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AN ANTI-OPEN MAPPING THEOREM FOR
FRECHET SPACES

STEVEN F. BELLENOT

It is well-known that completeness is necessary for the
usual open mapping theorem for Fréchet spaces. In contrast,
it is shown that, with the obvious exception of », each
infinite-dimensional Fréchet space has another distinct com-
plete topology with the same continuous dual.

By a space or subspace, we mean an infinite-dimensional locally
convex Hausdorff topological vector space over either the real or the
complex scalars. Our notation generally follows Robertson and
Robertson [7]. In particular, X’ and o(X, X’) denote the continuous
dual and the weak topology on X, respectively. Denote by @ (re-
spectively, &) the space formed by the product (respectively, direct
sum) of countably-many copies of the scalar field. We use ¢, I, and
l., to denote the Banach sequence spaces (with their usual norms)
of, respectively, null sequences, absolutely summable sequences and
bounded sequences.

Our main result can be stated as:

THEOREM. Fach Fréchet space (X, () = @ has a topology 7, so
that, o(X, X') <1 < { and the space (X, 7)) is complete.

By the open mapping theorem, (X, 7) is a complete space which
is not barrelled. In Section one we prove the theorem for the speecial
cases of (X, {) = ¢, (Case I) and (X, {) a nuclear space with a con-
tinuous norm (Case II). Then in Section two we reduce the theorem
to these special cases.

We will have occasion to use Grothendieck’s characterization of
the completion of the space (X, {) as the set of linear functionals on
X' which are o¢(X’, X)-continuous on (-equicontinuous sets (see
Robertson and Robertson [7], p. 103). Berezanskii’s [4] (see also [2,
pp. 61-62}]) notion of inductive semi-reflexivity is used in Case II.
In particular, complete nuclear spaces are inductive semi-reflexive,
and the topology constructed from {g,} in Case II is complete in any
induetive semi-reflexive space. The only other fact used about nuclear
spaces is that their topology can be defined by means of (semi-)
inner products (see Case II and Schaefer [7] p. 103).

Perhaps it is worth pointing out, that there are always lots of
differently-defined complete topologies on each complete separable
space (see Bellenot [1], [2] and with Ostling [3]): the difficulty is in
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showing that these topologies are really different.

1. Two special cases. First we prove the theorem for the
following special cases:

Case I. The Banach space ¢,;: Let & be the norm topology on
¢, and let % be a free ultrafilter on the set of positive integers
(i.e., NZ = @). For each AeZ and K > 0 let

EA,K)={r=(x,)el:||z]|l; < K and =, = 0 for each me A} .
Let » be the topology of uniform convergence of the collection of sets
{E(A, K)U{y"}: AeZz, K > 0, {y"} a l,-norm-null-sequence} .

Since finite sets are 7-equicontinuous and each of the sets above are
&-equicontinuous, we have o(c, [)) <7 < &.

To see that 7 < ¢&, note that if » =& there would be a set
E(A, K) U {y"} whose polar is contained in the unit ball of ¢, Since
y™ is a l,-norm-null-sequence, there is an M, so that m = M implies
that |y, | < 27!, for each n. (Where y™ is the sequence {y%},..) Since
Z¢ is free, A must be infinite and there is a k= M with ke A.
Consider x ec¢,, the vector which is the zero sequence, except that
it is 2 in the kth position. Clearly x is not in the unit ball of ¢,
but it is the polar of E(4, K) U {y"}, a contradiction.

Consider X, the completion of (¢, %), as a subspace of the alge-
braic dual of [,. Since each [/,-norm-null-sequence is ®-equicontinuous,
Xcl, Suppose D is a subset of the positive integers with D¢ Z.
Then, since %7 is an ultrafilter, D°, the complement of D, is an
element of 7Z. Thus the 7-topology restricted to the subspace
{rec:x, =0 if n¢ D} is the norm topology. It follows that for each
f = (f.) e X, the subsequence {f,: n e D} is a null-sequence, since f is
o(l,, c,)-continuous on E(D°, 1). Let f = (f,) el, with 4 = {n:|f,| = ¢}
infinite, for some 6 > 0. If A¢ Z, then f¢X by the above, so
assume Ae7Z. Write A = BUC, a disjoint union of infinite sets,
one of them is not in %, and thus f¢ X. Therefore X =¢, and
(co, ) is complete.

Case II. (X, &) is a nuclear Fréchet space with a continuous

norm: Let ||-],<|/-].< --- be a sequence of continuous norms
which define the &-topology on X. Since X is nuclear, we assume
that the unit ball of each || -||,: is precompact in the norm || - ||, and

that each ||z||2 = {x, x);, for some continuous inner product (-, -),
on X@ X. Let |||/, also represent (the possibly infinite-valued) dual
norm of ||-|, on X’. A sequence {a,} C X’ is called k-admissible if
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{l/an]]s} is bounded and the semi-norm, p,(x) = sup, |a.(z)|, defined for
x € X, is stronger than [|-|;. That is, there is a constant K, with

(*) ||, < Kp.(x), for each xzeX.

