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THE SPLITTING OF OPERATOR ALGEBRAS

SZE-KAI TSUI AND STEVE WRIGHT

We say the singly generated C*-algebra, C*(Tt®Tt)9

splits if C*(TΊ φ Γ2)=C*(Γ1) φ C*(T2). A necessary and suf-
ficient condition is derived for the splitting of C*(Tλ φ T2)
in terms of the topological structure of the primitive ideal
space of C*CZ\ φ T2). In particular, when C*(2\ φ T2) is
strongly amenable, the necessary and sufficient condition can
be simplified and does not depend on the topology of the
primitive ideal space of C*(TX φ Tz). Several applications
of this theorem, such as the cases, among others, where Tl9

T2 are compact operators, and C*{Ti), C*(T2) have only
finite-dimensional irreducible representations, are discussed.
For the splitting of the T7*-aIgebra, W*{TX φ T2), two equi-
valent conditions are derived which are quite different in
nature. It is also shown that WHTλφ T2) splits if either
WHReTiφReT*) or W*(Im2\ φ ImT2) splits, but the con-
verse is false. An example is given to show that
TF*(ΓiΦ Γ2) splits whereas C*(2Piφ T2) does not.

l Introduction* Let Jzf be a C*-algebra. If S?/ has an

identity element and T is in Jzf, C*(T) will denote the C*-subalgebra
of Jzf generated by T and the identity element; if Ssf has no
identity element, C*(T) will denote the C*-subalgebra of J%? gene-
rated by T alone. If & is another C*-algebra and *J^ 0 & is the
C*-direct sum of J ^ and «^, one can ask the following question:
Given Γ X 0 Γ2 in J / 0 ^ , when does C*(2\θ T2) - C^TJφC^TJΊ
One always has ^ ( ^ 0 T2) S C*(2\)0C*(Γ2), and if equality holds,
we say C*(TΊ0 T2) splits. A similar question can be posed in the
context of TF*-algebras. Given IF*-algebras ^?, S? and Tx 0 T2 in
^ 0 ^ , when does W%T,φ T2) = W*{TX)@ W*(T2) (W*(T) = the
TF*-algebra generated by T)l As in the C*-algebra case, PΓ*(Γ10 T2)
is said to split if equality holds.

In this paper, necessary and sufficient conditions are derived for
the splitting of C*(2\0 T2) and W*(TX® T2). These results should
be compared with theorems in [2], [7], [5], and [6], where the split-
ting problem for various functors involving the direct sum is
treated. Indeed, the results in the present paper can be viewed as
"self-adjoint" analogs of the non-self-adjoint situations of this pre-
vious work.
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2- The splitting of C*^® T2). If J ^ is a C*-algebra, Prim
will denote the primitive ideal space of <£/ equipped with the

hull-kernel topology, and Irr(jtf) will stand for the set of all ir-
reducible representations of J ^ . If E is a central projection in
and π is a representation of j y , πE is the representation of
defined by πE(T) = π(TE) (TeA).

We denote by ^(Stf) the multiplier algebra of J ^
can be characterized as the largest C*-subalgebra of J^**, the en-
veloping von Neumann algebra of jtf, which contains j y as a
closed, two-sided ideal. If π is in Irr(j^), then π' denotes the uni-
que extension of π to an irreducible representation of ^€(j*f)
(since j y is a closed, two-sided ideal of ^{^f), πf exists for each
π in Irr(j^)).

We begin by stating a noncommutative C*-algebra analog of
the Silov idempotent theorem ([15], Theorem 8.6). Its proof is ob-
tained from a straightforward application of the Dauns-Hofmann
theorem ([10], Theorem 3; [13] Corollary 4.7), and is therefore left
to the reader.

PROPOSITION. Let {Σlf Σ2} be a disconnection of Prim(jy), jzf a
C*-algebra. Then there exists a unique central projection E of
^t(Ssf) such that

2Ί = {ker π: π e Irr(jy), π' = π'E) ,

Σ2 = {ker π: π e Irr(jy), π' = π\_E) .

Converselyj any nontrivial central projection E of ^{^/) induces
a disconnection of Prim(J^) in this way.

