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THE SPLITTING OF OPERATOR ALGEBRAS

SzeE-KAl TsUl AND STEVE WRIGHT

We say the singly generated C*-algebra, CX(T, P T.),
splits if CX(T, @ T.)=C*(T,) ® C*(T:;). A necessary and suf-
ficient condition is derived for the splitting of CX(T, D T,)
in terms of the topological structure of the primitive ideal
space of CXT,@ T,). In particular, when C*(T, P T.) is
strongly amenable, the necessary and sufficient condition can
be simplified and does not depend on the topology of the
primitive ideal space of C*(T,@® T:). Several applications
of this theorem, such as the cases, among others, where T},
T, are compact operators, and C*(T,), C*(T.) have only
finite-dimensional irreducible representations, are discussed.
For the splitting of the W*.algebra, W*(T, P T.), two equi-
valent conditions are derived which are quite different in
nature. It is also shown that W*(T,® T,) splits if either
W*ReT, D ReT:.) or W*(ImT, D ImT,) splits, but the con-
verse is false. An example is given to show that
WH(T, D T.) splits whereas C*(T, @D T.) does not.

1. Introduction. Let &7 be a C*-algebra. If .& has an
identity element and T is in .&, C*(T') will denote the C*-subalgebra
of & generated by T and the identity element; if % has no
identity element, C*(T) will denote the C*-subalgebra of .o gene-
rated by T alone. If <Z is another C*-algebra and .o @ < is the
C*-direct sum of .& and <&, one can ask the following question:
Given T'P T, in &7 P <&, when does C*(T,. P T,) = C*(T,) D C*(T,)?
One always has C*(T, D T,) < C*(T,) @ C*(T,), and if equality holds,
we say C*(T,p T,) splits. A similar question can be posed in the
context of W*-algebras. Given W*-algebras 2, % and TP T, in
B D .S when does WHT, D T.,) = WH*T,) D WHT,) (W*T) = the
W *-algebra generated by T')? As in the C*-algebra case, W*(T. T.)
is said to split if equality holds.

In this paper, necessary and sufficient conditions are derived for
the splitting of C*(T, P T,) and W*(T, P T.). These results should
be compared with theorems in [2],[7], [5], and [6], where the split-
ting problem for various functors involving the direct sum is
treated. Indeed, the results in the present paper can be viewed as
“gelf-adjoint” analogs of the non-self-adjoint situations of this pre-
vious work.
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2. The splitting of C*(T, P T.). If .&7 is a C*-algebra, Prim
(&) will denote the primitive ideal space of .% equipped with the
hull-kernel topology, and Irr(.87) will stand for the set of all ir-
reducible representations of .. If E is a central projection in .7
and 7 is a representation of .&, 7, is the representation of .o~
defined by 7 (T) = n(TE) (T € A). ‘

We denote by #Z(.%7) the multiplier algebra of .&7; #(.%)
can be characterized as the largest C*-subalgebra of **, the en-
veloping von Neumann algebra of .97, which contains & as a
closed, two-sided ideal. If z is in Irr(.%7), then z’ denotes the uni-
que extension of m to an irreducible representation of _Z (&)
(since .& is a closed, two-sided ideal of .Z(.%7), ' exists for each
7w in Irr(.57)).

We begin by stating a noncommutative C*-algebra analog of
the Silov idempotent theorem ([15], Theorem 8.6). Its proof is ob-
tained from a straightforward application of the Dauns-Hofmann
theorem ([10], Theorem 3; [13] Corollary 4.7), and is therefore left
to the reader.

PROPOSITION. Let {X,, 2.} be a disconnection of Prim(.%7), & a
C*-algebra. Then there exists a unique central projection E of
A7) such that

Y, = {kerm:welrr(s¥), ' = 7y},
Y, ={kerm:mwelrr(w), ' =7;_;}.

Conversely, any nontrivial central projection K of _#(.7) induces
a disconnection of Prim(.87) in this way.

Now let .94, 1 =1, 2, be C*-algebras and let 7, be a represen-
tation of .57, ¢ =1,2. We define a representation 7%; of V[P &
by “evaluation at coordinates”, i.e.,

e A PA,— 7 (A) (AADAc YD Y.

In particular, if 7,P T, is a fixed element in .o/ P % and oe
Irr(C*(T)), 1 =1,2, then & is an irreducible representation of
C*(T,& T,). With this in mind, we now state and prove the main
theorem of this section.

THEOREM 2.1. Let 7,1 =1,2, be C*-algebras with T.@ T, a
fized element in &, D &, Then CT,D T, splits if and only if
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the sets
Y, ={kerd;: o, elre(C*(Ty))}, 1=12,
disconnect Prim(C*(T, P T)).

Proof. (=). Let &7 =C*T)PCHTy, & =CHT),1=1,2.
Since ¥ ** = 9 ** P N **, there exist orthogonal central projec-
tions B, E, in &** with [=E, + F, E, =10, E,=08 1. Thus
E.s < .,1=1,2. Since, for x in Irr(.27), n’ = n;, — n vanishes
on 0P =7 =36 for some o in Irr(.84), we conclude that 3, =
(kerm: weIrr(.), #’ = x%}, and similarly 2, = {kerx:z e Irr(.%),
m' =r_gz}. By the previous proposition we have that {3, ¥} dis-
connects Prim(.%7).

(=). Let & =C*(T. D T,) and .o, = C*(T;) for ¢ =1,2. Due to
the above proposition, there exists a
central projection E of _Z (%) such that

2.1) Y, = {kerm: we Irr(.7), n’" = 7w}
(2.2) Y, =tkerm:welrr(), @' =mx _;}.

