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PEIRCE IDEALS IN JORDAN TRIPLE SYSTEMS

KEVIN MCCRIMMON

We show that an ideal in a Peirce space Jt(i — 1,1/2,0)
of a Jordan triple system / is the Peirce {-component of a
global ideal precisely when it is invariant under the multi-
plications L(J1/2, J1/2), P{Jί/2)P(Jι/2) (for i = l ) ; under L(J1/2, Jι/2),
P(Jv*)P(Ji/t), P(Ji/2)P(β)P(Ji/i), L(J1/2ί e)P(J0,J1/2) (for i = 0);
under LίJj, L(J0), L(J1/t, e)L(e, J1/2), L(J1/2, e)P(e, J1/2) (for
i = 1/2). We use this to show that the sub triple systems
Jx and Jo are simple when J is. The method of proof closely
follows that for Jordan algebras, but requires a detailed
development of Peirce relations in Jordan triple systems.

Throughout we consider Jordan triple systems (henceforth abbre-
viated JTS) with basic product P(x)y linear in y and quadratic in
x, with derived trilinear product {xyz} = P(x, z)y = L{x, y)z, over an
arbitrary ring Φ of scalars. Because we are already overburdened
with subscripts and indices, we prefer not to treat the general case
of Jordan pairs directly, but rather derive it via hermitian JTS.
For basic facts about JTS and Jordan pairs we refer to [1], [3], [6].
Our analysis of Peirce ideals will closely follow that for Jordan
algebras; although the basic lines of our treatment are the same as
in [4], the triple system case requires such horrible computations
that we do not carry out so fine an analysis, but concentrate just
on the main simplicity theorem.

1Φ Peirce relations in Jordan triple systems* Any Jordan triple
system satisfies the general identities

(JTl) L(x, y)P(x) = P(x)L(y, x)

(JT2) L(x, P{y)x) = L(P{x)y, y)

(JT3) P(P(x)y) = P(x)P{y)P{x)

and the linearization

(JT3') P({xyz}) + P(P(x)y, P(z)y) = P(x)P(y)P(z) + P(z)P(y)P(χ)

+ P(x, z)P(y)P(x, z) .

A more useful version of this is the identity

(JT4) P({xyz}) = P{x)P{y)P{z) + P(z)P(y)P(x) + L(x, y)P(z)L(y, x)

- P(P(x)P(y)z, z) .

Other basic identities we require are
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(JT5) L(x, y)P(z) + P(z)L(y, x) = P(L(x, y)z, z)

(JT6) P(x)P(y, z) = L(x, y)L(x, z) - L{P{x)y9 z)

(JT7) P(y, z)P(x) = L(z, x)L(y, x) - L(z, P(x)y)

(JT8) 2P(x)P(y) = L(x, yf - L(P(x)y, y)

(JT9) [L(x, y), Liz, w)\ = L(L(x, y)z9 w) - L(z, L(y, x)w) .

(See for example JP1-3, 20, 21,12-13, 9 in [1, pp. 13, 14, 19, 20J.)

PEIRCE DECOMPOSITIONS. NOW let e be a tripotent, P{e)e = e.
Then J decomposes into a direct sum of Peirce spaces

** — «/ 1 \X? *J 1/2 \X/ *J 0

relative to β, where the Peirce projections are

E1/2 = L(e, e) - 2P(e)P(e) ,

J5Ό B( ) = I - L(fi, e) + P(e)P(e) .

We have

(1.2) L(β, e) = 2ί/ on J, , P(e) = 0 on J1/2 + Jo

Note that P(e) is not the identity on Jίf though Jγ = P(e)J: it induces
a map of period 2 which is an involution of the triple structure and
is denoted by x—> x*(xe Jx). For reasons of symmetry we introduce
a trivial involution x —> x on Jo, so * is defined on Jγ + Jo

(1.3) atf - P(e)x, , α;0* = α;0 .

Note that if J is a Jordan algebra and e is actually an idempotent,
then Xι = a?! too.

The Peirce relations describe how the Peirce spaces multiply.
Let i be either 1 or 0, and j — 1 — i its complement. Then just as
in Jordan algebras we have

(PD1) PWJtCLJt, P{J%)Jj = PWJ1/2 - 0

(PD2)

(1.4) (PD3)

(PD4)

(PD5) {J,JyJ} = 0 .

(For all this see [6] and [1, p. 44].) These show that the Peirce
spaces are invariant under the multiplications mentioned in the
introduction.

PEIRCE IDENTITIES. For a finer description of multiplication
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between Peirce spaces it is useful to reduce Jordan triple products
to bilinear products whenever possible. We introduce a dot operation
x>y (corresponding to χoy in Jordan algebras) for elements ak in
Peirce spaces Jk, and a component product Ei(x1/2, yι/2) (corresponding
to the ^-component of x1/2°y1/2) as follows:

(Bl) xrVi/2 = 2/1/2 #i = {x&yl/2} Lfa) = L(x19 e): J1/2 > J1/2

(B2) a?0 3/1/2 = 2/1/2 Bo = {XoVi/2e} L(x0) = P(x0, e): J1/2 > J1/2

(B3) x\ = P(xγ)e, xί-Vi = {^eyL} L{xλ) = L(xlf e): Jx > Jx

(B4) E^x^, yι/2) = {x1/2yι/2e} J1/2 x J 1 / 2 > J,

(B5) EQ(x1/2, 2/1/2) = {£1/2^1/2}, -̂ 0(̂ 1/2) = Pfrxώe: Ji/zXJ^ > Jo

(B6) Afe/2) = ^(^i/2, β), LO(B1 / 2) = L(e, a?1/2) so t h a t

Liix^di = αi ajχ/2, Lt(x1/2)a,j = 0, L^x^y^ = ^(2/ 1 / 2, xi/2) .

It turns out that the only Jordan products #2 or #07/ which are not
expressible in triple terms are

The need to avoid these products causes many complications when
passing from Jordan algebra results to triple system results.

For example, let e be an ordinary symmetric idempotent in an
associative algebra A with involution, made into a triple system
J = JT(A, *) via P(x)y = xy*x. Then the Peirce spaces are the usual
ones, JΊ — An, J1/2 = A10 + A01, Jo = Λ)0 The bilinear products we have
introduced take the form

Bo 2/1/2 = B0?/ί2

-Ei(Bi/2, 2/1/2) = £Ί(B1 / 22/ί;2 + 2/ί2Bi/2)

JSΌ(Bl/2, 2/l/2) = E0(xl/2y1/2 + l/x/^/a) .

This suggests tha t because of the * the products αv2/i/2 and £Ί(x1/2, 2/1/2)
are going to behave anomalously.

1.6. PROPOSITION. Tfce triple products of Peirce elements are
expressed in terms of bilinear products by

( P I ) P(x1/2)y1/2 = B1/2 .Ei(ίc1/2,3/1/2) - y1/2 EQ(xί/2)

(P2) {B!/^!/^^} = x1/2-Et(zι/2, yι/2) + zι/z-E&M, yι/2)

(P3) {xιl2a%yll2} = Ej(xί/2, af-y1/2) •=• E3 (yί/2, a*-x1/2)

(P4) {x1/2τ/1/2αj = ^(aJi/2, a? y1/2)

(P5) { α Λ W = αi (6t* «i/2)
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(P6) {atZyJbj} = at (z1/2. bf) = (α? z1/2) δ y

(P7) e s1/2 = 21/2

(P8) ^ ( z 1 / 2 , 2/1/2)* = EάVrt, x1/2)

and we can write

(P9) I/(^/2, α<) = Liiput-aϊ), L{aif x1/2) = L,iaf-x1/2) .

product of elements x = xγ + α?1/2 + x09 V = Vι + 2/i/2 + 2/o
mα|/ ί>£ written as

P(x)y = PixdVi + P(θ2/o

+ ί»i2/i«i/2} + {̂ 02/0̂ 1/2} + {̂ 1̂ 1/2̂ 1/2} +

(1.7) = P(x1)y1 + P(Xfl)ι/fl + {x1/2-E&M, y1/2) - y1/2-Eo(x1/2)}

+ Pfo/sXi/! + 1/0) + a?i (Xo Vi/*) + »i

+ JSί(α?1/2f xf 2/1/2) + #0(^1/2, «o 2/1/2)

Proof. Most of these product rules can be established either by
using JT5 to move L(x, y) inside a triple product P(z)w, or by using
the linearization of JT2 to interchange x and z in a product {x(P(y)z)w}.
Thus (PI) is P(aθy = P(x){yee} (by 1.2)) = {{eyx}ex} - {e7/(P(^)e)} (by
JT5) = E^x, y)-x — y E0(x), and (P2) is its linearization. (P7) follows
from PD2, {eez1/2} — z1/2, and (P8) is vacuous for ί — 0 by triviality
of * and symmetry of Eo, while for i = 1 P(e){xye} = P(e)L(e, y)x —
-L(y, e)P(e)x + P«2/eβ}, β)α? = - 0 + {yxe} by JT5. For (P3)-(P6) we
will need (P9),

L(x1/2, a,) = L(x1/2 aΐ, e) L(aί9 x1/2) = L{e, α ί a;1/2)

2, α0) = L(e, a?1/2 α0) L(a0, xί/2) = L(ao x1/2, e) .

To establish this for αL we note I/(&1/2> α j = L(x1/if P(e)at) =
— LίαfjP^XiJ + ̂ ί^/gβαf}, e) (linearized JT2) = L(a51/2 α*, β) and dually
for L(aί9 x1/2); for α0 we have L(a?1/2, ao) = L({x1/2ee}, ao) = —L({x1/2aoe}, e) +
L(a?1/2, {eea0}) + L(e, {e 1̂/2α0}) = — 0 + 0 + L(e, αj1/2 α0) and dually for
(̂̂ o> 1̂/2)- By B6 w e c a n write these in the uniform manner (P9).

