then T = <δ;> © T' ([1], Corollary 27.2).
Let π 6 g7 be projection onto <δ'>. Then δ(ττ) = π{8) = δ = pw+1α<^) =
α(pm+1τr) = 0—a contradiction. Thus, we have proved: o e T[p] >
hτ

p(δ) = hi(δ). This shows Γ < ] i ([1], (h), p. 114).

COROLLARY 1. If T is a torsion group, E — End T, then T <1

This is proved by putting G — T in the above.

COROLLARY 2. Suppose TaG with T1 = G1, G/T divisible. Then
TessG. (iϊβrβ T1 [G1] ώβ^oίβs ίΛe jίrsί Ulm subgroup of T [G].)

Proof. Since Γ<J I(G), G/Γ divisible, we have G <| I(G). If
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G1 = T1 and X is as in Theorem 3, XΓiG = (0), so 1 = (0). Thus,
TessG.

COROLLARY 3. Let TczG with T1 = (0). Then I(T)1 = (0).

Proof. I(TY is an gf submodule of I(T). Since Γ1 = (0) and
T <\ I(T), I(T)1 n Γ = (0). Thus, /(Γ)1 = (0).

THEOREM 5. Let TaG withQ^I(T). Then TFAE: 1. TessG;
2. I(T) ̂  I(G) as abelίan groups; 3. Q §£!((?). Moreover, if 1—3

Γ1 = Gι.

Proof. The implications 1-^2, 2-* 3 are obvious. If Q
then the X of Theorem 3 is zero, so Γess G.

To prove the additional statement, note that I(T) is an algebrai-
cally compact group ([1], p. 178) which, by assumption, contains no
Q's. Thus, there can be no elements of infinite order in I(T)\ If
1—3 hold, the same is true for I(G)\ Thus, in this case, Gι = Γ ι.

COROLLARY. Let TaG with T1 = (0). Then conditions 1—3 are
equivalent. Moreover, if 1—3 hold, then Gx — (0).

Proof. If T1 = (0), then I(T)1 = (0), so Q£I(T).

Theorem 5 raises the questions: When are I(T) and/((?) isomorphic
as abelian groups? Is this sufficient for TessG? Here is a partial
result.

THEOREM 6. Let I be the g7 injective hull of the factor module
G/T. Write I(T) — J ϊ φ i Γ , where H is the maximal torsion free
divisible subgroup of I{T). Let r — rank H, r = rank 7. If r is
infinite and r ^ r, then I(G) = I(T).

Proof. Embed I(G) into / ( Γ ) φ 7 in the standard way (via a 0 β
where a and β are the extensions to I(G) of TaΙ(T) and G—>
G/Tczΐ respectively). Then, as g7 modules, I(G)® Y = I(T) © J .
Since /((?) = I(Γ) © X, we have:

The additive group of I is torsion free divisible, since I is the
injective hull of a module whose additive group is torsion free. Thus,
the number of Q's on the right-hand side of (*) is r + r = r, so
rank X ^ r. But then, I(G) - I(T) 0 X έ j(Γ).
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EXAMPLE. For each prime p, let Γp be the group generated by

{di I i — 0, 1, 2, 3, •} with relations {pα0 = 0, pnan = a0, n — 1, 2, 3,

•••}. Let T ^ θ p T p and let G = Q φ Γ . Then f = 1 and (as we

will see in Theorem 13) r ^ c. Thus, /(G) έ /(Γ). Since T is reduced,

T is not essential in G.

3* T as an essential submodule of G—some special cases* In
this section we consider the essentiality of T in G in some special
cases. First we consider the situation for bounded T. The following
theorem shows if T is bounded, then T is never essential in G.

THEOREM 7. Let Γ c G with nT = (0) and let T = I(G/T). Then:
1. n/(T) = (0);
2. I{G) is g7 isomorphic to I (T)φJ .

Proof. Let D(G), D(T), D(GjT) be the Z injective hulls of G,
Γ, G/Γ and let A, J5, C be the injective left g* modules Homz (gf, D(M))
where M = 'G, T,G/T, respectively. As in Theorem 4, regard TQ
G £ I(G) £ A. Suppressing the obvious isomorphism, write A — B φ
C—an g7 direct sum. Under these identifications T = B f)G.