A nonincreasing null-sequence of positive reals {\,} is said to be
k-discriminating, if for each k-admissible sequence {a,},

lim sup ||a,|[\a' = oo .
n

Note that if {\,} is k-discriminating and {,} is another nonincreasing
null-sequence of positive reals so that lim, g,/x, = 0, then {g,} is also
k-diseriminating.

First, we prove that for each k, there is a k-discriminating
sequence. To see this, let {¢,} © X be a sequence orthogonal in (-, -3,
and orthonormal in (-, ->,. (The {e,} can be chosen inductively, by
picking e, ., € (N ker £,) N (N ker g,), where £, and g, are the continuous
linear functionals given by fi(x) = (e, x), and g,(x) = e, s, © =
1,2 ...7m.) Re-order {e,} so that the sequence {||¢,|.}, is nondecreasing.
We claim that the sequence \, = 1/n]|e,:]|, is k-discriminating. Suppose
not, then there is k-admissible {a,} with

") laalle = M

Let 6 = 27K, where K is the constant in (*).

Inductively choose f, € X and an integer-valued function ¢, so that

(1) [[falli =1 and f, espanfe;: (n — 1) < j = »};

(2) ayy(f.) =0 for j <m; and

(3) laiw(fu)l = o.
If f; and ¢(j) have been chosen for j < m, it is possible to choose f,
satisfying (1) and (2) since condition (2) puts » — 1 constraints on f,
and f, is chosen from a (2n — 1)-dimensional space. Thus by (*) we
can find a ¢(n) such that 27!||f,|l, =27 < K|a},,(fa)], i.e., that (3)
is satisfied.

Let A(n) ={j: (n — 1)? < j < n’}and suppose f, = Dicam €. Since
{e;} is orthonormal in <., ->,, condition (1) implies >j;c. mla@;* = 1.
But {e¢;} is orthogonal in (-, ->, hence

1/2
Wl =[ 3 tallledi ] = llewll = vzt
Thus by condition (3), we have

***) 0 = lapm(f)] = Naho -1 falle = 7N @G e -

On the other hand, condition (2) implies that ¢ is 1 — 1 and hence
#(n) = n, infinitely often. Thus (**) implies |[@fim il = Moty = Ny
infinitely often. Combining with (***) yields
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0<o=n NN, = 1 , for infinitely many =,

n

a contradiction.

For k = 1, let {\f} be a k-discriminating. The sequence X, =
n min {\3: j < n} is thus k-discriminating for each k¥ = 1. Let p, =
Mamtn, and let 7 be the topology of uniform convergence on sequences
{ar}c X’ with the property that there is an integer k and constant K
with ||a, || < Kp,. It is easy to check that o(X, X') <7 <¢&. Note
that if U is any &-neighborhood of the origin and if p,. is the gauge
functional of U-polar in X’, then there is an integer k£ and a constant
K so that o' € X’ implies ||a’||, < Kpoyo(a’). Thus by Bellenot [2, p.
62 and Th. 4.1, p. 64], » is a &rotor topology and (X, ) is complete.

To show that 7 <&, we will prove that || - ||, is not »-continuous
on X. By Robertson and Robertson [7, p. 46], the »-neighborhoods
of the origin are polars of finite unions of the above sequences (as
sets of values in X’). (Note that it is possible for lim (¢,/tt,) = o=,
and so we must consider finite unions.) Suppose || - ||, is y-continuous,
then there is a finite number of sequences {b;.}., 1 <1 < J, used to
define 7, so that ||z|, < sup {|b,.(x):1 << j,n =12, -} for each
xeX. Let k and K be so that ||b, ;| < K, for 1 <4 < j and each
n. Let {a,} be a listing of values in X’ contained in the sequences
(0r,.}ny 1 < 4 < 7, so that {||a.||s} is nonincreasing. It follows that {a,}
is k-admissible. Since n > j = ¢ = 1 implies (n + 1)(n + 2) = nJj + 1,
and {\,} is nonincreasing, M +nm+n = Mpj+;- Thus if m =32+ 5 + 1,

then m =nj +1 with » > j7=4=1, and

amlle < Kttpis = KNinyinin = K\ ©

Hence lim sup,.(||amn ||x/A.) < o and since {\,} is k-discriminating, {a,}
is not k-admissible. This contradiction completes the proof of the
theorem for this case.

2. The general case. The following two lemmas are of a general
nature. The first lemma shows that completeness is a “three space
property” while the second is used often in the proof of the theorem.
The referee has pointed out that Lemma 1 is known, we include a
proof for completeness.

LEMMA 1. Let X be a space, Y a closed subspace of X and Z =
X/Y, the quotient. IfY and Z are complete, then X is complete.

Proof. Let ¢: X — Z be the quotierlt map and let j: X — X be
the injection of X into its completion X. Since Z is complete, ¢
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extends to a map ¢: X — Z so that ¢oj = 4. Furthermore, since ¥
is complete, j(Y) is closed in X, and thus we can construct the
quotient W = X/j(Y) with quotient map 4: X — W. Since ker 5 =7,
there is a map 0: Z —W so that fog = 4roj: X - W. Thus fogoj =
Jroj, but since j(X) is dense in X and since 64 and 4 are continuous,
we have @od = . Therefore ¢ and thus j are surjective maps, so
that X is complete.