Applying these to x1/2 yields (P3) and (P4) respectively, and applying
them to aiy bό respectively yields (P5) and (P6). Π

Even in a Jordan algebra the products P{x^yt and P(Xjj2)yt cannot
be reduced to bilinear products if there is no scalar 1/2 6 Φ (though
2P(xί/2)yi9 and more generally P(sc1/2, y^2)ai9 can be reduced by (P3)).

It will be convenient to introduce the abbreviation

P*fe/2) = *°Pfe/2K (i.e., P^x^a, = P(xί/2)a* ,
P * ( £ K (P(a?/8)α0)*, so



PEIRCE IDEALS IN JORDAN TRIPLE SYSTEMS 419

We now list the basic Peirce identities. Many of these have
appeared in [6], or in [1], [2] disguised as alternative triple identities.

1.9. PEIRCE IDENTITIES. The following identities hold for ele-
ments au bu βi 6 Ji(i = 1, 0, j = 1 — i) and x,y,ze J1/2:

(PI1) we have a Peirce specialization α, -> L{aτ) of J% in End (J1/2):

( i ) P(α<)6<^ = α<.(δ<*.(αi.«)) L{P{ax)bf) =
(ii) e z = z L(e) — Id
(iii) af-z = a^iβ^z) L(af) — L(αx)

2

(iv) (a^b^-z = αi Cδj js) + i>r(a!-^)
+

(PI2) P(at)Et{x, y)* = Et(άt x, aΐ • y)

(PI3) L(ai, bt)Et(x, y) = Et(a< (6? x), y) + Et(x, a* -(b<• y))

(PI4) aιΈι{x, y) = Efa-x, y) + E,{x, a? y)

(PI5) P(z)Eί(x, y) = E,(z, E^y, z) x) - Ej(P(z)x, y)

(PI6) P(E{(x, y))at = P(x)P*(y)ai + P\y)P(x)ai + Et{x, P{y){aϊ-x))

(PI7) {P(as)α,} y + P(x)(a( • y) = E,{x, y) • (a* x)

(PI8) {P* (x)a,} y + a,r P{x)y = Et(a, x,y) x

(PI9) Pix^a.xb,} = P(x)a1 • (b0 • x) = P(x)b0 • (aΐ • x)

(PI10) P(o4 aj)δy = P(α,)P (s)δy, P^-x)^ = P*(x)P(ai)bi

(Pill) P(α,)P(α>)δ, = P*(af • x)bh P(x)P{aι)bi = P*(af • x)b(

(PI12) Uflt, bdP{x)Ci = P(ai • (6* x), x)c3- = Et{at • (bf • x), ef • x)

(PI13) Uβu WP*(ίκK = P*(aί (bt-x), x)cj = Et(crx, α« (δ? •*))

(PI14) PtxMαAe,} = P(α, 6, (of x))C< = ^ ( » , c? (δ4 (α* »)))

(PI15) £Ό(αo a;) = P(ao)Eo(x), E^-x) = P*{x)a\

(PI16) P(αέ »)!/ = α, P(»)(of y)

(PI17) P(a, • x, x)y = a, • P(x)y + P(x)(a* • y) .

Proof. The Peirce specialization relation PΙl(i) follows from JT5,
using B6: P(at)b, z = Lt(z)P(a,)bt = {-P{at)L^z) + P(Lt(z)at, a()}bz =
- 0 + {(z cOM.Kby PDl) = Hi•(&*•(«< •«)) by P5. We have already
noted e «1/2 = z1/2, whence (ii). Setting b1 = e in (i) yields (iii), and
linearization yields (iv).

The identities involving the E{ follow from JT5 and JT4. For
PI2 and PI5 we have B6 P(u)Ei(x, y) = P(u)Lj{y)x = - Z/ί(y)P(%)x +
{{Li(y)u)xu} (by JT5); when u = a( we get —0 + {(af y)xat} =
Et(μt y, a* *)(by P4) as in PI2, and when u = z we get —E3{P(z)x, y) +
E3{z, x E3-{z, y)*) (by P4) = E,{z, E3-(y, z) x) - E3(P(z)x, y) (by P8) as in
PI5. For PI3, L(air bt)Et(x, y) = L{aif 6t)L3 (i/)x = L}(y)L(ai, b()x -
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[Ls(y\ L(ai9 bt)]x = Et(L(aif bt)x, y) - L(Ld(y)ai9 bτ)x + L(aif Lt(y)bt)x (by
JT9) = Et(at-(bf -x),y)-Q + {<*,(&, y)x) = Et(at-(bf -x),y) + Et(x, at (δ4 y))
(by P4). PI4 is the special case b, = β of PI3. For PI6 we use JT3'
for i = 1: P({^β})αx = {P(x)P(y)P(e) + P(e)P(y)P(x) - P(P(α;)y, P(β)») +
P(e, x)P(y)P(e9 x)}ax = P(x)P(y)at + (P(y)P(x)aιγ - 0+ #,(&, P(y)(af x))9

while for i = 0 we use JT4: P({a?β2/})α0 = {P(aj)P(e)P(2/) + P(y)P(e)P(x) +
L(a?, e)P(y)L(e9 x) - P(P(x)P(e)yf y)}aQ = P(x)(P(y)a0)* + P(y)(P(x)a0)*)*

The identities involving P(o5)α< are established in the same ways.
For (PI7), P{x)a, y + P(x) (a, - y) = {^(y) P(x) + P ^ L ^ T / ) } ^ =
P{Lά{y)x, χ)at - P(^(x, y), x)a< (by JT5) = Et(x, y) (αf α?) (by P5). For
(PI8) we use linearized JT1: for i = 1, {(P(̂ )αf)?/e} + {(P(x)y)a?e\ =
{a fαffl yje}, for i = 0 {(τ/P(̂ )αo)e} + {ao(P(x)y)e} = {{aoxy}xe}, and we use
P8. For (PI9), Pix^a.xaj) = P(x)L{au x)aό = I/(a?, ai)P(x)aj (by JT1) =
{α α.P^α,} = P(x)ar(at x). For (PI10) with i == 1 we have by JT4
that P({α1ex})6, = {P(α1)P(β)P(a?) + P(x)P(e)P(aι) - P(P(aι)P(e)x9 x) +
L(αlf e)P(x)L(e, a^b, - {P^P^POε) + Pί^P^PίαJJδ^. If k = 0 this
becomes P{aι)P{e)P{x)b, = P(aJ(P(x)b0)* = P(α1)P*(^)δ0, while for fc = l
becomes P(x)P(e)P(aί)bί = P(x)(P(aί)b1)* = P* (α?) P(αx) 6t by (1.8).
Similarly if ΐ = 0 we have P({aoxe})bk = {P(ao)P(x)P(e) + P(e)P(x)P(a0) -
P(P(ao)P(x)e, e) + L(αo,x)P(e)L(x,αo)}6, = {P(αo)P(^)P(β) + P(e)P(x)P(ao)}bk,
reducing if & = 0 to P{e)P(x)P(ao)bo = P*(ίc)P(αo)6o and if k = 1 to
P(ao)P(x)P(e)b1 = P(ao)P*(x)b1. Since * is an involution on Ĵ , J, ,
(Pill) follows by applying * to (PI10) (with aif bk replaced by α*, 6ί).
Similarly (PI13) follows by applying * to (PI12) (with ai9 bt replaced by
α*, bΐ), where (PI12) follows from JT5: L(aif bt)P{x)cό = {-P{x)L{bu a%) +
P({aAx}, x))cά = PiarΦί x), x)cά (by P5) - EfarW-x), cf-x) (by P3).
For (PI14), PWiaM = -L(bίy a^P^c, + P({M^}, x)c, (by JT5) -
- 0 + {(6, {at - x))ctx) - Es(x, ct (6, (at a?))) (by P3). (PI15) is just the
particular case b = e of (PI10). For (PI16) with i = 0, P(aQ-x)y =
2?i(αo α; 2/) (αo α0 — E0(a0-x) y = αo {£Ί(αo x, !/)*•«} — P(ao)Eo(x)-y (by
PI15) = α0 {^(i/, α0 a?) #} — α0 {JE?0(«) (α0 2/)} (by Plli) = α0 {£Ί( ,̂ ao-y)-x-
E0(x)'(a0-y)} (by symmetry of P3) = αo {P(x)(αo τ/)}. For i = 1,
P(a1-x)y = Eάa^x, y) (^ a;) - ^ ( ^ . x). y = {~aι ( ^ ( ^ a, !/)•»)} +

^ ^ + ̂ α ^ ^ α r ^J flJ-P^αϊ-y (by (Plliv),
^ ( α . x, y) a?) + P^E^x, y)* x + E1(al x,y)
, y) x] (by (PI2), (PI8)) = a^{-Ex(a^x9 y) x

x, v)-x- E0{x)-y}} (by Plli, iii) = ^-{E^x, af y) - E0(x) (at »)}
(by (PI4), (P6)) = α1 P(a?)(α1* 2/). (PI17) is just the linearization αL->
αlt β of PI16, or it follows from JT5. •

Observe that the proof of PI16 depended only on PIl, 2, 4, 8, 15.
Note also that there is no analogue of Plliv for J09 so we cannot
commute an L(a0) past an L(b0) at the expense of an L(αo 6o), which
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means that if Ko is an ideal in Jo we do not have L(J0)L(K0) cz
L(K0)N(JQ) as we do for an ideal Kx in Jt. Similarly there is no
analogue of PI4 or PI17 for i = 0,

THE BRACKET PRODUCT ON J1/2. Even more basic than the in-
herited triple product P(x)y on J1/2 are the bracket products

(1.10) {xyz>i = Et(x, y) z, O; z\ = EQ(x)-z .

This gives two trilinear compositions on J1/2, the one for i = 0 being
symmetric in the first two variables

(xyz\ = (yxz)0 .

Formulas PI, P2 show

P(χ)y = (%yχ>i - O; y\
{xyz} = (xyz\ + <zyx\ - (xzy)0 .

