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PEIRCE IDEALS IN JORDAN TRIPLE SYSTEMS

KEVIN McCRIMMON

We show that an ideal in a Peirce space J;(t =1,1/2,0)
of a Jordan triple system J is the Peirce i-component of a
global ideal precisely when it is invariant under the multi-
plications L(J, /s, J}/2), P(J1,2)P(J1/2) (for i=1); under L(J,,s, Jy/s),
P(J1/2)P(Jys5), P(J15) P(€)P(J.s2), L(Jyss, €) P(J,J12) (for &= 0);
under L(J,), L(J,), L(Jys, €) Lle, J15), L(Jy/s, €) Ple, Jy2) (for
©+=1/2). We use this to show that the sub triple systems
J; and J, are simple when J is. The method of proof closely
follows that for Jordan algebras, but requires a detailed
development of Peirce relations in Jordan triple systems.

Throughout we consider Jordan triple systems (henceforth abbre-
viated JTS) with basic product P(x)y linear in y and quadratic in
x, with derived trilinear product {xyz} = P(x, 2)y = L(x, ¥)z, over an
arbitrary ring @ of scalars. Because we are already overburdened
with subscripts and indices, we prefer not to treat the general case
of Jordan pairs directly, but rather derive it via hermitian JTS.
For basic facts about JTS and Jordan pairs we refer to [1], [3], [6].
Our analysis of Peirce ideals will closely follow that for Jordan
algebras; although the basic lines of our treatment are the same as
in [4], the triple system case requires such horrible computations
that we do not carry out so fine an analysis, but concentrate just
on the main simplicity theorem.

1. Peirce relations in Jordan triple systems. Any Jordan triple
system satisfies the general identities

(JT1) L(x, y)P(x) = P(x)L(y, x)
(JT2) L(z, P(y)x) = L(Px)y, y)
(JT3) P(P(x)y) = P(x)P(y)P(x)

and the linearization

(JT3) P({zyz}) + P(P(x)y, P(2)y) = Px)P(y)P(z) + P(z)P(y)P(x)
+ P(z, 2)P(y)P(x, z) .

A more useful version of this is the identity

(JT4) P({xyz}) = P(x)P(y)P(z) + P(2)P(y)P(x) + L(z, y)P(z)L(y, x)
— P(P(x)P(y)z, 2) .

Other basic identities we require are
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(JT5) L(x, y)P(z) + P(2)L(y, x) = P(L(x, ¥)z, 2)

(JT6) P(x)P(y, 2) = L(z, y)L(x, 2) — L(P(x)y, 2)

(JT7) P(y, 2)P(x) = L(z, ) L(y, ®) — L(z, P(x)y)

(JT8) 2P(x)P(y) = L(x, y)* — L(P(x)y, ¥)

(JT9) [L(=, y), L(z, w)] = L(L(x, y)z, w) — L(z, L(y, ®)w) .

(See for example JP1-3, 20, 21, 12-13, 9 in [1, pp. 13, 14, 19, 20].)

PEIRCE DECOMPOSITIONS. Now let ¢ be a tripotent, P(e)e = e.
Then J decomposes into a direct sum of Peirce spaces

J = J1®J1/2@Jo
relative to e, where the Peirce projections are

E, = P(e)P(e) , E,, = L(e, e) — 2P(e)P(e) ,

(L. E, = B(e,¢) = I — L(e, ¢) + P(e)Ple) .

We have
(1.2) L(e,e) = 2iI on J,, Ple)=0 on J,+J,.

Note that P(e) is not the identity on J,, though J, = P(e)J: it induces
a map of period 2 which is an involution of the triple structure and
is denoted by x — z*(zx € J,).. For reasons of symmetry we introduce
a trivial involution # — « on J,, so * is defined on J, + J,:

1.3) xf = Ple)x,, xf =, .

Note that if J is a Jordan algebra and e is actually an idempotent,
then zf = x, too.

The Peirce relations describe how the Peirce spaces multiply.
Let ¢ be either 1 or 0, and j = 1 — 1 its complement. Then just as
in Jordan algebras we have

(PD1) PUJ)J,cd,, PJ)J; = PJ)],,=0
(PD2) P(J,)dys Ty s, P(dy)d; CJ;
1.4) (@PD3) {JJWJpt Ty, {Jipdiedi} T
PD4) {JJd;} Ty,
(PD5) {JJ;J} =0.
(For all this see [6] and [1, p. 44].) These show that the Peirce

spaces are invariant under the multiplications mentioned in the
introduction.

PEIRCE IDENTITIES. For a finer description of multiplication
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between Peirce spaces it is useful to reduce Jordan triple products
to bilinear products whenever possible. We introduce a dot operation
x2-y (corresponding to zoy in Jordan algebras) for elements a, in
Peirce spaces J,, and a component product E,(2,., ¥.,) (corresponding
to the J;-component of z,,°¥,,) as follows:

Bl) z,Y. = Y, = @Y1} L) = L(xy, e): Sy —— J1ss
(B2) - Yi = Yuo* %o = {@Yrue} L)) = P, €)1 Jypy— 1
(B3) xi = P(x)e, x,-y, = {wey,} L(x) = L(x, e): J,— J,
(B4)  E\(@y Yir) = {106} i XSy — J,
(B5)  Ey(®ysy Yire) = (XureYsre}, Bo(2,1) = Plap)es J iy X,y — J,
(B6) L,(x,,) = Lz, e), Ly(x,,) = L(e, x,,) so that

L(®y)a; = @@y, L(@)a; = 0, Li(®,)Y.s = Ei(Yys, 1) -

(1.5)

It turns out that the only Jordan products z* or xoy which are not
expressible in triple terms are

x5, XooYo, Hy(y),) -

The need to avoid these products causes many complications when
passing from Jordan algebra results to triple system results.

For example, let ¢ be an ordinary symmetric idempotent in an
associative algebra A with involution, made into a triple system
J = JT(A, *) via P(x)y = xy*x. Then the Peirce spaces are the usual
ones,J, = Ay, Ji = A + Ay, Jy = Ayp. The bilinear products we have
introduced take the form

Ty Y = Tl T Y1l

To*Yup = ToYile + Yl
B\ %y Y1) = B\ + Yo%)
By @y Y12) = E(@1Y1 + Y1) -

This suggests that because of the * the products «,-v,, and E\(x,,, ¥.,)
are going to behave anomalously.

1.6. PROPOSITION. The triple products of Peirce elements are
expressed in terms of bilimear products by

(PL)  P@)Y.s = Tue Ei(Zis0s Yir) — Yurow Eio(212)

(P2)  {@nYiRie} = oo B (Bumy Y1) + 2o Ei(@isny Yure)
= Yo Bo(®112y 2112)

(P3) {210,100} = Ei(@iny @ Y112) = E;(Yy0y O - T100)

P4 {zy100.} = Ei(®y, @ -Y)

(P5)  {a.bizs} = a;+(bF+2,,,)
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(P6) {a:b;} = a;*(2y300)) = (@F21)b;
(P7) € 2y = Ry
(PS) Ei(xl/Z) Yin)* = Ei(Yysn x1/2)

and we can write
P9 L(xp, a,) = Li(xl/z'a;ik)’ L(a;, ©,) = Ly’(a;k'xuz) .

The triple product of elements =2, + X, + T, ¥ = Y1 + Y + Yo
may be written as

P(x)y = P(®)y, + P(®)Yo + P@,)¥1e + P@yo)( ¥ + Yo) + {4,910}
+ @ Y200} + {2} + {2 Y100} + {FY120s)
(L.7) = P(x)y, + P@)yo + (%12 E@10s Y1) — Yuso* Eo12)}
+ P(@y)(U, + Yo) + Ty (Xor Yu) + T (U T00) + Tor (Yoo Tse)
+ B2, ®F Y1) + Eo(®s5 X0 Yiss) -

Proof. Most of these product rules can be established either by
using JT5 to move L(x, y) inside a triple product P(z)w, or by using
the linearization of JT2 to interchange x and z in a produect {x(P(y)2z)w}.
Thus (P1) is P(x)y = P(x){yee} (by 1.2)) = {{eya}ex} — {ey(P(x)e)} (by
JT5) = E(x, y)-© — y- Ey(x), and (P2) is its linearization. (P7) follows
from PD2, {eez,,} = 2., and (P8) is vacuous for i = 0 by triviality
of * and symmetry of E,, while for 1 =1 P(e){xye} = Ple)L(e, y)x =
— L(y, e)P(e)x + P({yee}, e)x = —0 + {yxe} by JT5. For (P3)-(P6) we
will need (P9),

L(x,, a,) = L(x,,-af, e) L(a,, Xyy) = L(e, as - 2,)
L(xuz; a,) = L(e, x1/2'a0) L(am Ty) = L(ao'xl/m e) .

To establish this for a, we note L(x,, a,) = L, Ple)a)) =
— L(aj,P(e)x,,) + L({z,eaf}, e) (linearized JT2)=L(x,,-af, ¢) and dually
for L(a,, %,,,); for a, we have L(.,, a,)=L({x,ee}, a,) = — L({x,,,a.e}, €) +
L(x,,, {eea,}) + L(e, {ex,,a,}) = —0 + 0 + L(e, x,,-a,) and dually for
L(a,, x.,,). By B6 we can write these in the uniform manner (P9).
Applying these to x,, yields (P3) and (P4) respectively, and applying
them to a,, b; respectively yields (P5) and (P6). O

Even in a Jordan algebra the products P(x,)y; and P(x,,)y; cannot
be reduced to bilinear products if there is no scalar 1/2¢ @ (though
2P(x,,)Y:, and more generally P(x,,, ¥.,)a;, can be reduced by (P3)).