To prove (1), recall T <] A, so in this case, Tf)nA = nT= (0).
Thus, if xeI(T) with nx Φ 0, then, for some λeg 7 , 0 ^ λ O # ) e
Γ Π nA—a contradiction.

To prove (2), first note that B Π /(G) is an essential extension of
T=Bf]G. Choose /(Γ)CI(G) as before—with the additional re-
quirement I(Γ) 2 JS Π I(G).

Let ace J(Γ), say x — b + c, feel?, ceC. Since C is torsion free
and nx = 0, we must have c = 0. Thus, I(T)QB. It follows that

Let πeΐlom^(A9 C) be projection onto C and let τr' = π| J ( ( ?).
Clearly, Kerπ' = B n /(G) = I(Γ), so write J(G) = I(T) 0 Γ with TΓ'
a monomorphism on Y.

To finish the proof of (2), we claim τt\Y) is an g7 injective hull
of G/Γ. To see this, first note that if G/T is embedded in C via
e:g + Γ->evaluation at # + T, we have e(G/Γ) = π'(G)Qπ'(Y), so
τr'(F) is an injective containing e(G/T) = G/Γ. Furthermore, if 0 ^
π'(?/) 6 7r'(Γ), then 3λ 6 g7 with 0 ̂  λ(y) e G Π Y. Thus, 0 ^ τr'λ(y) =
Xπ'(y) e 7r'(G) = β(G/T). This proves that e(G/Γ) ess π'(Y). The theorem
follows.

EXAMPLE. Let T = ®pePZ{p), where P is an infinite set of
primes, and let G = ̂ φ Γ . Then ΓessG, so I{G) = I(T) and, in
view of Theorem 4,1(T)1 = (0). Moreover, it is easy to see that Ί~ZQ.
Thus, if Γ is an unbounded group direct summand of G, we need
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not have the decomposition of I(G) given in (2).

The following gives one characterization of T ess G in the splitting
case.

THEOREM 8. Let T = ®Tpa G. Let kp = l.u.b.{Z | G has a Z(pι)
summand} and let H = {xeG\ o(x) = w, hr;(x) ̂  kpVp}. Then:

(1) If H=(0), TessG;
(2 ) If G= T®F and Γess G, ί&ew ί ί = (0).

Proo/. (1) is clear. To prove (2) suppose G = Γ 0 i ^ and 0 ^
xeH. Then, for some positive integer w, 0 Φ nx e JEf Π F. Clearly,
nx cannot be mapped by an endomorphism of G onto any nonzero
element of a bounded Tp.

If Tp is unbounded, then G has an unbounded p-basic subgroup,
so kp = oo. Thus, hG

p(nx) = A?(wa?) = • oo. If λ e g7 with 0 ̂  λ(wa?) e Tp,
then λ restricts to a nonzero map of the subgroup {m/pk(nx) \m, ke
Z}g:F into Tp. This is impossible since Tp is reduced. Thus, nx
cannot be mapped by an endomorphism of G onto a nonzero element
of any Tp. The result follows.

It is easy to describe when ΓessG for algebraically compact G.

THEOREM 9. Let T = ®TpczG with G (reduced) algebraically
compact. Write G as a product of p-adic modules, G = ΠGP. Then
TessG if and only if, Vp, either Tp — Gp or Tp is unbounded.

Proof. It is immediate that ΓessG if and only if, Vp, TpessGp.
If 3p with Tp Φ Gp and Tp bounded, then Tp is not essential in Gp.

Conversely, by considering projections onto summands of a p-adic
basis for Gp, it is easy to see that Tp unbounded implies Tp ess Gp.

We close this section with:

THEOREM 10. Let T c G with G (reduced) cotorsion, T a p-group,
T1 — (0). Then T is not essential in G.

Proof. If T is bounded, T is not essential. If T is an unbounded
p-group, (0) Φ Pext(Q/Z, T) = [Ext (Q/Z, T)]\ Since G is reduced
cotorsion, G ~ Ext (Q/Z, G) ~ Ext (Q/Z, T) 0 Ext (Q/Z, G/T) ([1] H,
p. 234 and Lemma 55.2). Thus G1 Φ (0), T1 - (0) and T cannot be
essential in G.