Now let J^£, i — 1, 2, be C*-algebras and let πt be a represen-
tation of Ĵ <, i = 1, 2. We define a representation ^ of J ^ φ t X
by "evaluation at coordinates", i.e.,

7?,: Λ φ Λ > πt(Ai) ( Λ Θ Λ e j ^ φ J ^ ) .

In particular, if 2\ φ Γ 2 is a fixed element in j^f φ J^ζ and (7 e
Iττ{C*(Ti))f i — 1,2, then σ is an irreducible representation of
C*(Γiφ Γ2). With this in mind, we now state and prove the main
theorem of this section.

THEOREM 2.1. Let &t, i = 1,2, be C*-algebras with ϊ7! φ Γ2 a
fixed element in ^ φ ^ . Then C*(2\φ T2) splits if and only if
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the sets

Σt = {ker &,: σ< e Irr(C*(T<))} , i = 1, 2 ,

disconnect Prim(C*(2\0 T2)).

Proo/. (=*). Let J ^ - C*(ΓJ 0 C*(Γ2), J ^ = C*(Γ«), ΐ = 1, 2.
Since j ^ * * = J^f * * 0 J^J**, there exist orthogonal central projec-
tions #!, # 2 in J^** with I = Ex + E* Έx = 1 0 0, E2 = 0 0 7. Thus
£?< Jtf' £ J ^ , i = 1, 2. Since, for π in Irr(jaO, π' = π ^ <=> TΓ vanishes
on 0 0 J*f2<=>π — σ for some σ in Irr(J^J), we conclude that 2Ί —
{ker TΓ: π e Irr(J*O, π' = TZ^J, and similarly ^ = {ker π: π e Irr(j*O,
τrf = JΓLJPJ By the previous proposition we have that {2Ί, I'a} dis-
connects Prim(j^).
(<=). Let Jx? = C*(2\® Γ2) and J ^ - C*(Γ4) for i = 1, 2. Due to
the above proposition, there exists a
central projection i? of ^£{<S%f) such that

(2.1) 2\ = {ker π: π e Irr(j^), πr = ^}

(2.2) 2^ - {ker π: π e Irr(J*O , π' = TΓL*} .

Let Ax 0 A2 be a fixed element in j y , and σ in Irr(J^). By (2.1)
there exists π in Irr(«jy) such that kerπ = kerσ, TΓ = π'E. Thus
1 — J& is in ker π f, and so

0 = π'((l

Hence (1 - ^XΛ 0 A2) e ker TΓ = ker ff, i.e.,

Since σ is arbitrary in Irr(j^<) and Irr(j^<) separates points of .
we conclude that

(2.3) 0 = [(

Similarly

(2.4) 0

Thus,

(2.5) E(A, 0 A2) = [£;(Λ 0 A2)]2 0 0

(2.6) (1 - E)(AX 0 A2) = 0 0 [(1 - E){A, 0 A2)]2 .

Adding (2.5) and (2.6) yields

A, 0 A - [E(Aλ 0 A2)], 0 [(1 - E)(A, 0 A2)]2 .
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Hence

A, = [E(A± 0 A2)\ , A2 = [(I - E){AX 0 A2)\2 ,

whence by (2.5) and (2.6),

, 0 A2) - 0 © A2 .

Since i? multiplies jzf, Λ 0 0 and 0 0 A2 are both in j ^ \ It fol-
lows that C*(2\© T2) splits.

Let T be a normal element of a C*-algebra, J ^ . We identify
the spectrum Λ{T) with Prim(C*(T)), if *$/ has an identity element.
It is easy to see that Λ(2\φ Γ2) = Λ(Ti)UΛ(!Γ2) for 2\, T2 in j*Λ We
therefore deduce from Theorem 2.1:

COROLLARY 2.2. Lei ϊ\ and Γ2 &# normal elements in a
C*-algebra Jtf. If .9/ has an identityy then C*(Γi0 T2) splits if
and only if A(TJ Π A(T2) = 0 . 1/ J ^ feas no identity, then,
C^T, 0 Γ2) s^ίίs i/ a7̂ d only if A{TX) Π Λ(T2) = {0}.