It will be convenient to introduce the abbreviation

P*(x,,) = *oP(x,,)0* (i.e., P*(wyn)a, = P(x,p)a’ ,

1.8
48 PH(@)a, = (P@,)a0)", s0 P(P*(@5)a:) = P* (@) P(a)P*(.5)) -
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We now list the basic Peirce identities. Many of these have
appeared in [6], or in [1], [2] disguised as alternative triple identities.

1.9. PEIRCE IDENTITIES. The following identities hold for ele-
ments a, b,c,eJ (1 =1,0,5=1—1) and x, ¥, 2€ J,;:

(PI1) we have a Peirce specialization a, — L(a,) of J, in End (J,,,):

(1) Pla)bi-z = a;-(bf(a;r2)) L(P(a)b?) = L(a,)L(b,)L(a,)
(ii) e-z=z2 L) = Id
(iii) a2z = a,-(a,*?) L(a?) = L(a,)?
@iv) (a,+b):z = a,*(b;*2) + b, (a,?)
L{a,-b,) = L(a,)L(,) + L(,)L(a,)
(PI2) P(a,)E(z, y)* = Ela;-x, af-y)
(PI8) L(a, b)E(x, y) = Ei(a;-(b-2), y) + E(z, af-(b;-y))
(P14) a,-E\(z, y) = E(a,-x, y) + E(, af-y)
(PI5) P()E(,y) = E;z, E(y, 2)-x) — E;,(P(2)z, ¥)
(PI6) P(E(x, y)a; = P@)P*(y)a; + P*(y)P@)a; + Ex, P(y)(a-x))
(PI7) {P@)a}-y + P(@)(a; y) = B, y)-(af )
(PI8) {P*(x)a;}-y + a,- P(x)y = Ea;x, ¥)-x
(PI9) P(x){a,xb} = P(x)a,-(b,-x) = P(x)b,-(af-x)
(PI10) P(a;-x)b; = P(a,)P*(x)b;, P(a;-x)b;, = P*(x)P(a,)b,
(PI11) P(a,)P(x)b; = P*(a}-x)b;, P(x)P(a,)b, = P*(af-x)b,
(PI12) L(a, b,)P(x)c; = Pla;- (b} -x), x)c; = Ela;-(bf-x), ¢} -x)
(PI13) L(a,, b,)P*(x)c; = P*(af-(b; ), x)c; = E(c;-x, a;-(bF -x))
(PI14) P(x){ab,c;} = P(x, b;-(af-x))c;, = Ej;(x, ¢¥- (b, (aF-x)))
(PI15) Ey(a,-x) = Pla)E(x), Eya,-x) = P*(x)a}
(PI16) Pla;-x)y = a;- Px)(al-y)
(PI17) P(a,-z, )y = a,- P(®)y + P(x)(af-y) .

Proof. The Peirce specialization relation PI1(i) follows from JT5,
using B6: P(a,)b;-z = L;(2)P(a;)b; = {— P(a,)L;(2) + P(L;(2)a;, a)}b, =
—0 + {(z-a,)b,a,}(by PD1) = a,-(b}-(a,-2)) by P5. We have already
noted e-z,, = 2,,, whence (ii). Setting b, = ¢ in (i) yields (iii), and
linearization yields (iv).

The identities involving the E, follow from JT5 and JT4. For
PI2 and PI5 we have B6 Puw)E,(x, y) = Pu)L;(y)x = —L,(y)P(u)x +
{(L,(y)w)xu} (by JT5); when u =aqa, we get —0 + {(a; - y)xa;} =
E(a;-y, af-x)(by P4) as in PI2, and when u = z we get — E;(P(®)x, ¥) +
Ei(z, x-E;(z, y)*) (by P4) = E;(z, Ei(y, 2)-x) — E;(P(2)z, y) (by P8) as in
PI5. For PI3, L(a, b,)E(x, y) = L(a,; b,) Li(y)x = L;(y)L(a,, b,)x —
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[Li(y), L(a;, b)lx = E,(L(a;, bz, y) — L(Li(y)a,, b))z + L(a;, L(y)b)x (by
JT9) = Ei(a,- (b7 - ), ¥)—0+{a.b; - y)a} = E(a;- (b -x), ¥) + Ex, af-(b;-v))
(by P4). PI4 is the special case b, = e of PI3. For PI6 we use JT3
for ¢ = 1: P({xyeh)a, = {P(x)P(y)Ple) + P(e) P(y)P(x) — P(P(x)y, P(e)y) +
P(e, ) P(y) Ple, »)la, = P(x)P(y)a: + (P(y)P(w)a,)* — 0+ E\(x, P(y)(a:-x)),
while for ¢ =0 we use JT4: P({xey})a, = {P(x)P(e)P(y)+ P(y)P(e) P(x)+
L(x, e)P(y)L(e, x) — P(P(x)P(e)y, y)}a, = P@)(P(y)a,)* + Py)(P(x)a,)* +
Ey(w, P(y)(a,-x)) — 0.

The identities involving P(x)a; are established in the same ways.
For (PI7), P(@)a:.-y + P(x)(a;-y) = {L;(y) P(x) + P)L;(y)}a; =
P(L;(y)x, x)a;, = P(E(z, y), ®)a; (by JT5) = Ei(x, y)-(af-») (by P5). For
(PI8) we use linearized JT1: for 7 = 1, {(P(x)ai)ye} + {(P(@)y)afe} =
{x{axyle}, for i = 0 {(yP(x)ay)e} + {a,(P(x)y)e} = {{axy}re}, and we use
P8. For (P19), P(x){a.xa;} = Plx)L(a;, x)a; = L(x, a,)P(x)a; (by JT1) =
{xa, P(x)a;} = P(x)a; (af-x). For (PI10) with ¢ =1 we have by JT4
that P({a.ex})b, = {P(a,)P(e)P(x) + P(x)P(e)P(a,) — P(P(a,)Ple)x, x) +
L(a,, e)P(x)L(e, a,)}b, = {P(a,)P(e)P(x) + P(x)P(e)P(a)}b,. If k = 0 this
becomes P(a,)P(e) P(x)b, = P(a,)(P(x)b))* = P(a,)P*(x)b,, while for k=1
becomes P(x) P(e)P(a,)b, = P(x)(P(a,)b)* = P*(x)P(a)b, by (1.8).
Similarly if ¢ = 0 we have P({a,xe})b, = {P(a,)P(x)P(e) + P(e)P(x)P(a,) —
P(P(a,)P(x)e, e)+ L(ao,x)P(e) L(x,a)}b, = {P(a,) P(x) P(e) + P(e) P(x) P(a,)}bs,
reducing if & =0 to P(e)P(x)P(a)b, = P*(x)P(a,b, and if t =1 to
P(a,)P(x)P(e)b, = P(a,)P*(x)b,. Since * is an involution on J;, J;,
(PI11) follows by applying * to (PI10) (with a,, b, replaced by af, bi).
Similarly (PI13) follows by applying * to (PI12) (with a;, b, replaced by
a}, b}), where (PI12) follows from JT5: L(a,, b,) P(x)c; ={— P(x)L(b;, a,)+
P({a.bx}, x)}e; = Pla,- (b -x), x)c; (by P5) = Eia,-(b}-x), cf-x) (by P3).
For (PI14), P(x){abc;} = —L(b,, a,)P(x)e, + P({b,a;x}, x)c; (by JTH) =
—0 + {(b;-(af-x)cx} = Ei(x, cf-(b;-(af-x) (by P3). (PIL5) is just the
particular case b = e of (PI10). For (PI16) with ¢ = 0, P(a,-x)y =
E(ayx-y)-(ao-2) — Ey(a,x) y = ao- {E (a2, ¥)* &} — Pa)E,(x)-y (by
PI15)=a,-{E\(y, a, ) 2} —a,- {Ey() - (a,-9)} (by PIli)=a,-{E\(2, a,-y)-x—
E(x)-(a,-y)} (by symmetry of P3) = a, {P&)a,-¥)}. For =1,
Pa,-x)y = E(a, -, ¥) (a,-x) — Ey(a, )y = {—a, (B (a2 y9)2)} +
{E\(ai-x, y)+ E(a,-x, af-y)}-x — P*(x)ai-y (by (PIliv), (PI4), (PI15)) =
—a, - (E(a,-x, ¥) 2) + Pla) B, (z, ¥)*-© + E(ai-x, ) «+{ai- Plx)y —
E (ai-x, y)-a} (by (P12), (PI8)) = a,-{—E\(a, z, ¥)-2 + E\(x, ¥)(a, %) +
a,-[E(x, y)-x — Eyx)-y]} (by PILi, iii) = a,-{E\(z, aF-y) — Ey(x)-(a-¥)}
(by (P14), (P6)) = a,-P(x)(a}-y). (PILT) is just the linearization a, —
a,, e of PI16, or it follows from JT5. ]

Observe that the proof of PI16 depended only on PIi, 2, 4, 8, 15.
Note also that there is no analogue of PIliv for J,, so we cannot
commute an L(a,) past an L(b,) at the expense of an L(a,-b,), which
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means that if K, is an ideal in J, we do not have L(J)L(K,)C
L(K,)N(J,) as we do for an ideal K, in J,. Similarly there is no
analogue of PI4 or PI17 for 7 = 0.

THE BRACKET PRODUCT ON J,,. Even more basic than the in-
herited triple product P(x)y on .J,, are the bracket products

(1.10) Qryzy, = E(x, ¥)-2, (x; 2), = Ey®)-2 .