LEMMA 2. A Fréchet space X satisfies the conclusions of the
theorem if X has a closed subspace Y which satisfies the conclusions
of the theorem.

Proof. Let & be the topology on X with neighborhood basis of
the origin Z. Let 7 be a topology on Y with (Y, Y') <9 < &,
and so that the space (Y, ») is complete. Let " be the neighborhood
basis of the origin for (Y, 7). Let % ={V+U:Ve %, Ue%}. It
is straightforward to check that %7 is a neighborhood basis of the
origin for a topology { on X with the properties:

(i) o X, X') =0 <4,

(ii) ¢ly =7, and

(ii) (X, /Y = (X, §)/Y.

Thus by (ii), (iii) and Lemma 1, (X, {) is complete and by (i) it satisfies
the conclusion of the theorem.

Proof of the theorem. Let (X, &) be a Fréchet space = w. It
follows that & is not the weak topology on X. First, we show there
is a separable closed subspace Y of X, so that &, restricted to Y has
a continuous norm. Since & is strictly stronger than ¢(X, X’), there
exists a continuous semi-norm on (X, &) which is not a linear com-
bination of semi-norms z — |{x, )| with #'e X’, and thus from
Schaefer [8], corollary on p. 124 it follows that X has a continuous
semi-norm o so that the dimension of X/ker p is infinite. Let E be the
normed space X/ker o with o norm and let +: X — E be the quotient
map. Let {¢,} C E be a linearly independent sequence. Let {z,}C X
be so that +(x,) = e,, and let Y be the closed linear span of {z,} in
(X, &). Since p Ot ax,) = p3ot ase;), for all scalar sequences {a,}, v,
restricted to Y, is an isometry of ¥ with semi-norm p into a subspace
of E with norm p. Thus by Lemma 2, we assume that (X, &) is
separable and has a continuous norm.

Suppose (X, &) is a Banach space. In the notation of Bellenot
and Ostling [3], since X is separable and complete, we have & = &,.
Furthermore, Theorem 3.1 of that same paper shows (X, &) is
complete, where &, is the topology of uniform convergence on &-
equicontinuous ¢(X’, X)-null sequences. Clearly, 0(X, X') < &w < &,
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and if &, < & then we are done. If & = & and since (X, &) is a
Banach space, there must be a ¢(X’, X)-null sequence {a,} < X’, whose
polar in X is contained in the unit ball of X. It is easy to check
that the map, T: X — ¢,, which sends 2 € X to the sequence {a,(x)} € ¢,
is an isomorphism of X onto a closed subspace of ¢,. (These results
are known, see the author [1].) A classical result of Banach (see
Lindenstrauss and Tzafriri [6, p. 53]) says that X must have a
subspace isomorphic to ¢,, An application of Lemma 2 and Case I
completes the proof if (X, &) is a Banach space.

If (X, &) is not a Banach space, then X is not a subspace of BD w,
for any Banach space B. Thus a result of Bessaga, Pelezynski and
Rolewicz [5] show that (X, &) has a nuclear subspace Y. Thus Case
II and Lemma 2 completes the proof of the theorem.

REMARKS. It is possible that the following statement is true:

(*) Each complete space (X, &) with & # o(X, X’), has another com-
plete topology 7 with o(X, X') < 9 < &.

There are three places in the proof of the theorem where
metrizability was used. The most subtle use of the metric was in
Lemma 2. If (X, &) is not Fréchet, it is possible that X/Y is not
complete (Schaefer [6, Ex. 11, p. 192]) and hence Lemma 1 cannot
be used to show (X, ) is complete. (The author thanks E. G. Ostling
for pointing this out to the author.) Thus it is possible that (*)
could be true for separable X, but false in general.

If (X, &) is separable and complete, then, as in the proof of the
theorem (X, &) is complete (see Bellenot and Ostling [3]). In this
case & = &, implies that (X, &) is a closed subspace of a product of
copies of the Banach space ¢,. In order to handle this in the manner
of Case I, one must extend this case to include each (X, &) which is
not inductively semi-reflexive, but for which & = &5,. Examples of
spaces which fall into this extended case and which may fail (*) are
the spaces (X, &) Where (X, £) is any separable nonreflexive Banach
space.

The proof that the topology constructed in Case II is complete
works for any inductive semi-reflexive space. However, to show
that this constructed topology was different from the given topology
made strong use of the metrizability. In fact, if (X, &) = ¢, then
for any positive nonincreasing null-sequence, {¢,}, the topology con-
structed in Case II will be the &-topology. It is open question if
¢ is the only such exception among complete separable spaces with
a continuous norm. (Weak topologies are also exceptions.) In any
case the space ¢ is perhaps the most likely counter-example (among
the inductively semi-reflexive spaces) to (*).
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