Of particular interest is the case i ^ = .î ζ = &(βί?)9 where
?) denotes the C*-algebra of all bounded operators on the

Hubert space Sϊ?. The following results indicate the utility of
Theorem 2.1.

COROLLARY 2.3. Suppose Tx and T2 are irreducible operators
on /%f. Then C*(Γ x0 T2) splits if and only if Prim(C*(Γ10 T2)) is
disconnected.

Proof. 1 0 0 and 0 0 / are the only possible nontrivial central
projections in C*^® T2). If Prim(C*(Γ10 T2)) is disconnected, we
hence conclude by the proposition preceeding Theorem 2.1 that
C*(2\® T2) contains 7 ® 0, and therefore splits.

Suppose that Tλ and T2 are isometries on ;%? with von Neumann-
Wold decompositions Tt = !/< ® Si9 i = 1, 2, i.e., Ut is unitary and
Si is a (possibly trivial) unilateral shift. If either Sx or S2 is non-
zero, it follows from [4] that C^TΊ® T2) is isomorphic to C\S),
where S denotes tha unilateral shift of multiplicity 1. Since S is
irreducible, we conclude that C^IΊφjΓg) does not splits. Hence
we have:

COROLLARY 2.4. Let Tx and T2 be isometries with von
Neumann-Wold decompositions Ut © Sif i = 1, 2. Then G*(T1 © T2)
splits if and only if Sx = S2 = 0 α^cί ^(ί/Όn -,-!(C7"2) = 0 .
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Let ϊ\ and T2 be two compact operators acting on a Hubert
space Sίf\ If c/f is infinite-dimensional, then it is easy to see that
the C*-algebra generated by 2\ 0 T2 and the identity operator on
, - ^ " 0 ^ never splits. However, if we consider C^iT^T.) in
<3(;\3ίf 0 3£") (the C*-algebra of all compact operators on έ%f 0 .-%*'),
then the splitting of C*(ΓX© T2) can be characterized as follows:

COROLLARY 2.5. Let Tλ and T2 be compact operators on <W.
Then C*(TΊ0Γ2) {generated as a C*-subalgebra of X ( ^ 0 , r ) )
splits if and only if every minimal projection in C*(7\0 T2) is of
the form Pi 0 0 or 0 0 P , where PL is a minimal projection in
C*(Tt),i = 1,2.

Proof. (--=>). Clear.
(«=). Let S/ = C*(I\ 0 Γ2), J ^ - C^Γ,), i = 1, 2. Let ^ (resp.

. /έl) denote the set of minimal projections of »J^ of the form Pi0O
(resp. O0P 2 ), where P% is a minimal projection in ,P<, i = 1,2.
Then by hypothesis,

(2.7) {minimal projections in ,s^} = . •/% U . . ^ .

Let 7relrr(jy). Then ([1], Theorem 1.4.4) there exists a mini-
mal projection P = P^ e ,jy, a nonzero vector f = f- 6 P(<%? 0 . ^ ) ,
and a unitary operator U = U^: [J^ξ] —> ^ ' such that

( i ) π(P)Φ0,
(ii) ^(Γ, 0 Γ2) = U(Tt 0 T2)QU*, where Q - projection of

/ / ^ 0 J T onto | ^ ξ ] .
We denote this by writing π~iάP. By (2.7), P must be in either

. //[ or a^C2: suppose P e t , 4 , i.e., P = i20O, J? a minimal projection
in .5^. Then ^ — (ξ\ 0), fr a nonzero vector in jF2(r^), and so

Therefore, there exists a unitary U'\[..s&[ξ''\--><%?- such that
Z7: (x, 0) -> t/'a;, x 6 O^f'J. Thus by (ii),

(2.8) π{T± 0 To) - U'T&'iU')* , Q' - projection of ^f onto [.J^f'J .

But by ([1], Proposition 1.4.3), the right side of (2.8) defines an ir-
reducible representation σ of J^ . Thus π = σ. If Pe^/f2f the
same argument shows that π = f for some irreducible representation
r of , ^ . If 2Ί and Σ2 are as defined in Theorem 2.1, we conclude
that

(2.9) Prim(.i^) - ΓXU2\ .