This gives two trilinear compositions on J,,,, the one for ¢ = 0 being
symmetric in the first two variables
(@yzp, = (Y, .
Formulas P1, P2 show
Px)yy = {xyx), — {x;
(L.11) @)y = {xyx), — {2 Y,
{zyz} = (wyz), + (rya), — {x2y), -

In the special case of a maximal idempotent where J, =0 we see
P(x)y = {xyx),, so the bracket product coincides with the triple
product; Loos [1, 2] has abstractly characterized such products ¢, ,>
on such J,, as alternative triple systems. We will show that in
general even if J, # 0 the product {xyz), still behaves somewhat like
an alternative triple product.

The interaction of the bracket with multiplications from the
diagonal Peirce spaces is given by

L(a;, b)<{xyz);, = {L(a; bz, ¥, 2); + {x, L(af, b))y, 2),
- <wy Y, L(b;k’ a;k)>z

(1.13) a,-{xyzy, = {a,-x, Y, 2y, + {x, af-y, 2), — {x, Y, a,-2),
(1.14) L(a,, b){xyz); = {x, y, L(af, b})z);

(1.15) L(a){wyz); = <y, », L(ai)z);

1.16) o (wyw), — (o, ¥, 2, = Ey@)-(a-y) — P@)as -y .

(1.12)

Unfortunately (1.13) with 1 replaced by 0 is false (even in triple
systems JT(A4, *) derived from associative algebras), and there does
not seem to be any analogous identity for the interaction of ¢,, ),
with J,.

To verify these identities, note for (1.12) L(a;, b,)E,(x, ¥)-z =
a;- (bF - (Eizw, ¥)-2)) (by P5) = {a:bE(x, y)}-z — Ei(w, y)- (b - (a;-2)) (by
linearized PIli) = {E(a;- (b -2), ¥) + Ei(, af-(b; )} -z — E(x, y)-{bfafz}
(by PI8, P5) = {L(a,, b)x, ¥, 2); + <=, L(af, b))y, 2), — <=, y, L(b#, af)z),
(by P5). We obtain (1.13) by setting b, = ¢ in (1.12). For (1.14),
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L(a,, b)Ej(x, y) 2= L(a;,) L) L(E(x, ¥))z = L(E(x, y))L(a;)L(b,)z (using
P6 twice) = <z, y, L{a}, b})z); (using P8). When ¢ =1 (1.15) follows
from (1.14) by setting b, = e; in general we argue as before
L(a;) L(E;(x, y))z = L(E;(x, ¥)*)L(af)z = {y, «, af-2zy;. For (1.16),
a,-{zyx) = a,- {P@)y + E(x)-y} (by (1.10), P1) = {—P*(x)a, -y +
E(a, 2, y)-a} + E(x)-(a-y) (by PI8, P6) = Ey(x)-(a-y) — P@)ai-y +

{a,®, Yy, x),.
Next we have some intrinsic bracket relations for the more
important bracket (x, ¥, 2) = <z, ¥, 2),:

1.17) (uvlxyz) + {xyluvz) = {uvxdyz) + {xl{vuy)z)

(uviryx) — (uvayyr) = (x{vuy)r) — {wyl{uvr)
(1.18) = K@) - {vuy) — E(E(x) v, w)-y
+ By, [E(x, v)-w — Ex, w)-v])-y

1.19)  (wyxyyw) — (xyzyw) = {Ple)P(y)P(x) — P(x)P(y)le-w
(1.20) <{a(yzy)w) — {wylayw) = {Px)P(y) — Ple)P(y)P(x)}le- w
1.21) (xyarvw) — {avay)w) = {P(e)P(y, v)P(x) — P(x)P(y, v)le-w
1.22) (wyzyyw) — {xyzy)w) = {P(e)P(y)P(x, z) — Pz, 2)P(y)le-w
(1.23) (uvedyw) + {(elvuy)w) = {eyu)vw) + {ulyzvdiw) .

Here (1.17) is just (1.13) for a, = E,(u, v), af = E,(v, w), while (1.23)
is a consequence of the symmetry in uwv, xy on the left side of (1.17).
Setting a,= E,(u, v) in (1.16) yields (uv{ayx) — (uvx)yx)(={xl{vuy)x) —
Ceyluva) by (L.17) = Eyx) - (E(v, u)-y) — P@)E,(v, w)-y = Ex)-
(Ey(v, w) - y) — Ey(x, Ey(u, 2)-v)-y + E(P@)v, w)-y (by PI5) = E(x)-
(E(v, w)-y) — Ex, E(u, 2)-v)-y + E(E(x, v)-x, w)-y — E(E(x)-v, u) -y
(by P1) = Ey(x) - (E\(v, w)-y) — Ey(Ey(x) v, u)-y + Kz, [E, v)-u—
E(z, w)-v])-y (by P3 and symmetry of E,), which is (1.18). The
formulas (1.19), 1.20), (1.21), (1.22) are respectively

(1.19)  E((zyx), y) — Ei(x, y)* = {Pe)P(y)P(x) — P(x)P(y)}e
(1.20")  Ei(x, {yzy)) — Ei(x, y)* = {P@)P(y) — Ple)P(y)P(w)}e
L.21)  E((zyx), v) — Ez, (vay)) = {P(e)P(y, v)P(x) — P(x)P(y, v)le
(L.22) E(xyz), y) — Ex, yzy)) = {P(e)P(y)P(, z) — P(x, 2)Py)le .

Here (1.19") will follow by setting v = y in (1.21") (or z = # in (1.22"))
and using (1.20"). For (1.20") note E,(z, )= P(E.(x, ¥))e = P(x)P*(y)e +
P*(y) P(x)e + E,(x, P(y)(x-e)) (by PI6) = P(x)P(y)e + (P(y) P(x)e)* +
E\(x, P(y)x) = E\(x, {yzy) — P(y)e-x) + P(x) P(y)e + P(e)P(y) P(x)e =
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E, (z, <yzy)) — {x(P(y)e)x} + P(x) P(y)e + P(e) P(y)P(x)e = E\(x, {yxy)) +
P(e) P(y)P(x)e— P(x)P(y)e. For (1.21') note that E,(P(x)y+ Ey(x)-y, v) —
E\(z, E\(v, x)-y)={(P(x)y)ve} + {y Ey(x)v}* — {wy E\(v, x)*} (by P1, P3, P4)—
{L(P(®)y, v) + P(e)P(y, v) P(x) — L(x, y) L(x, v)le = {P(e) P(y, v) P(x) —
P(x)P(y, v)le by JT6. Finally, for (1.22') we have E,(y, E, (x, ¥)-2)*—
E(x, E\(y, 2)-y) = {yzE\(x, ¥)*}* — {xyE.(y, 2)*} = P(e)L(y, 2)L(y, x)e —
L(z,y)L(z,y)e= P(e){L(P(y)z,x) + P(y)P(x,2)}e — {L(x, P(y)z) + P (x,2) P(y)}e
(by JT6, JT7) = E,(P(y)z, ©)* — E.(x, P(y)z) + {P(e) P(y) P(x, 2) —
P(z, 2)P(y)le = {P(e)P(y)P(x, ) — P(x, 2)P(y)le (by P8).

In the special case that J, = 0 we obtain the easy half of Loos’
characterization [1, p. 76] of alternative triple systems.

1.24. PROPOSITION. If K,,CJ,, 18 a bracket subalgebra
(KoK K p) C Kyjy) with Eo(K,),) = P(K,,)e = 0 (for example, K, =
Ji if Jy =0, or K,), = P(x)J,,, or K,, = P(x)J,;, + ®x principal inner
ideals determined by an xeJ,, with P(x)e = 0), then K,, becomes an
alternative triple system under the bracket

(wyz) = E\(z, ¥)-z = {{xye}ez} (@, ¥, z€ K,)y) .

The Jordan triple product on K, is then P(x)y = {xyx).

Proof. The axioms for an alternative triple system are

(AT1) <(uviwyz) + (wyluve) = (uvryyz) + {(x{vuy)z)
(AT2) (wv{xyx) = (uvx)yr)
(AT3) <(aylwyz) = (xyx)yz) .

Here (AT1) follows from (1.17), and (AT2), (AT3) from (1.18), (1.19)
since E(K,, = P(K,,)e =0. By (Pl) we have P(x)y = E\(z, ¥)-x =
{xyx) in this case.

If x has P(x)e = 0 then the inner ideals K,,, = P(x)J,, C P(x)J,, +
oxr = K, kill e, P(K,,)e = P(Ki,e =0. Indeed, by JT3 we have
P(K,;,)=P(x)P(J,,)P(x), and by JT1 P(K;,,) = P(P(x)J.,) + P(P(®)J,, %) +
OP(x) = {P(x)P(J,;,) + L(x, J.,) + ®}P(x). To see next that these inner
ideals are bracket-closed subalgebras, first note that since P(K,,)J,,, C
K,,C K|, by innerness we have {(axyx) = P(x)ye K,,, hence by
linearization {(ayz) + {(zyx) € K,,, for any z,z¢€ K;, and any ye€J,.
Next we show (K,,J,,x> and (xJ,,K,,> are contained in K,,; by
skewness it suffices to prove the latter, where <(aJ,K,, =
E1(x; Ju’z) : P(x)J1/2 c —P(x)(El(x! Jx/z)):< : Jx/z) + P<Ex<xy JI/Z) 2 x)Jl/Z (by
PI17) cPx)J,, + Pad, x>, v)d., <P(K,,dJ,, <K,  Final-
ly, <K1/2J1/2K1/2> = E1 (K1/z, J1/z) . K1/2 c _P(x) (El (Kl/z, J}/z)* ° JI/Z) =+
P<E1(K1/zy Jl/?.) © X, x)Jl/Z CP(x>J12 + P(<K1/2J1"2x>: x>J1’2 CP(K;/2>J1/2 (by
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the previous case) C K,,. Thus in fact we have the stronger closure
<K{/2J1/2K{/2> c K1/2- E:l

In any alternative triple system we obtain an ordinary bilinear
alternative multiplication by fixing the middle factor: the homotopes
A" with products z-,y = {xuy) are alternative.