In the special case of a maximal idempotent where Jo = 0 we see
P(x)y = (xyx)ly so the bracket product coincides with the triple
product; Loos [1, 2] has abstractly characterized such products <, ,)
on such J1/2 as alternative triple systems. We will show that in
general even if Jo Φ 0 the product (xyz)λ still behaves somewhat like
an alternative triple product.

The interaction of the bracket with multiplications from the
diagonal Peirce spaces is given by

L{aif btKxyzϊi = (L(ai9 bt)x, y, z)t + (x, L(aΐ, bf)y, z),
(1 14) z τ/-L* * w

- <a?, y, L(bΐ, at)),
(1.13) aι-{xyz)1 = (α^a, y, ^X + <aj, αf y, ^>! - <a?, y, aι-z)1

(1.14) L(α,, 64)<«^>y = <*, », ^(^ι*, &**)«>/

(1.15) LiaXxyz), = <y, a?, L{at)z)ό

(1.16) aι-(xyx}ι - <ara;, #, a?>x - E0(x) (a? y) - P(x)a? y .

Unfortunately (1.13) with 1 replaced by 0 is false (even in triple
systems JT(A, *) derived from associative algebras), and there does
not seem to be any analogous identity for the interaction of < , , >p

with Jo

To verify these identities, note for (1.12) L(ai9 bι)Ei{x, y) z —
α, •(&?•(#*(&, »)•*)) (by P5) = {a&Eάx, y)} z - Et(x, y) (bf (ar«)) (by
linearized Plli) = {E^a, (bf -»), ») + J^(α, αf (δ, y))} 2 - ^(a?, 2/) {Wαfs}
(by PI3, P5) - (L(aif bt)x, y, z\ + (x, L{af, bϊ)y, z\ - (x, y, L{bf, af)z\
(by P5). We obtain (1.13) by setting 6X = e in (1.12). For (1.14),
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L{au bx)Eό(x, y)-z = L(ai)L(bf)L(Ej(x, y))z = L{E,{x, y))L(aΐ)L(bf)z (using
P6 twice) = (x, y, L(af, bt)z)ό (using P8). When i = 1 (1.15) follows
from (1.14) by setting bt = e; in general we argue as before
HaάUEAx, y))z = L(Ej(x, y)*)L{aΐ)z = (y, x, a?-z}j. For (1.16),
a, • (xyx) = a, • {P(x)y + E0,(x) y) (by (1.10), PI) = {-P*(x)ar V +
E^arx, y)-x} + E0(x) (a? y) (by PI8, P6) = E0(x)-(a?-y) - P(x)aΐ y +
(a. x, y,x>!.

Next we have some intrinsic bracket relations for the more
important bracket (x, y, z} = (x, y, z)^

(1.17) (uv(xyz)) + (xy(uvz)) = ζuvx)yz) + (x(vuy)z)

(uv(xyx)) — ((uvx)yx) = (x(vuy)x) — (xy(uvx))

(1.18) = E0(x) • (vuy) - E^E^x) v,u)-y

+ E0(x, [E.ix, v) n - E0(x, u) v]) y

(1.19) (xyx)yw) - (xy(xyw)) = {P(e)P(y)P(x) - P(x)P(y)}e-w

(1.20) (x(yxy)w} - (xy(xyw)) = {P(x)P(y) - P(e)P(y)P(x)}e-w

(1.21) ((xyx)vw) - (x(vxy)w) = {P(e)P(y, v)P(x) - P(x)P(y, v)}e w

(1.22) {(xyz}yw) - (x(yzy)w) = {P(e)P(y)P(x, z) - P(x, z)P(y)}e w

(1.23) iuvx)yw) + (x(vuy)w) = ((xyu)vw) + (u(yxv)w} .

Here (1.17) is jus t (1.13) for a, = E^u, v), af = Ex{v, u), while (1.23)
is a consequence of the s y m m e t r y in uv, xy on t h e left side of (1.17).
Set t ing a1 = E1(u, v) in (1.16) yields (uv(xyx} — ({uvxyyxy( = (x(vuy)x) —
(xy(uvx)) by (1.17)) = E0(x) • (E^v, u) • y) - P(x)E1(v, u) • y = E0(x) •
(E&, u) y) - E0(x, E0(u, x) • v) • y + E0(P(x)v, u) • y (by PI5) = E0(x) •
(E^v, u) y)- E0(x, E0(u, x)• v)• y + E^EJjt, v) x,u) y-E0(E0(x) v,u) y
(by PI) = E0(x) • (E^v, u) y)- E0(Eΰ(x) • v, u) • y + E0(x, [E^x, v)-u-
E0(x,u) v]) y (by P3 and symmetry of Eo), which is (1.18). The
formulas (1.19), (1.20), (1.21), (1.22) are respectively

(1.19') E^xyx), y) - E&, yf = {P(e)P(y)P(x) - P(x)P(y)}e

(1.20') ES.x, <yxy» - E&, yf = {P(x)P(y) - P(e)P(y)P(x)}e

(1.21') E^xyx), v) - E&, (vxy)) = {P(e)P(y, v)P(x) - P{x)P{y, v)}e

(1.22') E^xyz), y) - E^x, (yzy}) = {P(e)P(y)P(x, z) - P(x, z)P(y))e .

Here (1.19') will follow by setting v = y in (1.21') (or z = x in (1.22'))
and using (1.20'). For (1.20') note Et{x, yf=P(E1(x, y))e = P(x)P*(y)e +
P*{y)P(x)e + E^x, P(y)(x-e)) (by PI6) = P{x)P(y)e + (P(y)P(x)e)* +
E&, P(y)x) = E,(x, <yxy> - P(y)e-x) + P(x)P(y)e + P(e)P(y) P(x)e =
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Ex(x, (yxy)) - {x(P(y)e)x} + P(x)P(y)e + P(e)P{y)P(x)e = Ex(x, (yxy)) +
P(e)P(y)P(x)e-P(x)P(y)e. For (1.21') note that E1(P(x)y + E0(x)-y9 v) -
E,(xf E,(vf x) y) = {(P(x)y)ve} + {yE0(x)v}*-{xyEι(v,xy} (by PI, P3, P 4 ) -
{L(P(x)y, v) + P(e)P(y, v)P(x) - L(x, y)L(x, v)}e = {P(e)P(y, v)P(x) -
P(x)P(y, v)}e by JT6. Finally, for (1.22') we have E,(y, Ex(x, y) z)*-
Ex(xf Ex{y, z) y) = {yzEt(x, y)ψ - {xyE^y, z)*} = P(e)L(y, z)L(y, x)e -
L{x,y)L{z,y)e - P(e) {L(P(y)z,x) + P(y)P(x,z)}e - {L(x,P(y)z) + P{x,z)P(y)}e
(by JT6, JT7) = E1(P(y)z9 x)* - E^x, P(y)z) + {P(e)P(y)P(x, z) -
P(x, z)P(y)}e = {P(e)P(y)P(x, z) - P(x, z)P(y))e (by P8).

In the special case that Jo = 0 we obtain the easy half of Loos'
characterization [1, p. 76] of alternative triple systems.

1.24. PROPOSITION. If K1/2aJι/2 is a bracket subalgebra
((K1/2Kί/2Kί/2) c K1/2) with E0(K1/2) = P(Kί/2)e = 0 (for example, K1/2 =
Ji/2 if Jo = 0, or Kί/2 = P(x)J1/2 or Kί/2 — P(x)J1/2 + Φx principal inner
ideals determined by an xe Jί/2 with P(x)e = 0), then Kί/2 becomes an
alternative triple system under the bracket

(xyz) = E,(x, y) z = {{xye}ez} (x, y, zeKί/2) .

The Jordan triple product on Kι/2 is then P(x)y = (xyx}.

Proof. The axioms for an alternative triple system are

(ATI) (uv(xyz)) + (xy(uvz)) = ((uvx)yz) + (x(vuy)z)

(AT2) (uv(xyx)) = ((uvx)yx)

(AT3) (xy(xyz)) = ((xyx)yz) .

Here (ATI) follows from (1.17), and (AT2), (AT3) from (1.18), (1.19)
s i n c e EQ(K1/2) = P(K1/2)e = 0 . B y ( P I ) w e h a v e P(x)y = E,{xy y ) - x =
{xyx} in this case.

If x has P(x)e = 0 then the inner ideals K1/2 = P(x)J1/2 a P(x)Jί/2 +
φx = K[/2 kill e, P(Kι/2)e = P{K[/2)e = 0. Indeed, by JT3 we have
P(Kι/2) = P(x)P(J1/2)P(χ), and by JT1 P(K'U2) = P(P(x)Jί/2) + P(P(x)J1/2,x) +
ΦP(x) = {P(x)P(J1/2) + L(x, J1/2) + Φ}P(x). To see next that these inner
ideals are bracket-closed subalgebras, first note that since P(K[/2)J1/2 c
Kι/2dK[/2 by innerness we have (xyx) = P(x)yeK1/2, hence by
linearization (xyz) + (zyx) e Kι/2, for any x, z e K[/2 and any y e J1/2.
Next we show (K1/2J1/2x) and (xJυ>2Kι/2) are contained in K1/2; by
skewness it suffices to prove the latter, where (xJι/2K1/2) =
Ex{x9 Jι/2) - P(x)J«% c -PixXEfa, J1/2r ' J1/2) + PiE^x, J1/2) x, x)J1/2 (by
PI17) aP(x)J1/2 + P((xJ1/2x), x)Jι/2 aP(K[/2)J1/2 cKi/2. Final-
ly, (K1/2J1/2K1/2) = E^K^ Jί/2) K1/2 (Z-P(x)(E1(K1/2ί Jί/2T - J1/2) +

J1/2) x, x)J1/2 aP(x)Jι/2 + P((Kι/2J1/2x), x)J1/2 aP(K[/2)Jι/2 (by
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the previous case) aK1/2. Thus in fact we have the stronger closure
(K.lf2Jλ/2Kxl2) C Kx/2. O

In any alternative triple system we obtain an ordinary bilinear
alternative multiplication by fixing the middle factor: the homotopes
A{u) with products x uy = (xuy) are alternative.