We now assert that
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(2.10) Σx = hull ^ = {ker π: π e Irr(J&O, ^ C ker π} ,

(2.11) J 2 = hull ^//γ = {ker π: TΓ 6 Irr( J*O, ^ £ ker π} .

It is clear from the definition of ^/f2 that Σx £ hull ^/f2. Suppose
kerπehull(^r 2). Now ττ~idP, with P e ^ U ^ / 4 If P6^f 2, then
τr(P) = 0, which by (i) is contrary to the choice of P. Thus Pe^fί
whence by the previous reasoning, πeΣt. This verifies (2.10), and
(2.11) follows similarly.

Suppose ker π e Σλ Π Σ2. Then ^//λ (J ̂ /f2 £ ker π. But π — idP,
for some P e ^ U _-/f2 with π(P) ^ 0, a contradiction. Thus

(2.12) Σx Π ̂ 2 = 0 .

It follows from (2.9)-(2.12) that {2Ί, ^J disconnects Prim(j^),
whence by Theorem 2.1, C*(Γi0 T2) splits.

Let ^ be natural map from 3£(§ίf) onto the Calkin algebra
The following concept is also seen in [12].

DEFINITION. Let T be an element in &(<&?). A projection P
in ^{£ίf) is /%Mi/ n-reducing for T if TP = PT, rank (P) < co,
and C*(T)P ~ Mn, the nxn matrix algebra. A projection P in
&(£ίf) is essentially fully n-reducing for Tif ρ{P)ρ{T) = p(T)p(P),
P has infinite rank and nullity, and p(C*(T))p(P) = ΛfΛ. We denote
the set of all fully (essentially fully) ^-reducing projections for T
by Λβ(T)(Λ:(T)), and let Λ(Γ) = U « (Γ), Λe(D - U.Λ:(Γ), where
n ranges through all positive integers. Each P in Re(T) (or in
R(T)) induces an irreducible representation, πP, of C*(T) in a natural
way as:

(2.13) πP(A) = p(A)p(P) (πP(A) = AP) for all A in C*(Γ) .

DEFINITION. Let T and S be elements in C*-algebras j ^ and
& respectively. T is algebraically equivalent to S, if there exists
a ^-isomorphism 9? of C*(T) onto C*(S) with φ(T) = S.

PROPOSITION 2.6. Let Tίf i = 1, 2, &e ^ 0 operators in
such that every irreducible representation of C*(Tt), i = 1, 2, Λαs α
finite-demensional representation space. C*(TX 0 T2)>

 α C*-subalgebra
of ^(cJίf 0 r%^), s^ϊίίs if and only if the following two conditions
hold:

( i ) If an operator in C*(2\) 0 C*(T2) is of the form Pλ 0 0 07̂
O 0 P 2 , where Pi is in i?(Γ€) Π C*(T,), i = 1,2, ίλew iί is m

(ii) // Pi eRe(Ti), i = 1, 2, ίfeen /0(PiTΊ) is ?ιoί algebraically
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equivalent to p(P2T2).

Proof. Let j ^ be C*(ϊ\ 0 T2), j&ϊ be C^T,), i = 1, 2, and £< be
as in Theorem 2.1, i — 1, 2.

(<=) Condition (i) follows from the fact C*(ϊ\) 0 0 and 0 0 C*(T2)
are contained in j ^ 0 j ^ 2 = j ^ .

(ii) Let Pi be in Re{T%), i = 1, 2. If there exists a ^isomorphism
<P of C+i/KTA)) onto C*{p{T2P2)), with φipiT.P,)) = <o(T2P2), then the
kernels of the two irreducible representations TΓJ., TΓ2 of j ^ induced
by Plf P2 {nt = π P ί as in (2.13)) are equal. Since ker πt is in Σi9

i = 1,2, this contradicts the fact that Σ1[\Σ2~ ζd by Theorem 2.1.
(=>) Any 7Γ in Irr(J^Ί 0 jy2) is of the form π = σ4 for some

tfi in Irr( J ^ ) , and hence is finite-dimensional. Since J ^ 0 J^ 2 is
CCR, any two irreducible representations πlf π2 of j^J 0 J ^ are uni-
tarily equivalent if and only if ker πx — ker π2 ([8], 4.3.7). Jzf, a
C*-subalgebra of jy x 0 jy2, is also CCR, and also has the above pro-
perty. Next, we state a proposition ([8], 11.1.6), and then use the
proposition to show that j^f splits.