4* The structure of I(T). In this section we prove three
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theorems concerning the structure of I(T). With trivial modification,
each of these theorems can be rewritten to give the same result for
the injeetive hull of a torsion group over its own endomorphism
ring.

Since I(T) is algebraically compact, it is natural to try to find
out what its p-basic subgroups look like as a function of the p-basic
subgroups of T. In the case T1 = (0), this information would charac-
terize I(T) as an abelian group. The next result shows that I(T) is
generally large with respect to T.

THEOREM 11. Let B [Bf] be a p-basie subgroup of T [I(T)]. Let
f = final rank B. If Z(pk) occurs in B, then Br contains ®re^<£r>
with I j ^ I = 22/, o{zr) ^ p\ VT.

Proof, Suppose B contains a Z(pk). Write G = (b) 0 Γ, o(δ) = p\
and let φ α e i ( δ α ) g β with \A\=f, o(ba) ̂  pkVa.

Choose {Aβ I β e J^} a collection of subsets of A such that:
I <S*f I = 2f, if F is any finite subset of J ^ and β0 e F then
[Aβo\\Jβ*βo,βeFAβ] Φ 0 . (See [1[, Lemma 46.2.)

For / 9 e j / define dβ e Hom(© (ba), <6» by dβ(ba) = Xβ(a)b-Xβ the
characteristic function of Aβ. Extend each δβ to g7.

It is clear that the left ideals &δβ form a direct sum s in g7.

Let {Cr 17 6 j ^ } be a family of subsets of ,sx? with the above
independence property, | ,s>/\ = 22/. Consider:

Here λr is the g" map defined by λr(δ^) = XGγ(β)b, XCj the charac-
teristic function of the subset Cr, and λ̂  is the map obtained by in-
jectively.

Let zr = λj(l). We have ĉ Or) = XG.(β)b. It is easy to see from
this equation that {zx \ X e ._£/} is a p independent set of elements of
order ^ pk. This can be included as a summand of B\ The result
follows.

Continuing with the same notation we have:

THEOREM 12. If B' contains a Z(pk) so does B.

Proof. If B' contains Z(pk) then I{T) has a Z(pk) summand.
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Therefore, so does Horn (gf, D(T)). (I(T) can be regarded as a direct
summand of Hom(gf, D(T)). Therefore, so does Hom(g', D(T)P).

The pure exact sequence 0 -> ί(ίf) -> g7 -> &jt[&) -> 0 yields 0 ->
[g7*(gf)]* -> g7* -» £(gT -> 0, where If* - Homz (Λf, D(Γ)P). This
sequence is pure exact, so splits, since all its terms are algebraically
compact. (In this proof "splits" means splits as an exact sequence
of abelian groups.) Since [l?/ί(ί?)]* is torsion free, ί ( ^ ) * must have
a Z(pk) summand.

Now t{&)* = [t(&)P]*. Let Bo be a basic subgroup for £(g%.
Repeat the above procedure with 0 -> 2?0-» ί(i?)p -> t(z?)p/B0-+ 0 to
conclude that 7?0* must have a î (2>fc) summand.

Since BQ is a direct sum of cyclics, Bo itself must have a ίί(p*)
summand. Thus, g7 and, therefore, Horn (G, Γp) have J£(pfc) summands.

Let B be a p-basic subgroup for G. The p-pure exact sequence
0 _> B -> G -> G/S -• 0 yields the ί9-pure exact sequence 0 -> (G/.B)57 ->
GJ -> (5)J where MJ = Romz (Λf, Γp). Since (G/5)4 = TF0 0 r Qr> where
W is the p-adic completion of a direct sum of copies of the p-adic
integers, this sequence also splits. It's not hard to show that {B)Δ

must have a Z(pk) summand.
Say B = 2?! ® S2, where JBX = © α Z(p*«) is a direct sum of finite

ί>-power cyclics and B2 = 0^ Zβ is free. Then BΔ = (By φ (JB2)
J, SO

one of these groups must contain a Z(pk) summand.
If (By = IL TP[pι«] has a ^(pfc) summand, then Bγ itself must,

so T does.
If (J?2)

J = Π = Π/ϊίΓp^ has a Z(pfc) summand, again Tdoes. (If
Π = <y> Θ r, o(y) - pfc, then hξiv^y) = ft - l. if i/ - fed, v, e (Γ,),,
then, for some /90, hp

T*)h(ph~ly^ = fc — 1 and, therefore, o{pk~ιyβ) = p.
Thus, 2/̂  is contained in a ^(pfe) summand of (Tp)βQ.)