1.25. PROPOSITION. // K1/2 is a bracket-closed subspace of J1/2

with P(Kι/2)e = 0, then for any u e Kιί2 the homotope K$ with product

x ' u y = (xuy)

is an alternative algebra. If iι is a tripotent with P(u)e = 0
then we have an involutory map x —> P(u)x — x on K1/2 = Jγι2{e) Π
Ji(w) = P(u)J1/2(e), and the bracket can be recovered as

(1.26) <xvz> = (x uV)'uZ.

If in addition E^u, u) = {uue} = e then u acts as unit for P(u)J1/2(e),
and x -^ x is an involution of the multiplicative structure.

Proof. By 1.24 we know Kί/2 is an alternative triple system under
the bracket, hence the homotope K$ is an alternative algebra [1, p.
64]. When u is tripotent P{uf — P(u), so P(u) is involutory on
P(u)J19 and furthermore for x, y, ze P(u)J1/2 we have (# M2/) W2 —
(xyz) = ({xuy)uz} — (x(uyu}z) = {P(e)P(u)P(x, y) — P(x, y)P(u)}e-z
(by 1.22) = 0 since P{Kι/2)e = P(u)P{J1/2)P(u)e = 0. Thus we re-
cover the bracket on P(u)J1/2 from the bilinear product and the
involution.

When {uue} = Ex{u, u) = e in addition then u is a left unit,
u -%y = Eγ(u, u) y = e-y = y. If we knew x —> x reversed multiplica-
tion this would imply ΰ = u was also a right unit; we can also argue
directly, x -uu = (xuu) = Ex(x, u) u = {xu^ — E^u, u) x + E0(x, u)-u =
L(u, u){P(ufx) - e x + 0 (since E0(K1/2) = 0) = P(P{u)uf u)P(u)x -
x (using JT1) = 2P(u)?x - x = x.

To see x->x is indeed an involution, first use the right unit to
s e e x-uy = (x-uy) uu = (xyu)9

(1.27) x uy — (xuy) = (xyu) (when {uue} = e) .

Then

x uy = (u(xuy)u}

= {{uxu)yu) - {P(fi)P(x, y)P{u) - P(u)P(x, y)}e u (by 1.27)

= (xyu) - 0 (again P(K1/2)e = 0)

— X'uy (above) .
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Thus the involution condition is precisely (1.27).
The condition E1(u,u)-y = y is necessary well as sufficient for

(1.27) to hold. Indeed, using (1.21), (1.18) and P(Kι/2)e = 0 one
can show in general that P(u){(xuy) — (xyu)} — (u(xuy)u) —
(u(xyu)u) = {(uyu)xu) — (uu(yxu)) — {Id — LίE^u, u))}(yxu)> which
again establishes sufficiency; for necessity set x = u, so (uuy) —
(uyu) = E^u, u)-y - P(u)y = E^u, u)-y — y. •

These alternative structures on the subsystems P(u)J1/2 are
important for the study of collinear idempotents [5]. These are
families of tripotents {eL, , en} with P(et)ej — 0, {e^e^ = eό for i Φ j ,
and the P(e/) Ji/2fe) = Jχ/ziβi) Π Jiiβj) carry isomorphic alternative
structures. (The motivating example is the collinear matrix units
{ell9 eί2, , eίn] in Mn{Φ) under xy*x.)

2. Ideal-building. A subspace Kd J is an ideal if it is both
an outer ideal

(2.1)

(2.2)

and an inner ideal

(2.3)

P(J)K(zK

L{J,J)KcK

P(K)JdK.

If K is already an outer ideal, the inner condition (2.3) reduces to

(2.3') P(ki)J(zK for some spanning set {fcj for K.

Note that the operators L(y9 z) cannot be derived from the P(x)'s.
From now on we fix a tripotent e with corresponding Peirce

decomposition

Since the Peirce projections (1.1) are multiplication operators, any
ideal K <| J breaks into Peirce pieces

K= K,φ Kί/2 0 Ko (K< = KΓ)J<).

Using the expression (1.7) for the product P{x)y in terms of bilinear
products, we obtain a componentwise criterion for K to be an ideal
(exactly like that in Jordan algebras).

2.4. IDEAL CRITERION. A subspace K = iζ. φ Kι/2 0 Ko is an
ideal in the JTS J — Jx 0 J1/2 0 Jo iff for i — 1, 0 ami j = 1 — i we
have
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(Cl) Ki is an ideal in Jt

(C2) EAJ^K^cKt
(C3) Jt K1/2 c K1/2

(C4) K{-J1/2^Kl/2

(C5) PiJ^K.czK,
(C6) P(k1/2)Ji c ϋΓj /or some spanning set {k1/2} for K1/2 .

If 1/2 e Φ ί/ιe% (C5) and (C6) are superfluous.

Proof. Clearly the conditions are necessary, since any product
with a factor in K must fall back in K. Just as in the Jordan
algebra case, they also suffice. Outerness (2.1) P(J)K(zK follows by
(1.7) since PiJJK^K, (by (Cl)), P^^K^K, (by (C5)), J1/2 ^(J 1 / 2 , iΓ 1 / 2 )c
K1/2 (by (C2), (C4)), ϋΓ1/2 J 0 cϋΓ 1 / 2 (by (C3)), J, • (Jo K1/2) c tfι/2 (by (C3)),
Jr(Kf-J1/2)czKι/% (by (C4), (C3) - note that ϋΓf = K, for any ideal
Ki <\ J( since the involution is given by a multiplication), and
Wi/ 2 , Jt-KUi)^Kt (by (C3), (C2)).

Outerness (2.2) L(J, J)K = P(J, K)J(Z K follows by the lineariza-
tion of (1.7). First note

(C2') E<(KUt, Jιh) c Kt

since ElKυt, J1/2) = Et(J1/t, Ku%)* c Kf c ίΓ,. We have {JJ&} c JSΓ4

(by (Cl)), {J^^K^dEjiJ^, Jt Kιh)dK} (by P3, (C3), (C2)),
KUt Eι(Jι/,M <= iΓ1/2 (by (C3)), JVt • E^Ky,, J1/2) + J1 / 2 ^ ( J 1 / 2 , iΓ1/2) c iί1/2 (by
(C2')( (C2), (C4)), J1 / 2 P(J1/2, ΛΓ1/2)e = J1/2 ^ 0(J 1 / 2, ϋΓ1/2) c iίΓ1/2 (by (C2), (C4)),
Jt • (Kf • Jn) + K< • (Jf • J1/2) c Kυt (by (C4), (C3)), Et(KUtt J* • Jι/2) c
^ ( ί ^ J J c X a b y (C2'», and ^ ( J 1 / 2 , ^ * J1/2) - ^ ( J 1 / 2 X, J1/2) c ^
(by (C4), (C2)).

Once ίΓ is outer we can apply (2.3') to obtain innerness: for the
spanning elements kr e Kr we have P(h)J = P(kι)Ji c ! £ by (Cl) if
i = 1, 0, while P(&1/2)j; c K, by (C6) and P(kί/2)Jι/2 = kι/2 E^k^, J1/2) -
Jυ* P(kί/2)e c ίΓ1/2 J, - J1/2 ίΓ0 c ίΓ1/2 by PI, (C5), (C3), (C4). Thus JBΓ is
an ideal.

When 1/2 6 Φ, (C5) and (C6) follow from (C2-C4) since P(x) =
l/2P(x, x) where P(Jι/2, J1/t)K< = E,(JUt,Kt 'J^aK, by (C4), (C2), and
P(J1/2, KM c ^ ( J 1 / 2 , Jf K1/2) + Ei(K1/2, Jf J^cK, by (C3), (C2), (C2')

D

An ideal ^ in a diagonal Peirce space Jt is invariant if it is
both L-invariant

(2.5) L(J1/2, J l Λ ) £ i = ^ ( J 1 / 2 , ίΓf J1/2) c

and if i = 0, also
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(2.6) L(J1/2, e)P(J09 Jι/2)K0 = E0(J1/2, J0-(KQ-J1/2)) c Ko ,

and P-ίnvariant

(2.7) PiJ^PiJ^K, c Kt

and again if i = 0 also

(2.8) P*(J1/2)P(J1/2)K0 = P(J1/2)P*(J1/2)K0 = P(J1/2)P(e)P(J1/2)K0 c ϋΓ0 .

Note that the maps L(Jυ29 J1/2) and P(J1/2)P(J1/2) automatically send
Ji into itself (and L(J1/2, e)P(JQ, J1/2) and P(Jί/2)P(e)P(J1/2) send Jo into
itself).

An ideal if1/2 <] J1/2 in the off-diagonal Peirce space is invariant if

(2.9)

K1/2 = L(J1/2, e)L(e, Jι/z)Kι/2 = (K1/2J1/2J1/2) c

L(J)L(K)J1/2 = L(J1/2, e)P(e,

Note that these maps do send J1/2 back into itself.
An alternate characterization of in variance in terms of the bracket

products is that if1/2 be a subspace satisfying

(2.9') J^K1/2c:K1/2

(2.10 ) \e/i/2e/l/2^M/2/l Ί~ W1/2-̂ 1/2^1/2/ 1 + \^-l/2^l/2^ 1/2/ 1 ^ -̂ 1/2

(2.10") (^1/2^1/2^1/2)0 + {Kl/2) e71/2)0 C iΓi/2 ,

i.e., that iΓ1/2 be an ideal of the bracket algebra J1 / 2. Clearly any
invariant bracket ideal (2.9')-(2.10") is invariant in the sense of
(2.9)-(2.10) and is an ordinary ideal by (1.11). Conversely, if Kιί2 is
an invariant ordinary ideal it must be a bracket ideal: (K1/2J1/2J1/2)1 +
(J1/2K12J1/2)1 is contained in K1/2 by invariance (2.10), (Jί/2Ji/2K1/2)ι c
J.'K^czK^ by invariance (2.9), similarly <J1/2J1/2K1/2)0 c Jo iζ / 2 c K1/2

by (2.9), while (J1/2K1/2J1/2)0=(K1/2J1/2J1/2)0(Z -{/1 / 2J1 / 2i: i / 2} + (J1/J1/*Ki/%\ +
(K^J^J^)^ K1/2 by ordinary idealness and closure under < , , X, also
<JSL"I/2; e/i/2>o= {Kι/2J1/2K1/2}1 — P(Kι/2)J1/2aKι/2 for the same reason, with
<J1/2; £i/2>o c J o . ίΓ1/a c iΓ1/2 by (2.9).