PROPOSITION. Let & be a C*-algebra, and «̂ ξ a C*-subalgebra
of &. If &x satisfies the following two conditions:

(i) π\^xi8 in Irr(^J), if π is in Irr(^);
(ϋ) ^Ux is not unitarily equivalent to π'\&l9 if π is not uni-

tarily equivalent to πr in Irr(^F), then &± = &.

Let π be in I r r ( J ^ 0 J^2) and of the form π = σ̂  for some cr*
in Irr(J^). So π(Tx@ T2) = ̂ ( ^ 0 Γ2) = ^(Γ,), whence π( j^) =
^(J^ί) on , ^ , and 7r|^ is irreducible. Let TΓ be an n-dimensional
irreducible representation of C*(Γ) for some Tin &(J%?). Theorem
1.1 in [12] implies that either (a) iPe C*(T)n^(T) such that π{P) = 1
and the restriction of π to C*(T)P is a *-isomorphism of C*(T)P
onto ikfΛ, or (b) lPeR\T) and a '̂-isomorphism φ of ρ(C*(T))ρ(P)
onto AT, such that ττ(A) - φ(p{A)p(P)) (AeC*(Γ)).

Suppose TΓj,, τr2 are two unitarily inequivalent elements in
and πt = α̂  for σ, in Irr(jy}(1)), i = 1, 2.

Case 1. i(l) - i(2). We note TΓ^Γ, 0 Γ2) - ^(T, 0 T2) - σt(Tj{i)),
i = 1, 2, and unitary equivalence between π j ^ and ττ2|^ implies that
there exists a ^isomorphism φ of π^jzf) onto ττ2(j^) with ^(o>

1(Γiu)) =
^ i ( Γ x 0 T2)) = π 2 (Ti0 Γ2) = σ2(Tm). This ^ induces a unitary
equivalence between ^(J^d,) and σ 2 ( j ^ (2)). If ^ 0 ^ are in

The second equality in this equation is due to a property of φ,
which is illustrated in the following commutative diagram:
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It follows that πx and π2 are unitarily equivalent on
which is a contradiction. Therefore TΓJ^ is not unitarily equivalent
tθ 7Γ2U<.

Case 2. j(ΐ) Φ j(2). Let i( l) = 1, j(2) = 2. If σx is of form
(a) relative to P in R(TX) n J*Ί with P φ O in j * r , then ^ ( P © 0 ) =
^ ( P φ O ) - TΓ^P) = / and π 2 ( P 0 0) - ? 2 ( P φ 0 ) = σ2(0) - 0. It fol-
lows that πλ\s/ is not unitarily equivalent to π2\^. Similary TΓJ^ is
not unitarily equivalent to τr2|^ if ττ2 is of form (a). Suppose both
π1 and π2 are of form (b), i.e., l ί^ei?^! 7 ,) and a ^'-isomorphism ^

of ρ(J^)p(Pi) o n t o Λί , s u c h

1, 2. We note that

Since p{T^p(P^ and ρ(T2)ρ(P2) are not algebraically equivalent,
there exists no ^isomorphism of 9>i(/0(Ĵ )/0(Pi)) onto <p2(p(J&dp(Pii)t
which maps φ^piT^piP^) to φ2(ρ(T2)p(P2)). This implies that there
exists no *-isomorphism of ^ ( j / ) onto π2(Ssf) which maps ίΓi(5Γi0Γ2)
to ^(TΊ© T2). Hence π^\s/ is not unitarily equivalent to ττ2|^.

In the following we use a Stone-Weierstrass theorem for
C*-algebras to obtain a significant improvement of Theorem 2.1 in
an important special case.