1.25. PROPOSITION. If K,, is a bracket-closed subspace of J,,
with P(K,,)e = 0, then for any u e K,, the homotope K with product

¢,y = (euy)

is an alternative algebra. If w s a tripotent with P(u)e =0
then we have an involutory map x— Plu)x =% on K, =J,,() N
J(uw) = P(u)d,,(e), and the bracket can be recovered as

(1.26) (eyz) = (@ . ¥) *u? -

If in addition E,(u, u) = {uue} = e then u acts as unit for P(u)d, ,(e),
and ©— T 18 an involution of the multiplicative structure.

Proof. By 1.24 we know K, is an alternative triple system under
the bracket, hence the homotope K% is an alternative algebra [1, p.
64]. When % is tripotent P(u)® = P(u), so P(w) is involutory on
P(u)dJ,, and furthermore for =z, y, z€ P(u)J,, we have (-, ¥) .,z —
(xyzy = (wuyyuzy — (x{uyuyzy = {P(e)P(u)P(z, y) — P(z, y) P(u)}e- 2
(by 1.22) =0 since P(K,, e = P(w)P(J,,)P(u)e =0. Thus we re-
cover the bracket on P(u)J,, from the bilinear product and the
involution.

When {uwe} = E,(u, u) = ¢ in addition then w is a left unit,
w-, Yy =FEw u)-y=ey=1y. If we knew 2 — T reversed multiplica-
tion this would imply % = v was also a right unit; we can also argue
directly, -, u = {zuuy = E,(x, ) -u = {xuu}— E,(u, u)-c+ E,(x, u)-u =
L(u, w)(P(u)x) — e-x + 0 (since E,(K,,) = 0) = P(Pw)u, u)Pu)x —
x (using JTL1) = 2P(u)x — x = x.

To see x — % is indeed an involution, first use the right unit to
see & -, Y = (® -, Y) . u = {xYu,

1.27) x -,y = {xuy) = {xju) (when {uue} =e).
Then

¢ -,y = uzuy)u)
= (uzupyu) — {P(e)P(x, y)P(u) — P(u)P(x, y)le-u (by 1.27)
= Tyuy — 0 (again P(K,,)e = 0)
=X, Y (above) .
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Thus the involution condition is precisely (1.27).

The condition K. (u, u)-y = y is necessary well as sufficient for
(1.27) to hold. Indeed, using (1.21), 1.18) and P(K,,)e =0 one
can show in general that Puw){{axuy) — {eyu)} = {ulxuy)u) —
ulayuruy = (uyupauy — (uulyaew) = {Id — L(E,(u, u))KFJrwy, which
again establishes sufficiency; for necessity set z = u, so {uuy) —
{uywy = E(u, w)-y — P(wy = E(u, w) -y — y. ]

These alternative structures on the subsystems P(u)J,, are
important for the study of collinear idempotents [5]. These are
families of tripotents {e, - - -, ¢,} with P(e,)e; = 0, {e,e.e;} = e; for ¢ = j,
and the P(e;)d.(e) = J..(e;) N J,(e;) carry isomorphic alternative
structures. (The motivating example is the collinear matrix units
{ew, €y, +++, e} in M, (@) under xy'x.)

2. Ideal-building. A subspace K CJ is an ideal if it is both
an outer ideal
(2.1) P(J)Kc K
(2.2) L{J,J)KCc K
and an inner ideal
(2.3) PK)JC K.
If K is already an outer ideal, the inner condition (2.3) reduces to
2.3") P(k;)J < K for some spanning set {k;} for K.

Note that the operators L(y, z) cannot be derived from the P(x)’s.

From now on we fix a tripotent e¢ with corresponding Peirce
decomposition

J:Jl@Jl/2®JO'

Since the Peirce projections (1.1) are multiplication operators, any
ideal K < J breaks into Peirce pieces

KZK].@KL/Z@KO (K, =KndJ).

Using the expression (1.7) for the product P(x)y in terms of bilinear
products, we obtain a componentwise criterion for K to be an ideal
(exactly like that in Jordan algebras).

2.4. IpeEAL CRITERION. A subspace K=K B K,,P K, is an
iwdeal in the JTS J =J, B J ., DJ, iff for i =1,0 and j =1 — 1 we
hawve
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Cl) K, is an ideal in J,

(02) Ei(Jx/zy K1/2) - Kz

(03) Jt . K1/2 c K1/2

(04) Ki : J1/2 - K1/2

(C5) P(J.)K:C K;

(C6) P(k,,)J, C K; for some spanning set {k..} for K, .

If 1/2€ @ then (C5) and (C6) are superfluous.

Proof. Clearly the conditions are necessary, since any product
with a factor in K must fall back in K. Just as in the Jordan
algebra case, they also suffice. Outerness (2.1) P(J)KcC K follows by
(1'7) since P(Jz)KzDKw (by (Cl)), P(JUZ)KiC-KJ‘ (by (05)): Jl/z' EI(JI/Z!-Kl/Z)C
Kl/z (by (02), (04»’ Kl/z‘Jo c Kl/z (by (03)), JL' (Jo'Kl/z) c Kl/z (by (C?’));
Ji-(Kf-J,,) c K, (by (C4), (C3) — note that K; = K, for any ideal
K, <] J, since the involution is given by a multiplication), and
E(Jyp JE-K.) C K, (by (C3), (C2)).

Outerness (2.2) L(J, J)K = P(J, K)J C K follows by the lineariza-
tion of (1.7). First note

(C2) Ei(K. Ju) C K,

since E (K., J1) = By, Kip)* C Kf C K,. We have {J.J,K;}CK,
(by (Cl)): {Jl/ZJiKl/Z} c Ej (J1/2y Jw* : Kl/2) c KJ’ (by P?’; (03), (CZ)),
Kl/z' El(J1/zyJ1/2) - Kl/z (by (03)), Jl/z * E1(K1/2: Jl/z) + Jl/z' EL(JUz; Kl/z) c Kl/z (by
(02’)r (02), (04)), Jl/Z'P(J1/29 Kl/z)e = Jl/z'Eo(Jl/zy Kl/z) c Kl/z (by (CZ), (C4)),
Ji . (Kz* : le) + Kz . (J‘:k . JI/Z) c K1/2 (by (04); (03)), Ex (Kl/zy sz : JI/Z) c
Ei(Kl/Z) Jl/Z) c Kz (by (02’))’ and Ei(Jl/Z! Ki*'J1/2> = Ei(Jl/z'Kt'Jl/z)CK1
(by (C4), (C2)).

Once K is outer we can apply (2.3') to obtain innerness: for the
spanning elements k,e¢ K, we have P(k,)J = P(k,)J,C K, by (Cl) if
t =1, 0, while P(k,,)J; C K; by (C6) and P(k,;)J., = v Bk 1) —
Jyer P(kyp)e © Ky, — Juyps Ky C K,y by P1, (C5), (C3), (C4). Thus K is
an ideal.

When 1/2e @, (C5) and (C6) follow from (C2-C4) since P(x) =
1/2P(x, x) where P(J,y, J,)K; = Ei(Ji, K- J,n) C K; by (C4), (C2), and
P(Jl/zy Kl/z)Ji c Ej(Jl/zy Jz* : K1/2) =+ Ej(KUz, Jz* 'J1/2)CKJ' by <C3); (02)7 (CZ').

[

An ideal K, in a diagonal Peirce space J; is imvariant if it is
both L-invariant

(2.5) L(Jys Jin)K; = E(Jysy K- Jy;) C K,

and if 4 = 0, also



PEIRCE IDEALS IN JORDAN TRIPLE SYSTEMS 427

(2.6) L(J,)s, )P(J,, J10) Ky = Ey(J s, Jo- (Ko Jo) C K,

and P-invariant

2.7 P(J,,)P(J,,)K, C K,

and again if ¢ = 0 also

(2.8) P*(J,n)P(J ) Ky = P(J.,) P*(J ) Ky = P(J15)P(e)P(J,) K, C K, .

Note that the maps L(J,,, J,,) and P(J,,)P(J,,) automatically send
J; into itself (and L(J,., e)P(J,, J.,) and P(J,,)P(e)P(J,,) send .J, into
itself).

An ideal K, <] J,, in the off-diagonal Peirce space is invariant if

(2-9) L(J'L')KI/Z = Jz : Kl/z - K1/2
Ll(Jl/Z)LO(Jl/Z)Kl/Z = L<J1/2: 6)L(6, J1/2)K1/2 = <K1/2J1/2J1/2> CK,,
L\(J, ) Ly(K,p) 11 = L(J s, €)P(e, J15) K jy = 1o Kipo1ss) C Ky

Note that these maps do send J,, back into itself.
An alternate characterization of invariance in terms of the bracket
products is that K, be a subspace satisfying

(2.10)

(2-9,) Ji ° Kl/Z c Kl/z
(210,) <J1/2J1/2K1/2>1 + <J1/2K1/2J1/2>1 + <K1/2J1/2J1/2>1 - KI/Z
(2-10") <J1/2K1/2J1/2>o + <K1/2; J1/2>o c Kl/z ’

i.e., that K,, be an ideal of the bracket algebra J,,. Clearly any
invariant bracket ideal (2.9)-(2.10”) is invariant in the sense of
(2.9)-(2.10) and is an ordinary ideal by (1.11). Conversely, if K, is
an invariant ordinary ideal it must be a bracket ideal: (K, ,J. /1) +
(J ;K ;d, 5y, 18 contained in K, by invariance (2.10), {J,,J.,K,,>, C
J.-K,, < K,,, by invariance (2.9), similarly {J,,J.,K,;>, C Jo- K, C K,
by (2-9): while <J1/2K1/2J1/2>0: <K1/2J1/2J1/2>0C - {J1/2J1/2K1/2} + <J1/2J1/2K1/2>1 +
(K3 s K, by ordinary idealness and closure under { , , ),, also
<K1/2; J1/2>0: <K1/2J1/2K1/2>1 - P(Kl/Z)Jl/ZCK1/2 fOI‘ the same reason, Wlth
<J1/2; K1/2>o c Jo' K1/2 - K1/2 by (2-9)-

If 1/2€ @ then L-invariance (2.5) of K, <] J; implies P-invariance
(2.7) in view of JT8. It is not clear whether (2.5), (2.6) imply (2.8)
when 1/2€ @.