If 1/2 e Φ then L-invariance (2.5) of Kt <\ Jt implies P-invariance
(2.7) in view of JT8. It is not clear whether (2.5), (2.6) imply (2.8)
when 1/2 e Φ.

An important tool is the ability to flip an ideal from one diagonal
Peirce space to another.

2.11. FLIPPING LEMMA. // Kx is an ideal in Jx then

KQ -
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is an ideal in Jo, which is invariant if Kt is. If Ko is an ideal
in Jo then

)K0 + P*(Jι/2)K0

is an ideal in Ju which again is invariant if Ko is.

Proof. We handle both cases at once by proving

K3 =

is an ideal inheriting in variance from Kt. Note again that K* = Kt

for any ideal Kt<] Jt.
Outerness (2.1) follows from (Pill, 10):

P{a3)P{xι/2)kτ = P^at xώheP iJ^Kt

Outerness (2.2) follows from (PI12, 13):

L(aj9 b^Pfaώki = P(α r(6* ίc1/2), x1/2)ki e P(J1/2)Kt

L(ah bJP^x^kt = P(af-(bj-x^), x1/2)he P*(J 1 / 2 )^ .

To see that K5 is inner (2.3'), for the spanning elements P(x1/2)ki
and P*(#1/2)fc, we have

fe/2)fcJJi = P*(xlf%)P{kt)P*{xUt)Jj c P*(x1/2)P(fc,)Jt c P^x^Kt

using (1.8) and innerness of Kt in J*. Thus K3 is inner as well as
outer, hence is an ideal in J3.

If Ki is I/-invariant (2.5) to begin with, then Kά will be L-
invariant too:

- P(zί/2)L(y1/2, x^k, (by JT5)

6 P{JUt)Kt + P(J1/2)L(J1/2, J1/2)Kt c PiJ^Kt

(by L-invariance)

£(#1/2, Vu*)P*(Zi/*)kQ = L(x1/2, y1/2)P(e)P(z1/2)k0

= {P({Xi/2Vi/*e}, e) - P(e)L(y1/2, xί/2)}P(z1/2)k0 (by JT5)

e PWPiJ^Ko - (L(J1/2, J1/2)P(J1/2)Kor

c P*(J1/2)iΓo (by Pill, above, and L-invariance).

L-invariance (2.6) only applies when i = 1. In this case it follows
from L-invariance (2.5) of Kx: we have E0(J1/2f K1-J1/2) = {J1/2KιJ1/2}c:K0

by definition, and JQ - (Ko J1/2) c iί^ J1/2 because {J^PiJ
Xi} (by
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ance of iQ = iζ (/„ J1/2) c f , J1/z.
If in addition Kt is P-invariant (2.7) the same is true of K3:

6

= P(xi/2)P(y1/2)P(e)P(zι/2)k0

e}) + P(P(x1/2)P(2/1/2)e, e) - P(e)P(i/1/2)P(a;1/2)

yι/2)P(e)L(y1/2, xίl2)}P(zι/2)k, (by JT4)

- P(e)P(J1/2)P(J1/2) - L(J1/2, J1/2)P(e)L(J1/2,

c P*(Jι/2)K0 - L ^ * J1/2)P*{J1/2)K0 (by P, L-invariance of iΓ0)

c P*(J1/2)K0 (by above L-invariance of K,) .

P-invariance (2.8) applies only when ΐ = l. In this case it follows from
P-invariance (2.7) for K,: P*(J1/2)P(J1/2)ίΓ0 = P(J1/2)P(e)P(J1/2){P(J1/2)iΓ1}c=
P(J1/2)P(e)ίΓ1 (by P-invariance of JQ = PiJ^K, = Ko.

It is not clear whether P(J1/2)K0 inherits P-invariance when Ko

is merely P-invariant (not also L-invariant). •

We can now obtain the main result on Peirce ideals. Notice
how much messier the formulation becomes for triple systems.

2.12. PROPOSITION THEOREM. An ideal Kt in a Peirce subsystem
Ji is the •projection of a global ideal K in J iff K( is invariant. In
this case the ideal generated by K{ takes the form

(< = l) κ=κ1®κ1- J1/2
(i = 0) K = Ko φ {Ko • J1/2 + Jo • (Ko • J1/z) + P(J1/Z)KO • Jιlt)

i = ψjK^

© K1/

// 1/2eΦ we have PiJ^K, = Ej(J1/2> Kt J1/2), P{K1/2)JS + P*{Kιh)Js<z
TΠ ί ΊZ" TΓ \ Of T \ ~D( TΓ \ T _l_ P * ( T \ T>( TΓ \ J e— TΓ ( T TΓ \ _L TP ( T ΊΓ ^

Jj/i\I\.ί/2f J\.ι/2jf ίydi/zjJΓyiΛ-ilΊjOi "T" JL \d \li)± yΆ-il^)^ % { -"iVe^l/2> -^-1/2/ ' -^iKy l/29 **-\l%)

so the expressions for K reduce to

(i = 1) K=K1®Kί J1/2 0 EQ(Jί/2, K, J1/2)
/ Λ\ TZ τr Π\ ί TZ T _L T (TΓ T _i_ TΓ ( T TΓ T \ T \\

\% — \J) Λ. — Λ θ Φ l Λ O % t ' l / 2 ~Γ Jo'V^θ'^l/2 "I M/ι\Ji/2f J±o% J ι/2)
 %J 1/2JJ

φ {E1\J1/2J KQ%J1/2) + Eι\K0

Λ JJ./2J J1/2)}

l i = z — j K = EQ(JX/2, JΪ1/2) Φ -KΊ/2 Φ {Eχ(J 1/2, -K3./2) + E1{K1/2, J1/2)}

Proof. We have already noted that a Peirce component Z* must
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be invariant under global multiplications sending Jt into itself.
Certainly the ideal generated by Kt contains all the above products;
it remains only to show in each case K forms an ideal.

We begin with the easier diagonal cases i — 1, 0, where K —
κt θ κι/2 e κ3 = κt@ {Kt. j 1 / 2 + j t . (κ< J1/2) + P(J^κt J1/2} φ {P( j^Kt +
P*(J1/2)ίΓi} (note for i = 1 that some of these products simplify:
Jx (£i J1/2) c (J, • iΓJ J1/2 - Kx (J, J1/2) c i ζ J1 / 2 by Pliv, P\J^KX =
P(J1/2) K, since ΛΓ* = Klf and P(J1 / 2) l ζ J1/2 c J1 / 2 L (J1/2, J1/2) i ξ -
i f* .P(J 1 / 2 )J 1 / 2 c J1/a Zi by JT2).

We verify that the ifr satisfy the conditions (C1)-(C6) of (1.4).
For (Cl), Kt is an invariant ideal in Jt by hypothesis and Kβ =
P(J1/2)Ki + P*(J1/2)Ki is an invariant ideal in J^ by the Flipping
Lemma 2.11. For (C5) we have P(J1/2)Ki a Kβ by construction, and
P(J1/2)K3- = P(J1/2)P(/1/2)if ί + PV^P^J^Kt c Kt by P-invariance (2.7),
(2.8). For (C2) we have ^ ( J ^ , iΓ1/2) the sum of ElJγl2, JBΓΓ J1/2) and
#iGΛ/2, Ji^KrJ1/2)) and ^ ( J ^ , P(J1/2)Kt Ji/i) (the latter two only when
i = 0). The first of these has E^J^, K^J1/2) = L(J1/2, J1/2)JS? c K, by
(P4) and the L-invariance (2.5) of K, = Kf. For i = 0 the second
term E0(J1/2, J0-(KQ'J1/2)) falls in if0 by the hypothesis of L-in variance
(2.6). For i = 0 the third term becomes E0(J1/2, P(J1/2)K0 J1/2) =
{J1/2(P(J1/2)ίΓ0)*J1/2} (by P3)cP(J1/2)P*(/1/2)ίΓo, which falls in Ko by the
hypothesis of P-invariance (2.8). Continuing with (C2), we examine
E5(J1/2y K1/2). By (P3) Eό(J1/2, K. J^) - {J1/2K?J1/2} c P ( J 1 / 2 ) ^ c i ^ by
(C5). When i = 0 we must examine two other terms: Ex{Jlί2, JQ

(2ζ) Ji/2)) — E^KQ JΊ/2, e/0 * e/i/a) C E^KQ J"^, e/^) = Er(Jx/2, Ko ' Jx/2) * C ίC* = iζ.

as above, and ^ ( J 1 / 2 , P(J1/2)K0-J1/2) = L(J1/2, J1/2)(P(J1/2)KQ)* =
L(J1/2, J1/2)P(e)P(J1/2)K0 where L(s, y)P(e)P(z)k0 = P(e)P(z)L(x, y)k0 +

)&0 - P(e)P({yxz], z)k0 e P(e)P(J1/2)L(J1/2, Jι/2)K0 +
- P(e)P(Jί/2)K0dP(e)P(J1/2)K0 + P*(J1/2)K0 (by P i l l and