Recall that a subset & containing the identity of a unital
C*-algebra *$/ separates the pure states of j y if to each pair pλ

and p2 of distinct pure states of j y , there corresponds a
such that ρx{B) Φ pJJS).

We fix a unital C*-algebra J ^ and elements Γx, T2 of
and Σ2 are defined relative to C * ( Γ x 0 Γ2) as in Theorem 2.1.

LEMMA 2.7. // l Ί Π ^ = 0 , £Λew C*(Γ!0 T2) separates the pure
states of

Proof. Let j ^ - C*(ΓX) 0 C*(T2), ̂  - C*(ϊ\ 0 Γ2), ^ - C*(Tt)f

i = 1, 2.
Suppose ft and |O2 are pure states of J ^ such that px\^ = /02U.

For i = 1,2, there is an irreducible representation πt of Jzf and
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a unit vector ξfe <%*π. for which pt( ) = (ττ<( )ft>ft) Now πt is of
the form σ for σ e Irr j ^ U Irr J^2 If σ β Irr j^ ί , then

ρ<(A 0 J3) -

and so Pi — f for some pure state / on j ^ . Similarly, Pi — g for
some pure state # on J^ 2 if (7 6 Irr J^2.

Suppose pi — fi, fi a pure state on j ^ , i = 1, 2. We denote by
^ the set of all polynomials in two noncommutating variables and
for pe&», we set p(Tt) = p{Tif Tf), i = 1, 2. Since ^ U = ftU, it
follows that

Let i^t = GNS Hubert space corresponding to fif and set
{A e ^ifiiA^A) - 0}. Define the mapping U: ^(ΓJ/ker/i -
ker/2 by U: p{Tx) + ker/x-> p(Γ2) + ker/2, p e ^ . Then by (1),

+ k e r / J I ^ =Λ(p(Γ1)*p(Γ1))

and so U extends to a unitary transformation of Sίfx onto ĝ̂ 2 Also,
if p, q e & and πfi is the GNS representation corresponding to fif

then

ker/J - τr/a(p(Γ2))(?(Γ8) + ker/2)

l ker/x) .

Since p and g are arbitrary, it follows that TΓ/J^ ίs unitarily equi-
valent to ί?/2U, and so ker(7?/lU) = ker(ττ/2U) e Σ1 Π ̂ 2, contrary to
assumption.

We conclude that either
(a) pi •= σif Gt a pure state on j ^ , ί = 1, 2,

or
(b) ft = α^ ^ a pure state on J^2, i — 1, 2.
Suppose (a) holds. Let #, g e ^ 5 . We have

(2.14)

(2.15)

Now p ( ϊ \ ) φ ί ? ( Γ 2 ) € ^ , and so since p^m =

(2.16)
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Thus by (2.14), (2.15), (2.16), and the arbitrariness of p and q, pλ = p2.
For case (b), argue similarly.

THEOREM 2.8. Suppose C*(ϊ7

1φTf

2) is strongly amenable (con-
sult ([11], definition, p. 70). Then C*^®^) splits if and only if

Proof. We need only verify the "if" part. By Lemma 2.7,
C*(?\0T2) separates the pure states of C*(ϊ\) 0 C*(T2). Thus by
Proposition 3.3 in [3], C*(2\0 T2) - C*(T2)@C*(TJ.

COROLLARY 2.9. Suppose 2\ and T2 are GCR elements (i.e.,
C*(Ti) is a GCR algebra, i = 1, 2). Tfoew C*(2\0 T2) splits if and
only if Σ1f\Σ2 = 0 .

Proof. Since all GCR algebras are strongly amenable ([11],
Theorem 7.9, p. 78), this corollary is evident from the above theo-
rem.

REMARK 2.10. Theorem 2.8 (and hence Corollary 2.9) also holds
in the nonunital case. One need only check that there can exist no
nonzero pure state of C*^) 0 C*(T2) which vanishes on C*(Ti® Γ2),
and this follows from the fact that each pure state of C*(Γ1)0C*(Γ2)
is "evaluation at coordinates" of a pure state of either C*(Tj) or
C*(T2) (see the beginning of the proof of Lemma 2.7).