An important tool is the ability to flip an ideal from one diagonal
Peirce space to another.

2.11. FripPING LEMMA. If K, is an ideal in J, then

K, = P(J,,))K,
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is an tdeal in J,, which is invariant if K, is. If K, is an ideal
wn J, then

K, = P(JI/Z)KO + P*(JI/Z)KO

is an ideal in J,, which again is invariant if K, 1s.

Proof. We handle both cases at once by proving
K:i = P(J1/2)Ki + P*(Jl/z)Ki

is an ideal inheriting invariance from K,. Note again that K} = K,
for any ideal K, <]J..
Outerness (2.1) follows from (PI11, 10):
P(aj)P(xl/z)kz = P*(a;k 'xl/z)ki € P*(Jl/z)Ki
P(aj)P*(xl/Z)ki = P(aj'xl/z)ki € P(Jl/z)Ki .

Outerness (2.2) follows from (PI12, 13):

L(aa" bi)-P(xl/z)ki = P(aa<b;k “Xyss), i)k € P(J1) K,
L(aa" ba’)P*(xm)ki = P(a;k (bj'x1/2)9 xﬂz)ki € P*(Jl/z)Ki .

To see that K; is inner (2.3"), for the spanning elements P(x,.,)k,
and P*(x,,)k, we have

P(P(xllz)ki)Jj = P<x1/z)P(kt)P(x1/z)Jj - P(xl/Z)P(kz)Jz c P(xl/z)Ki
P(P*(x,0)k)d; = P*(@1,) P(k;) P*(2,)J 5 © P*(2,2) P(k:)J; © P*(2,,) K,

using (1.8) and innerness of K, in J,. Thus K, is inner as well as
outer, hence is an ideal in J;.

If K, is L-invariant (2.5) to begin with, then K; will be L-
invariant too:

L(xl/zy yl/Z)P(zl/Z)ki = {P({xUzyl/zzl/z}, zl/z) - P(zl/z)L(yUzy xl/z)}ki (by JT5)
€ P<J1/2)Ki + P(JI/Z)L(Jl/Zy JI/Z)Ki c P(Jl/z)Ki
(by L-invariance)

L@, Y1) P* (Ri)lee = Li(@s2y Y10) P(€) P(2172)Ko
= {P({x1/2y1/26}9 e) — P(e)L(Y.s5, ..} P(2,0)k, (by JT5)
€ P(J)P(J ) Ky — (L(J 2y J 1) P(J 1) Ko)*
c P*(J,,) K, (by PIll, above, and L-invariance) .

L-invariance (2.6) only applies when ¢ = 1. In this case it follows
from L-invariance (2.5) of K;: we have Ey(J,,, K, -J.,)={J.,.KJ,,} C K,
by definition, and J,-(K,-J,,) C K, -J,,, because {J(P(J,.) K]} =
—{JO(P(Jl/z)J1/z)K1} + {JOJI/Z{K1J1/2J1/2}} (by JT2>C{J0J1/2K1} (by L-invari-
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ance of K,) = K,-(Jy-Jys5) C K, Jypp.
If in addition K, is P-invariant (2.7) the same is true of Kj;:
P(xx/z)P(yl/z)(P(zx/z)ki) = P(wl/Z)(P(yl/Z)P(zl/z)ki) € P(Jm)Ki
P(,/) P(Y12)(P* (2u0)k0) = P(212) P(Y,/) P(€) P (21/2)ko
= {P({2¥:06}) + P(P(@12) P(Yi10)e, €) — P(e)P(Y,.) P(,/,)
— L@y, Y1) P(€) LYoy %,0)} P (210)ky  (by JT4)
C{P(J) — P(e)P(J.1) P(J11p) — L(J s J12) P()Li(J 1soy J11)} P(J110) Ko
C P*(J Ky — L(Jyy, J.5)P*(J,) K, (by P, L-invariance of K,)
c P*(J,,) K, (by above L-invariance of K)) .
P-invariance (2.8) applies only when 1=1. In this case it follows from
P-invariance (2.7) for K,: P*(J, ;) P(J,,) Ky= P(J,,,) P(e) P(J,;,){ P(J, ) K.} C
P(J,,)Ple)K, (by P-invariance of K)) = P(J,,)K, = K,.
It is not clear whether P(J,,)K, inherits P-invariance when K,
is me;‘ely P-invariant (not also L-invariant). O

We can now obtain the main result on Peirce ideals. Notice
how much messier the formulation becomes for triple systems.

2.12. PROPOSITION THEOREM. An ideal K, in a Peirce subsystem
J; is the projection of a global ideal K in J iff K, is invariant. In
this case the ideal generated by K, takes the form

(@ = 1) K= Kl EB Kl'Jl/z @ P<J1/2)K1
(i = O) K= Ko@ {KO'Jl/z + JO'(KO'Jl/z) + P(Jl/z)Ko'Jl/z}
D {P(J12) Ky + P*(J1) Ko}

(Z = %)K: {EO(JU’Z; K1/2) "l'P(K1/2>J1+P(Jl/z)P(Kx/z)Jo+P*(J1/2)P(K1/2)Jo}
EB K1/2 @ {Ex(Jl/zy KI/Z) + El(Kl/Zy Jl/z) + P(KI/Z)J0+ P*(Kl/z)Jo
+P<J1/2)P(K/2)J1 + P*(JI/Z)P(KI/Z)JI} .

If 1/2€ @ we have P(JI/Z)Ki = Ej(Jl/Zi Ki'Jl/z)r P(Kl/z)Jj + P*(Kl/z)Jj c
E‘IZ(KI/29 K1/2)’ P(JI/Z)P(K/Z)Ji + P* (J1/2)P(}{1/2)Ji c Ei(Jl/Z! Kl/z) + Ei(Jl/Z’ Kl/z) *
so the expressions for K reduce to

(t=1 K=K, @ K, J,; D EfJys, K.+ Jy5)
(/" = 0) K= Ko @ {Ko'Jl/z + Jo'(Ko'Jl/z + E1(J1/2y Ko'Jl/z)'Jl/z)}
@ {E1(J1/2; Ko‘Jl/z) + El(Ko'JUz; J1/2>}

(i=2) K=Blu K © Ko ® (B s Ki) + B(Kyy J1) -

Proof. We have already noted that a Peirce component K, must
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be invariant under global multiplications sending J, into itself.
Certainly the ideal generated by K, contains all the above products;
it remains only to show in each case K forms an ideal.

We begin with the easier diagonal cases 7 =1, 0, where K =
Ki@Kl/z@Kj = Ki@{Ki'JI/2+Ji'(Ki'J1/2) + P(Jl/z)Ki‘Jvz} @ {P(Jl/z)Ki +
P*(J,,)K;} (note for 7 =1 that some of these products simplify:
J1‘(I{1'J1/2) c (Jl’K1)’J1/2 - K'(Jl’JUz) c Kl’Jl/z by PIiV: P*(JI/Z)Kl =
P(J1/2)K1 since Kl* = Ku and P(Juz) K1'J1/2C']1/2' L(Jl/z, Jl/z) K1 -
K;k'P(JI/2)J1/2CJ1/2'K1 by JTZ)-