L-invariance (2.5)) c i ^ . This completes the verification of (C2).
We have (C4) because Kt - Jί/2 a Kι/2 by construction and Ko Jί/2 =
(P(e71/2) i Q J1 / 2 + (P(J1/2) Ktγ /1/2 (the two differing only when
i = 0) where the latter is by PI8 contained in Et(J1/2, K* - J^)* J1/2 —
Kf-P(J1/2)J1/2c:Kΐ-Jιl2 - Kt Jv* (by L-invariance (2.5))dKi'Jί/2dK1/2

and when i = 0 the former (P(J1/2) Ko) J1 / 2 is contained in JSΓ1/2 by
construction. (There does not seem to be any way to show it falls
into K0'J1/2 + Jo (K0 J1/2).) For (C3) note that Jt (K, J1/2) c K1/2 by
construction, JjΓ (Z^ J1/2) = iΓf (J^ Jι/2) c ϋΓ^ by P6, and for i = 0
Ji [Jo (Ko' J1/2)] c: Jo (Xo (Ji' J1/2)) ^ -KΊ/2 using P6 twice, and J o [Jo

CKo J1/2)] c {JoJoiΓo} - J1/2 - Ko (Jo - (Jo - J1/2)) (by Plli) c iΓ0 J1/2 c iΓ1/2, and
finally Jr-(P(J1/2)K0- J1/2) c J . CZξ J1/2) CJBΓ1/2 by the above. For the
last criterion (C6) we consider the spanning elements kt α?1/2 (and,
when i = 0, α0 (&o &1/2) a n ( i P(%i/i)K Vi/i a s well). We observe by
PI10, (C5), (Cl) that
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+ Ki, also P(αβ.(fcβ ίBι/1))(J1 + J . ) = P(ao)P*(ko

)Jo = P(ao)P(k<>)P(xι/2)Jί + P(xί/2)P(k0)P(ai))J0cz
P(J0)K0 + P(Jι/2)K0 c Zo + -KΊ, and also P(P(x1/2)k0 yll2){Ji + Jt) =

P(x1/2) P(h) P ( * I Λ ) P * (VI/,)./. c P* (J1/2) K, + P(/„,) X, c Ko + K,. Thus
(C1)-(C6) hold, and K is an ideal.

The case % — 1/2 is even more tiresome. We must again verify
(C1)-(C6). (C3) follows from invariance (2.9), and (C2) and (C6) follow-
by our construction of Klt Ko. For the sake of symmetry we write
the diagonal Peirce pieces as

K1/2r + P(K1/2)Jj + P*(Ki/2)Jj

As we remarked after (2.10), an invariant ideal is closed under
all brackets:

f * Λ ί TΓ (Tf T \ _i_ TF ( 1 TΓ \\ T t— TΓ
^ j 1 J2/^yJL\.^/2j 1/^2/ "i -t-^i\ί' l/2> -* ^Ί/2/) ** l/2 *^~1

1/2

We can now establish the rest of (C4), Kt J1/2aK1/2. Since Ei(J1/2, K1/2)* —
Eτ(K1/2, J1/2) by P8, we have so far that {Et + Ef} J1/2c:Kι/2. Next,
we observe {P(iΓ1/2) Js + P* (K1/2) Jά) - J1/2 c E3 (Kι/2, J1/2) (Jf - K1/2) -
P{K1/2){Jό J1 / 2) + JS?y(J1/8, J ; iΓ1/2)* . iί 1 / 2 - Jf P(K1/2)J1/2 (by PI7, 8) c

Jr(JrK1/2) - P(K1/2)J1/2 + Jf K1/2 - JrP{Kι/2)Jι/2(zKι/2 by invariance
(2.9) and inner idealness P(iΓ1/2)/1/2 c J1/2. Finally,

J1/2] + EjiPiKM • J1/2, J1/2) J1 / 2 - P(#1/2)J<. P(J1/2)J1/2 (by PI7, 8 again) c
J r JK:I/2 - P(J1/2)K1/2 + jErXXi/a, J1/2) Ji/2 - î i/2 (by the previous case) c
JKΊ/2 by invariance, outer idealness, and (*). Thus all 6 pieces of if,
send Jι/2 into JBΓ^, completing (C4).

Next we check (C5), PiJ^K, c Kό. We have P(J1/2){£r

i(J1/2, ϋΓ1/2) +
H*i(Ji/2f -KΊ/2)*} = P(Jι/2){Ei(J1/29 Ky2) + EiiKχ/2, J1/2)} a Ej(JΊ/29 (K\/29 Jί/29

Jl/z)j) ~ Ej(P(Jl/2)Jl/2y K1/2) + Ej{J1/2y (Jι/29 Jl/2y ̂ 1/2)5) ~ ^^{P^J^K^^ Jt/2)

(by PI5) c Ej(J1/2, K1/2) + Eά{K.ι/2, J1/2) c iζ,- by invariance and outer
idealness. We have P(Jι/2) [P (K1/2) J J c Kx and P(J1 / 2)[P(ϋ: i / 2) J o +
(P(K1/2)J0y](zP(J1/2)P(Kί/2)J0 + P*(J1/2)P(K1/2)J0ciK0 by construction.
For P(J1/2)[P(J1/2){P{K1/2)J%) + P ^ J ^ P C ί ^ J J we first have
PiJ^PiJ^PiKM = {P({J1/2J1/2K1/2}) - P(K1/2)P(J1/2)P(J1/2) + P(P(J1/2)
P(J1/2)K1/2, Kι/2) - L(J1/2, J1/2)P{K1/2)L{Jι/2, J1/2)}Jt (by JT4) c P(K1/2)J, -
L(J1/2, Jl/2)P(Kl/2)JiciP(K1/2)Ji+{P(Kl/2)L(J1/2, Jι/2) — P{{Jι/zJiiiKtiϊl> K%/z))Jt
(by JT5)cP(ίΓ 1 / 2 )J j ciΓ ί . With the *'s we consider the cases i = 1,
i = 0 separately. For % = 1, PiJ^P^J^PiKM = P(J1/z)P(e)P(Jι/2)

e, J1/2)P(Kι/2)L(Jί/2, eVJidPiJ^PiEάK^, J1/2)Λ + P(Jί/2)P(K1/2)J0 +
0 - P{Jm)L{e, J^PiKMnCP^J^ EάK^, Jιl2)*)J^ P(J1/2)P(K1/2)J0 -



432 KEVIN McCRIMMON

, J1/2) (by Pi l l , since Km 0 J1/2) c P*(KM + P(Jι/2)
P(Kι/2)J0 - PiJ^E^Kyi, J1/2) (by invariance (2.10)) c K , (using the
above relation PiJ^E.czEj). For i = 0 we haveP(/1/2)P*(J1/2)P(ίΓ1/2)J0 =
P{Jί/2)P{J1/2)P(e)P{Kι/2) J o c {P({/1/2J1/2e}) - P(e)P(/1/2)P(J1/2) + P(P(e)P(J1/2)
J1/2, J1/2) - L{e, J1/2)P(J1/2)L(J1/2,e)}P(K1/2)J0 (by JT4) c PiJJPiKM -
P(e)[P(J1/2)P(J1/2)P(K1/2)J0] + 0 - L(e, J1/2)P(J1/2)(J1/2 P(iΓ1/2)J0) c P*(J*
iζ / 2)J0 - P(<0iζ - L(e, J1/2)P(J1/2)K1/2 (by P i l l , the above, and (C4)) c
P*(if1/2)/0 - K* - L(ef /1/2)Λ:i/2 C ϋΓ* - ^(ίΓ l Λ > JI/2) c i ζ . Finally, we
check (Cl): K{ <1 J,. By PI2, 3 and invariance (2.9) we have
Ei(Jι/2, Kί/%) + Ei(K1/2, J1/2) is an outer ideal in Jt. P(K1/2)Jj +
P*(Kι/2)Jj is also an outer ideal by invariance and PI10,11, 12, 13. In
the same way P(Jι/2)P(K1/2)J{ + P*(Jι/2)P(Kι/2)Jτ is outer, since

P(J i)[P(/1/2)P(ϋ: i/2)/1] c P*(Jΐ -/1/2)P(ίΓ1/2)J-λ (by Pi l l) c P*(J1/t)P(Kι/t)Jt

and PipP^J^PiKM c P(Jt J^)P(Kύt)Jt (by PI10) c P(JxώP(Kut)J<,
establishing P-outerness (2.1), while L-outerness (2.2) follows from
UJ« Jι)[P{Jίn)P{Kll2)Ji] c P{Jt • (Jf • J1/2), J^PiKM (by PI12) c
P(J1/2)P(K1/2)Jit and L(Jit J%){P*{J1/2)P{K1/2)Jt] - P*(Jf • {Jt • Jι/2), J1/2)
PiKM (by PI13)cP^iJ^P^K^J^ Thus Kt is an outer ideal in Jt.
For innerness (2.3') we need only check the generators Ei{x1/2, kι/2),
Ei{xm, &1/2)*, P(k1/2)aίt P*{ki.,2)aj, Pix^Pik^a, and P*(x1/2)P(A;1/2)αi.
Using (1.8) we have P(P(k1/^ai)Jt = PφuύPia

P*(klΛ)Ji c P*(Kι/2)Jjt

c P(J 1

P*(x1/2)P(fc1/2)P(α i)P(A;1/2)P*(£ t ; i/2)cP*(J1/2)P(ί: i/2)J i, while by PI6,
P(E((K1/2, J 1 / 2))J ίcP(ίΓ 1 / 2)P*(J 1/ 2)/ i + P*(J^P(K^Jt + ElKίl2, Kι/2)<z
Kt and therefore P(E((K1/2, J1/2)*)Jf = {P(Eί(K1/2, Jι/2))Jτ)*^K* = Kt as
well. Thus Ki <\ Jt, all conditions (C1)-(C6) are met, and K <\ J.