3* The splitting of W*(TX® JΓ2) In this section necessary and
sufficient conditions for the splitting of W*(Tλ® Γ2) are given,
where Tt 6 ̂ 0%1) for Hubert spaces Sίfu i = 1, 2.

We begin by considering a slightly more general problem. Let

& = [T, © 0, 0 0 Γ2, Tf 0 0, 0 0 Tί) ,

MφT* Tϊ 0T2*},

We are interested in deriving conditions under which the W*-algebras
generated by S^9 &~, and ψ' coincide. By the double commutant
theorem, it suffices to consider S?"y ^

t f , and T" (' denotes com-
mutant), and we easily see that ^ " £ Sf" S T".

Let S = ( | ^ | ^ ) be in ^ ' , with S* - S, i.e., SS - Su, ΐ = 1, 2,

and S12 = SJ. From

[o TJ \O T
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it follows that

ίSn ϊ\ o12 T2\ lT1 Sn T1

\ ^ 2 2 «*1 ^ 2 2 2 2/

Thus we have

(3.1)

Similarly from

S«2? = ϊ ? ^ , i = 1, 2
(3.1)* SU2? = T?Sn

Since (3.1)* is just the "adjoint" version of (3.1), we have the fol-
lowing lemma:

LEMMA 3.1. Let S* - S = (%n %12) be in &(&έ\@ ,0έ?>). Then

S 6 3?~f if and only if

uTi ~ TiSu, i = 1, 2 ,

Now suppose Sz.9" and S = S*. From

we get

Γ Λ i = StiT(, i = l,2,

. = 0 .

Similarly from

[T? 0\ ITΐ 0\ /0 0\ /0 0\rt

S = S and S = m )S,

we get
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TtSu = SuTt, i = 1, 2 ,
*^12 J-l — J-l O 1 2 — O 1 2 -i 2 — J-2 £>12 —

Therefore we have

LEMMA 3.2. Lei S* = S = ( | n | 1 2 ) δe m

Se.9*' if and only if

uTi = TiSa, i = 1, 2 ,

12-̂ 2 = = -*lθ1 2 ~ ^12 21 = T2bi2 ~ 0 .

Finally if S 6 3^' if follows from

0\ /I 0\ /Su S12\ /Su 0\ _ c .
= } S that = I , where S12 = 0 .

\o oy \o oy \o o; \S5 o;
The following theorem is an immediate consequence of Lemmas 3.1
and 3.2.

THEOREM 3.3. (1). t ^ r " = Sf" if and only if for any bound-
ed linear operator S from J%?2 into ^fλ we have S T2 = S*2\ = 0
whenever ST2 = TλS and S*T2 = T2S*.

(2) S?" = cΓn if and only if for any bounded linear operator
S from cy^2 into ,.%^ we have S = 0 whenever ST2 = TλS = S*2\ =
Γ2iS* = 0.

( 3) J^~" = 5^" i/ and only if for any bounded linear operator
S from £/?\ into , 5 ^ we have S = 0 whenever ST2— TλS and
S*TX = T2S*.

Let ,yV be a T7*~algebra, Λ^* its predual, and let
denote the family of all σ(,yK, «^^Hί)-continuous representations of
*sV. Each point of the positive part of the unit ball of <yΓ* gives
rise to an element of 'ReΊpσ(<yK) via the Gelfand-Naimark-Segal con-
struction, and therefore Repσ(.^^) separates points in ^V.

Now, let Tt e ^ ( ^ ) , i = 1, 2, and set ^T = W*^ 0 T2),
^r. = TΓ*(Γ1), i = 1, 2. For π e Repσ(^ς), defined as in § 2,
π(Tx 0 T2) = π(Tt). Then π e Repσ(,^r). There hence exists a central
projection P — P- e Λ^ such that ker π = ,yί^P. Let supp ft = I — P,
and let

/7i = {supp TΓ: 7Γ 6 Repσ(^ς)} , i = 1, 2 .