We verify that the K, satisfy the conditions (C1)-(C6) of (1.4).
For (Cl), K, is an invariant ideal in J, by hypothesis and K; =
P(J,,)K; + P*(J,,) K, is an invariant ideal in J; by the Flipping
Lemma 2.11. For (C5) we have P(J,,)K,C K; by construction, and
P(Jl/z)Kj = P(JL/Z)P(Jl/z)Ki + P(J1/2)P*<J1/2)Ki - Kz by P-invariance (2°7)’
(2.8). For (C2) we have E,(J,,, K,;,) the sum of E/(J,, K;-J,,) and
E( Sy I+ (K- J1) and E(J,,, P(J,.)K,-J,, (the latter two only when
1 = 0). The first of these has E,(J,,, K;-J.,) = L(J.s, J.1.)Ki¥ C K; by
(P4) and the L-invariance (2.5) of K, = K¥. For 7 = 0 the second
term Ey(J,,, J,- (K, J,,) falls in K, by the hypothesis of L-invariance
(2.6). For ¢ =0 the third term becomes KE,(J,, P(J,.) K, J.;) =
{Jo(P(J) Ko)*J. 0} (by P8)C P(J,5)P*(J,5) Kyy Which falls in K, by the
hypothesis of P-invariance (2.8). Continuing with (C2), we examine
Ei(Jy Ky). By (P3) Ei(Jyp Ki-d i) = {J1/2K3J1/2} CPJp)K;CK; by
(C5). When 72 =0 we must examine two other terms: E.(J.,, Jo-
(Ko J ) = E(Ky+ sy JoJ 1) CE(Ko I yyay 1) = Ei(J s, K,-J)*CKi=K,
as above, and E,(Jiy, P(J) K- Ji) = L, Jin) (P(J1n) K))* =
L(J s, J12)P(e)P(J,;) K, where L(x, y)P(e)P(2)k, = P(e)P(z)L(x, ¥k, +
P({xye}, e)P(z)k, — P(e)P({yxz}, 2k, € P(e) P(J,)L(Jyey Jin) Ko +
P(J)P(J.,)K, — P(e)P(J,,) K, P(e) P(J,,) K, + P*(J,)K, (by PIL1 and
L-invariance (2.5)) C K,. This completes the verification of (C2).
We have (C4) because K;-J,,C K,, by construction and K;-J,, =
(PUJ)K) -y, + (P(J)K)* - J,y, (the two differing only when
7 = 0) where the latter is by PI8 contained in E(J,,, K} -J.5)*Jyp —
K;k‘P(Jl/z)JUzCK;k‘Jl/z - sz’JUz (by L-invariance (2~5)) c Kz”Jl/zC K1/2
and when 7 = 0 the former (P(J,,) K, -J,, is contained in K,, by
construction. (There does not seem to be any way to show it falls
into K,-J,, + J,-(K,-Jy,).) For (C3) note that J;-(K;-J,,) C K,), by
construction, J;-(K;-J,,) = K}-(Jf-J,,) C K., by P6, and for ¢ =0
JL' [Jo'(Ko’JUz)] c Jo’ (Ko’ (J1’ J1/2)) c K1/z USing P6 tWice: and Jo'[Jo°
(KO'J1/2)] c {JOJDKO}'JUZ - Ko' (JO’ (Jo’Jl/z)) (by PI]-I) CKO'JUz c Kl/zy and
finally J,-(P(Jyp) K-y CJ,.-(K,-Jyn) C Ky, by the above. For the
last criterion (C6) we consider the spanning elements k,-x,, (and,
when ¢ =0, a,-(k,-2.,) and P(x,,)k,-9,, as well). We observe by
PI10, (C5), (C1) that P(k;-.,)(J;+J ;)= P*(@.,) P(k.)J ;+ P(k,) P*(2.)J ; C
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P*(JM)Ki + P(K))J, C K;+ K, also Play- (ko .5))(J, + Jo) = Plao)P*(k,-
Tip)dy + P* (ko 2.2) P(ag)y = P(ay) P(ko) P(®,2)d ; + P(2.) P(ko) P(ao)d, C
PJ)K, + PJ,)K,C K, + K,, and also P(P(xy0)ko - Y2)(J, + o) =
P*(y,2) P(P(2,)k0)J .+ P(P(21)ko) P*(Y2)Jo = P* (Y1) P (212) P (ko) P (,2)J, +
P(xy2) P(ko) P(2,2) P* (Y,2)Jo € P*(J.0) K, + P(J,e) K,C K, + K,. Thus
(C1)-(C6) hold, and K is an ideal.

The case 7 = 1/2 is even more tiresome. We must again verify
(C1)-(C6). (C3) follows from invariance (2.9), and (C2) and (C6) follow
by our construction of K,, K,. For the sake of symmetry we write
the diagonal Peirce pieces as

K, = Ei(J1/2, K1/2) =+ Ez'(Jl/27 K" + P(K1/2)Ji + P*(Kx/z)Jj
+ P(JI/Z)P(KI/Z)Ji + P*(Jx/z)P<K12)Ji .

As we remarked after (2.10), an invariant ideal is closed under
all brackets:

( * ) {Ei(Kl/Zr JI/Z) + Ez‘<J1/2y K1/2)}'J1/2 c KI/Z .

We can now establish the rest of (C4), K,-J,,C K,,,. Since E,(J,,s, K,2)* =
E/(K,, J,:) by P8, we have so far that {E, + E}}-J,,C K,,. Next,
we observe {P(sz) Ja‘ + P* (K1/2) J:i} * J1/2 c Ej (K1/2y J1/2) . (Jf ° Kl/Z) -
P(K.p)(J;dye) + B (i, I - Kyp)* - Ky — Jf- P(K,5)Jy, (by PIT, 8) C
Ji(Ji- Kp) — P(Kp)yye + Jf - Kijy — J ;- P(K ), © Ky by invariance
(2.9) and inner idealness P(K,;,)J., C oy Finally, {P(J,.)P(K,.)J; +
P*(J ) P(K)d i} Jve © Ei( Ty J1yo) - [(P(Ko2) )+ I e] — P(J ) [P(Kie)e
Jl/z] + Ej(P(Kl/z)Ji'Jl/zy J1/2)‘J1/2 - P(Kl/z)Ji'P(Jl/Z)Jl/Z (by PI7; 8 again)c
Ji*Kijy — P(Ju) Ky + Ef(Kypsy Ju2)Jie — Ko (by the previous case) C
K,,, by invariance, outer idealness, and (*). Thus all 6 pieces of K,
send J,,, into K,,, completing (C4).

Next we check (C5), P(J,) K, < K;. We have P(J . ){E(J.., K. +
Ei(Juzy KI/Z)*} = P(J1/2) {Et (J1/2, Kllz) + Ez (K1/29 J1/2)} c Ei (J1/2y <K1/2, J1/27
J1/2>j) - Ej(P(J1/2)Jl/2’ Kl/Z) + EJ’(J1/2, <J1/2y Jl/zr K1/2>i) - Ej(P(Jl/Z)K1/27 J1/2)
(by PI5) C Ei(J,, Ks) + Ei{(K,p J..) C K; by invariance and outer
idealness. We have P(J,)[P(K,»)J|C K, and P(J,)[P(K.z)J, +
(P(K.2)Jo0)*]1 € P(Jyy2) P(Kyp)dy + P*(J,2) P(K,2)Jy, © K, by construction.
For P(J . )[P(J.) (P(Ky)dy) + P*(Jy) P(K,2)Jd;] we first have
P(J2)P(J0)P(K.1p)d: = {(P({J12d 12K e}) — P(Kip) P(J12) P(J1s2) + P(P(J )
P(J)K. sy Kijy) — L(Jys, J12) P(Ky2) L(J ey I} (by IT4) C P(K, ) ; —
L(J1/29 J1/2)P(K1/2)JiCP(Kl/z)Ji+{P(K1/2)L(J1/2, Jl/Z)_P({J1/2J1/2K1/2}, K1/2)}J1Z
(by JT5)c P(K,,)J, c K;. With the *’s we consider the cases 7 =1,
© = 0 separately. For i =1, P(J.n)P*(J.p) P(K. )], = P(J.) P(e) P(J.)
P(K,,)J . P(J,,){ P({e] . K. 1.}) — P(K,/2) P(J,1) P(e) -+ P(P(e) P(J 12) K, /o) Ky 2) —
Lie, J..)P(Ky2) L(J,s2, )}, C P(J1) P(E(K oy J12)dy + P(J 1) P(K,p2)do +
0 - P(Jl/z)L(e: Jl/z)P(KUz)JUzCP*(Juz'El(Kl/z, J1/2)*)J1+ P(J1/2)P(Kl/2)J0 -
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P(J.2) EB(K,py J12) (by PILL, since K, <| Jin) C P*(Kyp)d, + P(J,)
P(K,,)Jy, — P(J,)E.(K,,, J,,) (by invariance (2.10))c K, (using the
above relation P(J,,)E,C E;). For i=0 we haveP(J,,) P*(J,.) P(K,;)J,=
P(J,/2) P(J12) P(e) P(K, /)]s C{P({J /2 1 10}) — P(e) P(J 1) P(J,12) + P(P(e) P(J,,)
Jl/Z’ J1/2) - L(e, J1/2)P(J1/2)L(J1/z’e)}P(KUZ)Jo (by JT4) c P(Jl)P(Kx/z)Jo -
P(e)[P(Jl/z)P(JUz)P(Kl/z)Jo] +0— L(e; J1/2)P<J1/2)(J1/2 : P(Kuz)Jo) c P*(Jlx
K. ;5)Jy — P(e)K, — L(e, J,,)P(J.,)K,,, (by PIll, the above, and (C4)) C
P*(K,)J, — K¥ — L(e, J.,)K,, C K — E\(Kys, J,0) C K,. Finally, we
check (Cl): K;<{J;. By PI2, 8 and invariance (2.9) we have
E(J,s K,;,) + E(K,p, J,,) is an outer ideal in J,. P(K,,)J; +
P*(K,,)J; is also an outer ideal by invariance and PI10, 11, 12, 13. In
the same way P(J,,)P(K,,)J; + P*(J,,)P(K,.)J, is outer, since

PI)P(J.)P(K, )] ] € P, ) P(K,)J, (by PILL) C P*(J,.) P(K, ),

and P(J,)P*(J o) P(K.))J; C P(J,-J o) P(K, ;) (by PI10) C P(J,,) P(K,15)J,
establishing P-outerness (2.1), while L-outerness (2.2) follows from
L(J;, J)NPJ,)P(Kyp)J )< P(J; - (J§ - Ji), Jue) P(K ), (by PI12) C
P(J,)P(K,)J;, and L(J;, J)[P*(J,5) P(K,))J;] = P*(J5 - (J; - Ju), Jie)
P(K,;)J; (by PI138) c P*(J,,)P(K,;;)J;. Thus K, is an outer ideal in J,.
For innerness (2.3') we need only check the generators E,(x,, k..),
E (2 k.)*, Pk a;, P*(kyz)a;, P(e,)Pk,)a; and P* (@) P(kis)a;.
Using (1.8) we have P(P(ky.)a;)J; = P(k,:)P(a;)P(k,.)J; C P(K,»)J;,
P(P*(kx/z)afj)Ji::P*(kx/a)P(aj)P*(kx/z)Jt C P*(K, ;) 5, P(P(2,)P(k.5)a,)d; =
P(xx/z)P(kllz)P<a’i)P<k1/2)P(xl/z)Ji c P<J1/2)P(K1/2)Jiy P(P*(xl/Z)P(kl/E)ai)Ji =
P*(x,2) P(k.5) P(a;) P(ky.) P* (%y,) © P*(Js) P(K,2)J;, while by PI6,
P(E; (K., J10))J; © P(K,j2) P*(J o) J; + P*(J.0) P(K, ) + E(Kypy Kip) <
K, and therefore P(E (K., J.)*)F = {P(E(K,)», Ju)}*c K = K, as
well. Thus K, <]J,, all conditions (C1)-(C6) are met, and K <] J.