If 1/2 e Φ the cases i = 1, 0 are simplified since P(J1/2) Kt =
2P(Jι/2)Ki=P(Jι/2,J1/2)Ki = Ej(Jι/2,Ki Jι/2) (by P3 since KT = Kt). The
case % = 1/2 is simplified by P{K^JS = P(Kι/2, Kί/2)Jό = ^(i^/,, Jf K^a
Ei(K1/2, Kin) by invariance, hence by P8 (P(ir i / 2)J i)*cE r

i(1 / 2, 2f1/2) too,
and so PiJ^iPiK^Ji) + P*(JJPtW^c P(J1/2)Eό{Kι/2, K1/2)+
(P(Jι/2)Es(K1/2, Kίl2)Y c ^ ( J ^ , J r ϋΓ1/2) - E((P(J1/2)K1/2, Kι/2) + {ElJίl2> Jr

Kι/2) - EtiPiJ^Km, K1/2)}* (by PI5) c

We can easily describe the global ideal generated by a Peirce space.

2.13. COROLLARY. The ideal in J generated by a Peirce Jt(e) is

= J, e J1/2

a = o) /(/„) = J0 e {/O

i = i Λ /(J1/2) = P{Jι/2)J, 0 J 1 / 2 0 {E,(J1/2, J1/2) + P(J1/2)Jo + P*(/1/2
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Proof. In each case Kt = Jt is trivially invariant, so we have
the explicit expressions for K given by the Projection Theorem. In
case i — 1 the J1/2-component simplifies by Kγ Jm — e-J1/2 = Ji/2. In
case i = 0 we have J0 (J0 J1/2)c:J0'J1/2 f ° r the /^-component. In
case i — 1/2 we have for the /0-component EQ(J1/2, J1/2) = P(«7i/2, J ^ e c:
P(J1/2)J19 P(J1/2)[P(J1/2)J0 + P*(J1/2)Jo]^ί>(Λ/2)Λ and for the ^-component

+ P^J^PiJM c P(J1/2)/o + P*(JM. D

When J is simple and /, ̂  0 the ideal /(JJ must be all of J,
leading to

2.14. PROPOSITION. // J is simple and e a proper tripotent
(nonzero and noninvertible) then

( i ) P(JM = j 0 ,

(ii) P(J l / 2)J 0 + P*(J l/2)Jθ + Wl/2, Λ/2) = J,.
If J*Φ 0 £&ew

(ϋi) P(J l / 2 )J 0 + P*{J1/2)J*
I?t characteristic Φ 2 we have

( v ) J x = E^Jyzt Ji/z), Jo —

Proof, e Φ 0 implies J x ^ 0, so /(JJ = J, yielding (i). If J1 / 2 = 0
then J — J x ffl J o forces either J = J1 (e invertible) or J = J0(e = 0)
by primeness, so we must have J1 / 2 ̂  0, and I(J1/2) = J yields (ii).
We may well have JQ = 0 with J19 J1/2 Φ 0, but if J0φ0 then 7(Jo) =
J yields (iii), (iv). For characteristic Φ 2, note 2P(Jί/2)Jj = P(J1/2, Ji/2)Jj —

Jj'Ji/z) CI Ei(Jl/2, Jl/2)

In case Jo = 0 we can also recover some ideal-building lemmas
of Loos.

2.15. COROLLARY [1, pp. 131-132]. Let e be a tripotent in a
Jordan triple system with J0(e) = 0. (i) // K1/2 is an invariant
bracket ideal of J1/2 such that

Jl' K-l/2 ^ -̂ M/2 \K1/2J1/2J1/2/ι + \J1/2Kί/2J1/2)1 C Kί/2

then the ideal in J generated by K1/2 is K — K1/2 φ [E^K^, Jι/2) +

(ii) // Kx is an ideal of J1 such that L(J1/2, J^K^d Kγ then
the ideal in J generated by Kγ is l£i ® K^J^.

Proof, (i) Note that K1/2 is an ideal in J1/2: Since P(x1/2)y1/2 =
£Ί(^i/2, 3/1/2) #1/2 = <#i/22/i/2#i/2> by P I when J o = 0, t h e above conditions

guarantees a bracket (hence a product P(x1/2)y1/2 or P(sc1/2, z1/2)y1/2) falls
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in K1/2 as soon as one factor does. This K1/2 is invariant in the sense
of (2.9), (2.10) by hypothesis, so by the Projection Theorem K =
Kγ+Kll2 whereP(Kί/2)J0= P*{J^)J«=P{J^)P{J^)J, = P*(J1/2)P(J1/2)J1 =
0 when Jo = 0, so K, reduces to Eγ(Jll2, K1/2) + Eγ(Kll2, J1/2).

(ii) Kx is invariant since P{Jll2)P{Jγl2)Kx — 0, so by the Projection
Theorem K = Kλ 0 Kγ J1/2. •

Since invariant Peirce ideals correspond to global ideals and
simple JTS contain no proper global ideals, the Peirce subsystems
contain no proper invariant ideals.

2.16. PROPOSITION. If e is a tripotent in a simple Jordan triple
system J, then then Peirce subsystems Jlf J1/2, Jo contain no proper
invariant ideals. •

We can also recover a result of Loos [1] on alternative triple
systems.

2.17. COROLLARY. // e is an ίdempotent in a simple Jordan
triple system J with J0(e) = 0, then J1/2(e) is simple as an alternative
triple system under the bracket.

Proof. By (2.15) J1/2 contains no proper invariant ideals K1/2,
where the invariant ideal conditions (2.9'-2.10") reduce to

-KΊ/2 (̂ 1/2^1/2-^1/2)1 + ζJl/2 K1/2Jι/2)ι + (Kι/2Jι/2J1/2/ι C Kl
l/2

We may as well assume J1/2 Φ 0, so by (2.14) J1 — Ei(Ji/2, Jm)- Thus
J^Kγ/2 = (̂eTi/a, J1/2) Kί/2 = <«/i/2«7i/2.Ki/2>i» and in variance under Jγ is a
consequence of bracket-in variance. Therefore the nonexistence of
proper invariant ideals means nonexistence of proper bracket ideals,
that is, simplicity as an alternative triple system (note J1/2 is not
trivial under brackets since 0 Φ J1/2 = e J1/2 c E1 (J1/2, J1/2) Jι/2 =

3* Simplicity theorem* As in the Jordan algebra case, we will
quickly find Jί inherits simplicity from J, then will use a flipping
argument to establish simplicity of Jo. Before flipping we need to
consider the case when the flipping process annihilates an ideal Ko <| Jo.

3.1. KERNEL LEMMA. The maximal ideal of JQ annihilated by
P(J1/2) is Ker P(/1/2) = {20e/0 |P(J1/2K = P(Jιί2)P(zQ)J0 = 0}. It is an
invariant ideal.
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Proof. Clearly any ideal Ko annihilated by P(J1/2) lies in Ker P(J1/?)
since P(K0)J0 c Iζ,. I t remains to show Ko = Ker P(/1/2) is actually
an invariant ideal.

Ko is a linear subspace: it is clearly closed under scalars, and for
sums z0 + w0 note

P(J1/2)P(z0 + wo)Jo = P(Jι/2)P(z0, wo)Jo = P{Jm)L{w0, J0)z0

= {-L(Jΰ, wo)P(J1/2) + P({J0wJ1/2}, J 1 / 2)K (by JT5)

c -L(J0, J0)P(Jι/2)z0 + P(J1/2)z0 = 0 .

Ko is P-outer, P{Jo)Koci K0) since P(J1/2)[P(αo)Zo] = P*(Ji/2 α0)z0 (by
Pill) c P*(J1/2)z0 = 0 and P(Jll2)[P{P(aa)z,)Ja] = PiJ^Pia^P^Pia^a
P*(J1 / 2 α0)P(20)J0cP(e)P(J1 / 2)P(2o)/o = 0. It is L-outer, L{Jΰt J«)KoaK»,
since PίJ^ILίo, , 6 0)z 0]cP(J 1 / 2K = 0 by PI14 and P(J1/2)[P(L(a0, bo)zo)Jo](Z
P(J1 / 2){P(α0)P(δ0)P(z0) + P(zo)P(bo)P(ao) + L(α 0, bo)P(zo)L(bo, o , ) -
P(P(ao)P(bo)zo, zo)}Jo (by JT4) c P * ( J 1 / 2 ao)P(bo)P(zo)Jo + P(J1 / 2)P(20)/0 +
P{Jll2)L{a0, b0)P(z0)J0 - P(JU2)L(JO, J0)z0 (by Pi l l ) c P((J l Λ α0) δo)P(«,μ. +
0 + P ( J l Λ f Jm)P(z0)Jo - P(JIΛ, ^iΛ)«o (by PI10 and PI14) c P(J1/2)P(z0)J0 +
0 - 0 = 0.

JBΓo is inner, P(K0)J0 c ϋΓ0, since P(/1/2)[P(2o)αo] = 0 by hypothesis
and P ^ T O ί . K V , ] - P(Jί/2)P(z0)P(a0)P(z0)J0czP(Jι/2)P(z0)J<> = 0.