Thus, in either of the above cases, B contains a Z(pk).
In view of Theorem 5, it is of interest to discover when QQI(T).

(Obviously, we must have T1 Φ (0).) We are unable to decide if
T1 Φ (0) is also sufficient for QξZl(T). We close the paper with a
result in this direction. First, we need two lemmas.

LEMMA 2. Let T = φ Γp c G and suppose Tl Φ (0) whenever
Tp Φ (0). Then VT

Xess VT.

Proof. If teT\T\ then Π(t) Φ 0, 77 the projection onto <α>,
some Z(pk) summand of G. It is easy to construct #eHom^«α>, Tp)
with 077(ί) Φ 0. Thus, ^Γ'ess^Γ.

Let ^ = &/t(&). Since ^g 7 )! 7 1 - (0) we can regard Γ1 as an gf
module.

LEMMA 3. Lβί ^ δe ίfee ^ ίnjective hull of T1 and let D be



T AS AN if SUBMODULE OF G 563

the maximal divisible subgroup of I(T). Then, under the assumption
of Lemma 2, ^ ~ D.

Proof. By Lemma 2, ^ e s s ^ Γ , so I*{Tι) = I(T).
Now ^y7 is an g* essential extension of T\ so we can regard

J? dl^T1) = /(Γ). Since ^ is an injective module over a ring
with torsion free additive group, ,J^ £ D. But J9 is an ΪP essential
extension of T\ Thus, J? = D.

THEOREM 13. Let E = End T, E = jgyί(^) αwd suppose R: if ->
i? is (m£o, where R is the restriction map. Then, if T1 is unbounded,

Proo/. Let Γx - {0 Γp | Γί ^ 0}, Γ2 = {0 Γp | Γί - (0)}. Clearly,
2\ and Γ2 are g7 submodules and /(Γ) = I(Tλ) 0/(Γ 2 ). It suffices to
show I(jFi)2φβQ, so, without loss of generality, assume T = Tx.
Then Lemma 3 applies, so it is enough to construct c independent
elements of infinite order in J? = D.

Choose fa I i = 1, 2, 3, •} £ Γ1 with {ofe) = p{*} unbounded. For
each fixed i, choose distinct φ°°=1 (biά) part of a pΓbasie subgroup of
T such that Σi,i<&ϋ> is direct and such that 0(6^) ^ pf. (Each Tp is
reduced with T\ Φ (0), thus has an unbounded basic.) Finally, choose
{Xij}QT w i t h piXij = α?<.

Now define δ, e Horn, ( 0 , <&„•>, Tp.) by δ.φ^) = χtj. Each ^ is a
small homomorphism (see [1], Lemma 46.3) so each ^ extends to an
endomorphism of TPi and, thus, to an endomorphism of T. Still call
this extension δim

LEMMA 4. Σ< ̂ ^ ^ s α ^ ^ direct sum in E. Here Et — δt +

J5 is regarded as a left if module in the natural way.

The proof of Lemma 4 is not difficult and is left to the reader.
Let {Na \aeA} be a family of subsets of the natural numbers

with I A| — c such that if FQ A is finite and a0 e Fthen [Nao\\JaeFyaΦaoNa]
is countable.

For all aeA, consider the diagram of E modules:

0 >@<&δt >E

Here Xa is the if map defined by λα(^) = XNJί)χif XNa the charac-

teristic function of Na, and X'a the g7 map obtained by injectivity.

Set za = KΦ, ϊ the identity of the ring E. Since R: & -^ E
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is onto, choose at e g" with R(σt) = δt.

Then σt(za) = λ j ^ ϊ ) = X'a(δt) — XNa{i)xi. This equation, together
with {o(Xi)} unbounded, easily implies that {za\ae A} is an independent
set of elements of infinite order. Thus, / ( Γ ) 2 φ β Q .

COROLLARY. Let T be a torsion group with Tι unbounded and
E = End T. Then IE(T) 2 Θc Q.

Added in proof. The proof of Theorem 13 can be modified, using
a procedure similar to that of Theorem 11, to construct φ2βQC/(Γ).
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