If 1/2c® the cases 7 =1, 0 are simplified since P(J,,) K, =
2P(J. ) K, = P(Jys2y Ju) Ki= Ei(J p, Ki+Jye) (by P3 since K¥=K,). The
case ¢ = 1/2 is simplified by P(K,.,)J; = P(K,js, K,j2)J; = E(K, s, J¥-K,5)
E(K,., K,;,) by invariance, hence by P8 (P(K,;)J;)* C Ky, K,;) too,
and so P(J)(P(Kyn)dy) + P*(Jy) P(Ky)d; € P(J ) E; (K, Kip) +
(P(Jl/Z)Ej(Kl/Z’ K1/2))* c Ei(Juz; JJ"KI/Z) - Ei(P(Juz)KUzy KI/Z) + {Ei(Jl/Z’ Ji’
K.)) — E(P(J,5) K. s, Kp)}* (by PI5) C Ey(Jioy Kipo) + Ei(J 1y Kip)*. [

We can easily describe the global ideal generated by a Peirce space.

2.13. COROLLARY. The ideal in J generated by a Peirce J,(e) 18

=1 I(J)=JDJ,® P,
(@ =0) I(Jy) =Jy D {JoJus + PU o it D {P(J12)do + P*(J12) o}

( = %) 1) = Py D s DB sy J2) + P+ PHT) )
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Proof. In each case K, = J; is trivially invariant, so we have
the explicit expressions for K given by the Projection Theorem. In
case ¢ = 1 the J,,-component simplifies by K,-J,, =e-Jyps = Jye. In
case 1 = 0 we have J,-(J,-J,) CJy-J,, for the J,,-component. In
case 1 = 1/2 we have for the J,-component Ey(J,s, J,2) = P(Jys, Ji)e C
P(J,,)J,, P(Jo)[P(J ), + P*(Jn)do] C P(J,.)J, and for the J,-component
P(J,2)P(J ), + P*(J ) P(J12)d, © P(J1)ds + P*(J,2) 0. ]

When J is simple and J, # 0 the ideal I(J,) must be all of J,
leading to

2.14. PROPOSITION. If J is simple and e a proper tripotent
(monzero and noninvertible) then

(1) P(Jy)d, =y,

(i) P(Jy0)ds + P*(J)ds + E( ]y, Jip) = J,.
If J, # 0 then

(i) Py dy + P*(J)dy =y, (V) Jo-dip + P(J2) o e = Jups.
In characteristic + 2 we have

(v) Jo= E(Jus Jin), Jo = E(Jye, J1p).

Proof. e == 0 implies J, = 0, so I(J,) = J, yielding (i). If J,=0
then J = J, @ J, forces either J = J, (e invertible) or J = J,(e = 0)
by primeness, so we must have J,, # 0, and I(J,,) = J yields (ii).
We may well have J, = 0 with J, J,, # 0, but if J,#0 then I(J,) =
J yields (iii), (iv). For characteristic # 2, note 2P(J,,5)J; = P(J s, J15)J ;=
E(J.p, Jj'Jl/z) C E(Jypy Jip) = E(J ey Jun)*.

In case J, = 0 we can also recover some ideal-building lemmas
of Loos.

2.15. COROLLARY [1, pp. 131-132]. Let e be a tripotent in a
Jordan triple system with Je) =0. (1) If K,, is an itnvariant
bracket ideal of J,. such that

Jl : Kl/z c K1/2 <K1/2J1/2J1/2>1 + <J1/2K1/2J1/2>1 c K1/2

then the ideal in J gemerated by K, is K= K,, P {E (K, J.n) +
E1(J1/2y K1/2)}-

(ii) If K, is an ideal of J, such that L(J, J,.)K, C K, then
the ideal im J gemerated by K, is K, P K,-J .

Proof. (i) Note that K, is an ideal in J,,: Since P(x,.)¥., =
E (%3, Y12) " X1se = {&12Y15%12) bY PL when J, = 0, the above conditions
guarantees a bracket (hence a product P(x,,)¥.. 0T P(%,, 2.2)Y..) falls
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in K., as soon as one factor does. This K,, is invariant in the sense
of (2.9), (2.10) by hypothesis, so by the Projection Theorem K =
K, + K, where P(K,,)J,= P*(J,0)dy = P(J 1)) P(J o), = P*(J 1) P(J 1), =
0 when J, =0, so K, reduces to E\,(J,», K, + E(K.j2 Jus).

(ii) K, is invariant since P(J,,)P(J,;) K, = 0, so by the Projection
Theorem K = K, D K,-J,.. M

Since invariant Peirce ideals correspond to global ideals and
simple JTS contain no proper global ideals, the Peirce subsystems
contain no proper invariant ideals.

2.16. PROPOSITION. If e is a tripotent in a simple Jordan triple
system J, them then Peirce subsystems J,, J,., J, contain mo proper
invariant tdeals. ]

We can also recover a result of Loos [1] on alternative triple
systems.

2.17. COROLLARY. If e is an idempotent in a simple Jordan
triple system J with J,(e) = 0, then J,.(e) is simple as an alternative
triple system under the bracket.

Proof. By (2.15) J,, contains no proper invariant ideals K.,
where the invariant ideal conditions (2.9’-2.10"”) reduce to

Jl ‘ KI/Z c K1/2 <J1/2J1/2K1/2>1 + <J1/2K1/2J1/2>1 =+ <K1/2J1/2J1/2>1 c Kl/z .

We may as well assume J,, = 0, so by (2.14) J, = E,(J,, J,»). Thus
J1'K1/z = E1(J1/2, Jl/z)'Kl/z = <J1/2J1/2K1/2>u and invariance under Jl iS a
consequence of bracket-invariance. Therefore the nonexistence of
proper invariant ideals means nonexistence of proper bracket ideals,
that is, simplicity as an alternative triple system (note J,, is not
trivial under brackets since 0 %= J,,=¢-J,, C E (Jip Jip) Iy =

<J1/2J1/2J1/2>1) . [:]

3. Simplicity theorem. As in the Jordan algebra case, we will
quickly find J, inherits simplicity from J, then will use a flipping
argument to establish simplicity of J,. Before flipping we need to
consider the case when the flipping process annihilates an ideal K, <] J,.

3.1. KERNEL LEMMA. The maximal ideal of J, annihilated by
P(J.) is Ker P(J,;s) = {zs€ Jo| P(J.2)2, = P(J.e) P(20)J, = 0}. It is an
invariant ideal.
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Proof. Clearly any ideal K, annihilated by P(J,,) lies in Ker P(J,,,)
since P(K,)J,c K,. It remains to show K, = Ker P(J,,) is actually
an invariant ideal.

K, is a linear subspace: it is clearly closed under scalars, and for
sums z, + w, note

P(J,2)P(zy + wo)d, = P(J,5)P(z,, wo)J, = P(J,)0) L(w,, J)z,
= {—=L(Jo, w)P(J,1) + P({Jowe 2}, J12)}2, (by JIT5)
c _‘L(Jm Jo)P(Juz)zo =+ P(J1/2>zo =0.

K, is P-outer, P(J))K, C K,, since P(J,,)[P(a,)z,] = P*(J,-a,)z, (by
PI11) € P*(J,)2 = 0 and P(J,)[P(P(a)z0)do] = P(J12) P(a0) P(2o) Plag)J,
P*(J 5 a0) P(20) ], C P(e) P(J,5) P(2,)J, = 0. It is L-outer, L(J,, J,)K,C K,,
since P(J,5)[L(aq, b0)2,] < P(J,/2)%,=0 by PI14 and P(J,,)[ P(L(a,, by)20)Jo] C
P(J,2){P(ao) P(b,) P(z,) + P(z)P(b,)P(a,) + L(a, b,)P(2,)L(b, a,)—
P(P(ay)P(bo)z, 20)}Jo (by JT4)CP*(Jys - a0)P(bo)P(20)Jy + P(J,,)P(z0)J, +
P(J,,,)L(a,, bo)P(20)J, — P(J,,5) L(J,, Jo)z, (by PIL1) C P((J, 12 o) - bo) P(20)J, +
0 + P(JI/Z’ Jl/z)P(zo)Jo - P(Jl/zy JI/Z)zO (by PI10 and PI]~4) c P(Ji/z)P(zo)Jo =+
0—0=0.

K, is inner, P(K,)J,C K,, since P(J,,)[P(z,)a,] = 0 by hypothesis
and P(J,,)[P(P(z)a0)Jo] = P(Jy2)P(2) P(ao) P(20)Js © P(J,/2) P(20)J, = 0.