ίΓ0 is trivially P-invariant (2.7) and (2.8), P(J1 / 2)P(J1 / 2)iΓ0 =
P(J1/2)P(e)P(Jι/2)K0 = 0. It is L-invariant (2.5), L(Jι/2, Jin)KoaKo,
since P(J1/2)[L(x1/2,2/1/2)z0] = {P({yι/2a;1/2J1/2}, J1/2) - L(y1/2, a;1/2)P(J1/2)}«0 (by
JT5) = 0 and

P(J1/2)[P({x1/22/1/220})J0] cP(J1/2){P(a;1/2)P(ί/1/2)P(z0) + P(zo)P(y1/2)P(xί/2)

+ L(xm, y1/2)P(z0)L(yιn, xι/2) - P(P(xm)P(y1/2)z0, 20)}J0 (by JT4)

c P(/1/2)P(/1/2)(P(2/1/2)P(«0) Jo) + P(J1/2)P(20) J o

+ P(J1/2)L(J1/2, Jι/2)P(z0)Jo - P(J1/2)L(J0, J0)z0 = 0

as above. The trickiest part is L-invariance (2.6), E0(Ji/2, J 0 (ϋΓ0 J 1 / 2 ))c
ίΓ0. We first show this is killed by P(Jι/2). We have

= P(J1/2){J1/2(£o J 1 / 2)JJ (by P4) = P(J1/2)L(J0, Ko- J1 / 2)J1 / 2

c{-L( ίΓ 0 J1/2, Jo^iJ^ + P({(K0-J1/2)J0J1/2}, Jι/2))Jm (by JT5)

2, J1/2){(K0-

where {(K0 Jί/2)J0J1/2} = E^Ko J^, J0 J1/2) (by P3)cJ5 1 (^ 0 . J1/2, J1/2) =
^ ( J 1 / 2 , iΓ0.J1/2)* (by P8) - { J ^ o W * (by P3) c (P(J1/2)iΓ0)* - 0.

To see P(/1/2) also kills P(E0)J0 we use PI6 to write P(E0(x1/2,
a0 - (so 2/i/2)))e/o c: P(^ 1 / 2 )P*(α 0 (s0 2/1/2))Jo + P*(^o (s0 Vi/*))P(Xi/2)Jo + -#0(̂ 1/2,

•P(αo («o 2/1/2))^ «i/2)) Here P*(α o ( ô 1/1/2)̂ 0 = P(^o yi/2)P(ao)Jo (by
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Pi l l ) - P*(y1/t)P(zύ)P(a0)Jo c P*(J1/2)P(z0)Jo = 0 by PI10, and P*(aQ-
(to Vυ,))J, = P(ao)P(zo y^) J x = P(ao)P(zo)P* (yM (by PI10, 11) c
P(ao)P(zo)Jo c ϋΓ0 since iΓ0 < Jo, also P(α0 (z0 y1/2))(Jo' #1/2) = α0 * ί v
P(yi/2)(Zo'(a>o'Ji/z))} (using PI16 twice) c Jo (z0 J1/2) so that E0(x1/2,P)c:
E0(J1/2, J0 (zQ'J1/2)) is killed by P(J1 / 2) by the above. Thus P(J1/2)
does kill all three pieces of P(E0)JQ, Eo is contained in Ko, and iΓ0 is
an invariant ideal. •

Next we establish that L(JU2, J1/2) and P(J1/2)P(J1/2) and P*(J1/2)P(J1/2)
send an ideal into its "square root" or "fourth root".

3.2. LEMMA. For any ideal Kt <\ Jt{i = 1, 0) we have

(3.3) LiJ^J^PiK^czKt

(3.4) PiJ^PiJ^PiPίKtWJt c Kt

(3.5) if i = 0, P%Jί/2)P(J1/2)P(J0)P(P(K0)J0)J0 c iΓ0 .

Proo/. (3.3) L(x1/2, ^/1/2)P(^)αi = -P{zτ)L{y1/2, x1/2)at

^ ) ^ (by J T 5 ) G -PiKJJt + P(J,, K^JidKi since if, is an ideal.
(3.4) For wt ePiKJJt we have P(aj1/2)P(i/1/

P(w%)P(yι/2)P(xι/2) - L(xι/2, yιn)P(wx)L(yι/2, xί/2)
(by JT4) c PdQJ; - POζμ, - L(J1/2, J^PiKdJi + P(J<, ΛΓ,)̂  (using
(3.3) for w^dK,.

(3.5) P(x1/2)P(e)P(y1/2)P(a0)L0 c P(x1/2) [P({^1/2α0}) - P(ao)P(y1/2)P(e) -
L(e,y1/2)P(a0)L(yί/2,e) + P(P(e)P(yy2)a0,a0)]L0 (by JT4)cP(J 1 / 2 )P(J 1 / 2 )L 0 -
0 - L(e, 2/1/2)P(αo){J1/2eί/o} + ( W o ) = P(Ji/*)P(Ji/*)L0, so if Lo =
P(P(K0)J0)J0 we have P(/1 / 2)P(J1 / 2)L0 c Ko by (3.4). Π

It is not clear whether (3.5) can be improved to assert
P*(J1/2)P(J1/2)P(P(K0)J0)JQ c Ko.

Now we can describe a class of ideals which is guaranteed to be
invariant.

3.6 PROPOSITION. Any strongly semiprime ideal Kγ <\ Jγ is
invariant.

Proof. We first prove that Kx is L-invariant, i.e., w1 =
L(x1/2, 2/i/2)Si e ifi for all z1 e Kx. By strong semiprimeness we will
have w1 e Kx if we can show P{w^)J1 c iίi. But

2, x1/2) - P(P(x1/2)P(yί/2)zlf z^Ji (by JT4)
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+ L(xί/2,

, + Kx (using (3.3)) ,

so it suffices if all ux = P{xι/2)P{yU2)P{z^)aι fall in Kt. Here again it
suffices if P{uι)Jι c Kί9 and for this

K, by (3.4) .

Next we prove i ^ is P-in variant. Let wx — P(x1/2)P(yi/2)Zι'y to
show wx falls in Kγ it again suffices by strong semiprimeness if it
pushes Jx into Klf i.e., if P ( ^ J J x = P(^1/2)P(7/1/2)P(^)P(7/1/2)P(^1/2)Jx c
P(%i/2)P(Vi/2)P(Zi)Ji falls into iίi. But again this is in Kγ since it
pushes Jx into if,, P(P(x1/2)P(τ/1/2)P(^1)α1) J, c P(x1/2)P(i/1/2)P(P(^1)α1) J, c
i ξ by (3.4). •

Because it is such a nuisance to verify the extra invariance
needed when i = 0, and since we will not need the result, we do not
establish the analogous result for Ko <\ JQ.

3.7. COROLLARY. Any maxinal ideal Mι <\ Jt is invariant.

Proof. If M1 is maximal then Jγ = JJMX is simple with invertible
element e, hence the Jacobson and small radicals are zero and Jt is
strongly semiprime (see [1, p. 38]), so Mι is strongly semiprime in Jt.

D

We now have the tools to establish our main result.

3.8. SIMPLICITY THEOREM. If e is a tripotent in a simple
Jordan triple system J, then the Peirce subsystems Jx(e) and J0(e)
are simple.

Proof. We may as well assume e is proper, else the result is
trivial. Then Jx contains a nonzero tripotent and consequently is not
trivial, and it has no proper ideals since any such could be enlarged
to a maximal proper ideal 0 < M1 < J1 (Zornifying and avoiding e),
which would be invariant by 3.7, whereas by 2.15 J έ contains no
proper invariant ideals.

Thus Ji is simple. We may easily have Jo = 0; we will show
that if Jo is nonzero then it must be simple. First, it is strongly
semiprime: any element trivial in Jo would be trivial in J (P(zQ)J0 = 0
implies P(zo)J = 0), whereas by simplicity and non-quasi-invertibility
(thanks to e Φ 0) the system J is strongly semiprime (see [1, p. 38]
again). In particular, JQ is not trivial, and we need only show it
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contains no proper ideals 0 < Ko < Jo. Suppose on the contrary that
such a Ko exists. By (ordinary) semiprimeness we have successively
K[ = P(KQ)K0 Φ 0, K[f = P(K'Q)KΌ Φ 0, KT - P(K[')KΪ Φ 0. By the
Flipping Lemma 2.11 K[" = P(J1/2)KΌ" + P*(Ji/2)iC is an ideal in Jlf

so by simplicity of J1 we have either K[" = 0 or iΓί" — Jt. In the
first case K'o" is an ideal annihilated by P(J1/2), hence is contained
in the invariant ideal Ker P(J1/2) by 3.1; by (2.15) we know Jo contains
no proper invariant ideals, so Ker P(J1/2) ^ K'o" > 0 forces Ker P(J1/2) =
Jo, hence P(J1/2)J0 = 0, contrary to (2.14iii) (assuming Jo ^ 0). Thus
the first case K[" = 0 is impossible.

On the other hand, consider the case K[" = Jx. Here (by (2.14i))
Jo = P(J1/2)Λ = P(Jm)K[" = P(Jί/2)P(J1/2)K'Q" + P*(/1 / 2)P(J1 / 2)iC is
contained in iζ, by (3.4) and (3.5) (noting K'J = P(P(K0)K0)KΌ c
P(P(K0)J0)J0 and i C = P ( ϊ ί W C P(J 0 )(W)i f ί ) c P(Jo)P(P(Zi)Jo)Jo

as required by (3.4) and (3.5)). But Jo = iΓ0 contradicts propriety
of Ko.

In either case the existence of a proper ϋΓ0 leads to a contradiction
so no Ko exists and JQ too is simple. •

This settles a question raised by Loos [1, p. 133] whether Jx is
simple in case J is simple and Jo = 0. The result was known when
J had d.c.c. on principal inner ideals. Of course, for the case Jo = 0
we would not need the elaborate machinery of Peirce decompositions,
since the Peirce relations and invariance are vastly simplified (for
example P(Ji/2)P(Ji/2)Ji = 0, so P-invariance is automatic).

The analogous simplicity result fails for J1/2: J1/2 need not inherit
simplicity from J, since when J = Mp,q(D) is the space of pxg matrices
over D relative to P(x)y = xy*x (y* = ιy), then the diagonal idempotent
e = en + + err (1 ^ r < p <̂  q) has J1/2 = /10 ES J01. In the simplest
case p — q = 2fr = lwe have J1/2 = De12 EB -Dβ2i. Note, however, that
these proper ideals K1/2 = J10, L1/2 = J01 are invariant under Jx and J(

but not under brackets. It is still an open question whether J1/2 is
simple as a bracket algebra (it is if Jo = 0), or whether it is always
simple or a direct sum of two ideals as a triple system.
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