Suppose that

(*) n,±n2 (i.e., £ ^ = 0, 5,6/7,, i = 1, 2) ,
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1 U Π2) = sup{P: Pe Πλ\J Π2] = / == identity on <%* 0 £ίf2. Let
Pi = sup{P: PeΠi), i — 1, 2. P, is a central projection in ^^", and
by (*), P.lP,, P, + P2 = I. Let Q = P l y so that I - Q = P2. Let
<? = Qi 0 Q2.

Since Q - Pu P x l P 2 , and ττ(Q2) - π(Q) = ^(PJ - 0 for all TΓ in
Repσ(«^ς), we conclude that Q2 = 0. Similarly, for all π in
we have

= I - ίf(Q)

= ί - «(Pi)

Hence Λ - Qlβ Therefore Q = 1,0 0, and T F * ^ 0 T2) splits.
From the preceding discussion and Theorem 3.3, we may hence

deduce the following result, which gives spatial and space-free
criteria for the splitting of T F * ^ © T2).

THEOREM 3.4. Let ϊ ^ e ^ C ^ ; ) , i = 1, 2. The following are
equivalent:

(a) TF*(2\0T2) splits.
(b) i71li?72 α^d supttfi U i72) = /.
(c) For any bounded linear operator S from ^f2 into £ίfu we

have S = 0 whenever ST2 = ΓXS and S*Tt = Γ2S*.
Furthermore, W*^® T2) splits if either W*(Re 2^0 Re Γ2) or

TF*(Im I7! 0 Im Γ2) splits.

Proof, (a) «=> (b). This follows immediately from the discussion
following Theorem 3.3.

(a) <=> (c). Notice first that by the double commutant theorem,
TF*(r !0 T2) splits precisely when J*""" = T". Now apply Theorem
3.3(3).

Suppose PΓ*(Re Z\ 0 Re T2) splits. Let S be a bounded linear
operator from H2 into Hx such that ST2 = ΓXS and S*2\ = T2S*.
Then TΊS = SΓ2*, so

(Re 5 ± J
 Γ + Γf

Thus from Theorem 3.3 (3) and the fact that TF*(Re T± 0 Re T2)
splits, we conclude that S = 0. This verifies (c), and so TΓ*(Γ10 Γ2)
splits. Argue similarly if TF*(Im Γxφlm 5Γ2) splits.

REMARK 3.5. We now show by example that TF*(2\0T2) can
split with neither TF*(Re 2\ 0 Re T2) nor W * (Im 2\ 0 Im T2) split-



214 SZE-KAI TSUI AND STEVF WRIGHT

ting.
Let an = 1/n, βn = 1/n + i, n = 1, 2, 3, . Let Tx (resp. Γ2)

be the diagonal operator with diagonal {au β2, a3, β4, •} (resp. {βlf

&2> βs, &*, ••*})> acting on the separable Hubert space H. We have

Λ{TX) = {0, i} U {aί9 ft, aZf •••},

- {0, i} U {A, α,, A, •••} .

If A and i? are normal operators, it follows from Theorem 3.4
(b) or ([9], Theorem 4.71) that TF*(A 0 B) splits if and only if a
scalar spectral measure of A is orthogonal to a scalar spectral
measure of B. Let Ek denote the projection-valued spectral measure
of Tk, k — 1, 2. If {Zw} is a countable dense subset of the unit ball
of 3if, then

is a scalar spectral measure for Tk9 k = 1, 2. Since 0 and i are not
eigenvalues of Tk, k = 1, 2, it follows by ([14], Theorem 12.29) that
μfc({0, i}) = 0,fc = 1, 2. Since μh is supported on yl(Γfc), k = 1, 2, we
conclude that /^ and /i2 are orthogonal, and so TF*(2\0 T2) splits.
But one easily checks that Λ(Re 2\) = ^(Re T2), .l(Im ΓJ = ^l(Im T2)
and therefore neither TF*(Re Tλ 0 Re T2) nor T7*(Im Γx 0 Im Γ2)
splits. This also provides an example of operators Tλ and T2 such
that W * ( 2 \ 0 Γ2) splits, but C * ( T x 0 Γ2) does not.
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