K, is trivially P-invariant (2.7) and (2.8), P(J,,)P(J,,)K, =
P(J,,)P(e)P(J,.)K, = 0. It is L-invariant (2.5), L(J,,, J,.)K,C K,,
since P(Jo)[L(,s2, Yi2)20] = (P{Y1e®ieT 10l Ji2) — LYy 12) P(J112)}20 (bY
JT5) = 0and

P(J ) P{2s,521) o] © P(Jy){P(@1/2) P(W112) P(20) + P(20) P(Y12) P(,2)
+ L@y Y12) P(20) L(Y 12y @112) — P(P(X12) P(Yy12)20, 20)}s (by JT4)
C P(J12) P(J o) (P (Y1) P(20) ) + P(J12) P(20) ],
+ P(J ) L(J 2y J112) P(20) s — P(Jyys) Ly, Jo)2o = 0

as above. The trickiest part is L-invariance (2.6), Ey(J /s, Jo: (Ky+ 1)) <
K,. We first show this is killed by P(J,,). We have

P(J o) By sy o+ (Ko J110))]
= P(Jy )oKy 1)} (by P4) = P(Jyo) L(J, Ko 1s2)d e
CH{=L(KyJ s, J)P(J o) + P{(Ko* i) i}, i)} e (by JT5)
- {(Ko - Jl/?)J0J1/2} + L(va J1/2){(Ko : J1/2)J0J1/2}

where {(K0°J1/2)J0J1/2} = E1 (KO'J1/21 Jo’Jllz) (by P3)CE1(K0'J1/2; Jllz) =
E\(Jyz Kot J12)* (by P8) = {J,p K, n}* (by P3) C (P(Jy2) Kp)* = 0.

To see P(J,.) also kills P(E,)J, we use PI6 to write P(E (.,
ao'(zo‘yvz)))Jo c P(xuz)P*(ao'(zo’yuz))Jo + P*(ao'(zo'yuz))P(wl/z)Jo + Ey(%y/s,
Play (o 4:2)(Jo-21)). Here P*(ao (20 Y1)y = P2y Y1) P(ag)d, (by
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PI11) = P*(4,) P(20) P(a0)Jy © P*(J,2) P(2)J, = 0 by PI10, and P*(a,-
(2o Yi2))J: = P(a)P (2 Y1), = P(a))P(2))P* (y,)J, (by PIN0, 11)c
P(a,)P(z)J, C K, since K, <|Jy, also P(a,- (2 Yu2))(J o T1z) = @y - {2,
P(y,)(2,+ (ay- J,12))} (using PIL6 twice) C Jo-(2,+J,,) so that Ey(w,., P)c
Ey(Jysy Jo (2o 1)) is killed by P(J,, by the above. Thus P(J,,)
does kill all three pieces of P(E,)J,, E, is contained in K,, and K, is
an invariant ideal. ]

Next we establish that L(J,,, J,,,) and P(J,,,) P(J,) and P*(J,,,) P(J,)
send an ideal into its “square root” or “fourth root”.

3.2. LEMMA. For any ideal K, <]|J,(i =1,0) we have

(3.3) L(J,s, J1n) P(K)J C K,
(3.4) P(J.) P(J.2) P(P(K.)J)J, C K,
(3.5) if 1 =0, P*(J,) P(J 1) P(Jo) P(P(K0) o), C K,

Proof. (3.3) L(xys ¥.)P()a; = — PR)L(Y,p, ©2)0; + P({®Y,:2:},
z)a, (by JT5)e —P(K,)J, + P(J,, K,)J; C K, since K, is an ideal.

(3.4) Forw, cP(K,)J; we have P(x1/2)P(y1/2)P(wi)Ji:{P({xllzyl/Zwi})_
P(w)P(Y,) P(,/2) — L@, Yie) P(W) LY 12y 1)0) + P(P(x,,) P(y,)w;, wy)};
(by JT4) C P(K)J; — P(K)J; — L(J,pp, J,2) P(K,)J; + P(J;, K))J; (using
(3.3) for w,) C K,.

(3.5)  P(x,2)P(e)P(y:2) P(a0) Ly © P(w,2) [ P{ey.200}) — Plao) P(y,12) P(e) —
L(e,y./) P(a0) L(Y,5, €) + P(P(e) P(y.15)0, a0)1 Ly (bY JT4) C P(J,2) P(J,/2) Ly —
0 — L(er yl/z)P(ao){JUzeLo} + {JlLOJO} = P(J1/2)P(J1/2)L07 S0 if Lo =
P(P(K,)J,)J, we have P(J,,)P(J,,)L, C K, by (3.4). ]

It is not clear whether (8.5) can be improved to assert
P*(J,) P(J,,) P(P(Ky)Jo)J, C K.

Now we can describe a class of ideals which is guaranteed to be
invariant.

3.6 PROPOSITION. Any strongly semiprime ideal K, <]J, is
nvariant.

Proof. We first prove that K, is L-invariant, i.e., w, =
L(x,,, ¥..)%. € K, for all z,€ K,. By strong semiprimeness we will
have w, ¢ K, if we can show P(w,J,C K,. But

P(w))J, = {P..) P(¥.2) P(2,) + P(2)PY.2) P(%.72)
+ L(xl/2) yl/Z)P(zl)L(yl/27 x1/2) - P(P(x1/2)P(y1/2)zly z1)}J1 (by JT4)



PEIRCE IDEALS IN JORDAN TRIPLE SYSTEMS 437

c P(x1/2)P(y1/2)P(z1)J1 + P(K1)J1 + L(x1/2y yl/Z)P(KI)Jl - {J1J1K1}
. P(xl/z)P(y1/2)P(z1)J1 + K1 (using (33)) ’

so it suffices if all u, = P(x,,)P(¥.»)P(z)a, fall in K,. Here again it
suffices if P(u,)J,c K,, and for this

P(u,)d, = P(%.2) P(Y2) P(P(2)0) P(Yy2) P(.2) ],
C P(Ju)P(J.) P(P(K)J)J, C K, by (3.4) .

Next we prove K, is P-invariant. Let w, = P(x,,)P(¥.2)2,; to
show w, falls in K, it again suffices by strong semiprimeness if it
pushes J, into K,, ie., if P(w)J, = P(,.) P2 P(2)P(Y2) P(®,2)J, C
P(x,,)P(y,,)P(z,)J, falls into K,. But again this is in K, since it
pushes J, into K,, P(P(%,,)P(y,.)P(2)a,)J, C P(x,:) P(y,,) P(P(z)a.)J, C
K, by (3.4). O

Because it is such a nuisance to verify the extra invariance
needed when ¢ = 0, and since we will not need the result, we do not
establish the analogous result for K, <]J,.

3.7. COROLLARY. Any maxinal ideal M, <] J, is invariant.

Proof. If M, is maximal then J, = J,/M, is simple with invertible
element &, hence the Jacobson and small radicals are zero and J, is
strongly semiprime (see [1, p. 38]), so M, is strongly semiprime in J,.

O

We now have the tools to establish our main result.

3.8. SmvpLICITY THEOREM. If e is a tripotent in a simple
Jordan triple system J, thenm the Peirce subsystems J,(e) and J(e)
are simple.

Proof. We may as well assume ¢ is proper, else the result is
trivial. Then J, contains a nonzero tripotent and consequently is not
trivial, and it has no proper ideals since any such could be enlarged
to a maximal proper ideal 0 < M, < J, (Zornifying and avoiding e),
which would be invariant by 3.7, whereas by 2.15 J; contains no
proper invariant ideals.

Thus J, is simple. We may easily have J, = 0; we will show
that if J, is nonzero then it must be simple. First, it is strongly
semiprime: any element trivial in J, would be trivial in J (P(z,)J, = 0
implies P(z,)J = 0), whereas by simplicity and non-quasi-invertibility
(thanks to e = 0) the system J is strongly semiprime (see [1, p. 38]
again). In particular, J, is not trivial, and we need only show it
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contains no proper ideals 0 < K, < J,. Suppose on the contrary that
such a K, exists. By (ordinary) semiprimeness we have successively
K;=PK)K,+ 0, K/ = P(K)K, + 0, K" = P(K/)K; #0. By the
Flipping Lemma 2.11 K;” = P(J,,)K;" + P*(J,,)K;" is an ideal in J,,
so by simplicity of J, we have either K;” =0 or K;” = J,. In the
first case K.’ is an ideal annihilated by P(J,.), hence is contained
in the invariant ideal Ker P(J,,) by 3.1; by (2.15) we know J, contains
no proper invariant ideals, so Ker P(J,,) D K,” > 0 forces Ker P(J,,) =
J,, hence P(J,,)J, = 0, contrary to (2.14iii) (assuming J, # 0). Thus
the first case K, = 0 is impossible.

On the other hand, consider the case K,” = J,. Here (by (2.14i))
Jo = P(Jyp)J, = P K" = P(J.p) P(J,) Ki" + P*(J.) P(J 1) K3 is
contained in K, by (3.4) and (3.5) (noting K, = P(P(K)K)K,C
P(P(K,)J,)J, and K" = P(K)K; C P(J,)(P(K:)K;) C P(Jy) P(P(Ky)Jo)J,
as required by (3.4) and (8.5)). But J, = K, contradicts propriety

of K,.
In either case the existence of a proper K, leads to a contradiction
so no K, exists and J, too is simple. N

This settles a question raised by Loos [1, p. 133] whether J, is
simple in case J is simple and J, = 0. The result was known when
J had d.c.c. on principal inner ideals. Of course, for the case J, =0
we would not need the elaborate machinery of Peirce decompositions,
since the Peirce relations and invariance are vastly simplified (for
example P(J,,)P(J,,)J, = 0, so P-invariance is automatic).

The analogous simplicity result fails for .J,,: J,,, need not inherit
simplicity from J, since when J = M, (D) is the space of paxg matrices
over D relative to P(x)y = xy*x (y* ='¥), then the diagonal idempotent
e=e¢,+-+e, 1Zr<p=<q) has J,, = J, B J,. In the simplest
case p =¢q = 2,r =1 we have J,, = De,, @ De,. Note, however, that
these proper ideals K, = J,, L, = J,, are invariant under J, and J,
but not under brackets. It is still an open question whether J,, is
simple as a bracket algebra (it is if J, = 0), or whether it is always
simple or a direct sum of two ideals as a triple system.
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