Let A, D 4, be a fixed element in .o, and o in Irr(.84). By (2.1)
there exists 7 in Irr(.%) such that kerw = kerd, w = z,. Thus
1 — FE is in kerx’, and so

0=r(1— E)A, + 4)) =7n(1 — E)A, + 4,)) .
Hence (1 — E)A, @ A,)ckerw = kerd, i.e.,
0=0(1— E)A, D 4)
=0([1 - E)A D 4)]) -

Since o is arbitrary in Irr(.97) and Irr(.87) separates points of .97,
we conclude that

(2.3) 0=[1—E)A DA .
Similarly

(2.4) 0=[EA D A).

Thus,

(2.5) E(A @A) =[EA D A)DO

(2.6) 1 —-E)ADA)=0D[1 — EXA D 4. -

Adding (2.5) and (2.6) yields
A, @ A, = [E(Ax @ Az)]x @ [(1 — K)(A4, © Az)]z .
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Hence
A =[EA DA, A:=|01 - EXA DA,

whence by (2.5) and (2.6),
EADA)=4,00, 1—-E)ADA)=0DA4,.

Since E multiplies &7, A, P 0 and 0P A. are both in .. It fol-
lows that C*(T, @ T.,) splits.

Let T be a normal element of a C*-algebra, .&7. We identify
the spectrum A(T) with Prim(C*(T)), if .97 has an identity element.
It is easy to see that /(TP T,) = A(T)UA(T,) for T,, T, in .&. We
therefore deduce from Theorem 2.1:

COROLLARY 2.2. Let T, and T, be mnormal elements in «
C*-algebra 7. If .o7 has an identity, then C*(T,D T, splits if
and only iof AT)NAT) = @. If & has no identity, then,
CH(T, D T.) splits if and only if AT, N A(T,) = {0}.

Of particular interest is the case .o = .o = & (5#), where
(7)) denotes the C*-algebra of all bounded operators on the
Hilbert space 2#”°. The following results indicate the utility of
Theorem 2.1.

COROLLARY 2.3. Suppose T, and T, are irreducible operators
on 7. Then C*T.P T, splits if and only if Prim(C*(T, P T,)) is
disconnected.

Proof. I 0 and 06 I are the only possible nontrivial eentral
projections in C*(T. @ T,). If Prim(C*(T,p T,)) is disconnected, we
hence conclude by the proposition preceeding Theorem 2.1 that
CH*(T, P T.) contains I 0, and therefore splits.

Suppose that T, and T, are isometries on .72 with von Neumann-
Wold decompositions T, = U, P S;, v+ =1,2, i.e., U, is unitary and
S, is a (possibly trivial) unilateral shift. If either S, or S, is non-
zero, it follows from [4] that C*(T,@ T, is isomorphic to C*(S),
where S denotes the unilateral shift of multiplicity 1. Since S is
irreducible, we conclude that C*(T, @ T, does not splits. Hence
we have:

COROLLARY 2.4. Let T, and T, be isometries with wvon
Neumann-Wold decompositions U, D S;,71=1,2. Then C(T.D T,
splits if and only if S, =S, =0 and AU)N AU, = @.
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Let T, and T, be two compact operators acting on a Hilbert
space &Z°. If .77 is infinite-dimensional, then it is easy to see that
the C*-algebra generated by 7T, T, and the identity operator on
2 @ &7 never splits. However, if we consider C*(T.H T.) in
(&7 @ &F7) (the C*-algebra of all compact operators on 22 @ 277),
then the splitting of C*(T, & T,) can be characterized as follows:

COROLLARY 2.5. Let T, and T, be compact operators on .7 .
Then CY(T, & T.) (generated as a C*-subalgebra of .25 (5% @ .777))
splits if and only if every minimal projection in C*(T,H T,) is of
the form P, 0 or 0P P, where P, is a minimal projection in
CHT),v=1,2.

Proof. (-). Clear.

(==). Let.or =C*(T.D Ty, . = C¥T),1=1,2. Let_ . (resp.
. /) denote the set of minimal projections of .& of the form PO
(resp. 0 P,), where P, is a minimal projection in .o7, ¢ =1, 2.
Then by hypothesis,

(2.7) {minimal projections in .o} =. 4 U. /% .

Let welrr(.o7). Then ([1], Theorem 1.4.4) there exists a mini-
mal projection P = P.c.57, a nonzero vector & = ¢&. e P(o77 @@ o),
and a unitary operator U = U.:[.&7&] — 27" such that

(1) =(P)=+0,

(i) =(T'epT,)=UT66T,)QRU* where @ = projection of
Lz @ & onto [ .7

We denote this by writing 7~id,. By (2.7), P must be in either
. #, or _#5; suppose Pe_ 7, ie., P= R& 0, R a minimal projection
in .9%4. Then * = (&,0), & a nonzero vector in R(577), and so

[or2] = o281 @ (0) .
Therefore, there exists a wunitary U’:[.o/&]-> .27, such that
U:(x,0)-»U'z, xe[.572]. Thus by (ii),
(2.8) ®(T,PT)=UTQRU), @ =projection of 27 onto [.84&] .

But by ([1], Proposition 1.4.3), the right side of (2.8) defines an ir-
reducible representation ¢ of .%4. Thus w# =4&6. If Pe., the
same argument shows that = = 7 for some irreducible representation
T of &4 If ¥ and 3, are as defined in Theorem 2.1, we conclude
that

(2.9) Prim(.o7) = Y, U2, .

We now assert that
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(2.10) 3, =hull. % = {kerw: w e Irr(.%), _# < ker @},
(2.11) Y, =hull ./ = {kerm:welrr(.&7), , < kern} .

It is clear from the definition of _.#, that X, C hull _#,. Suppose
ker w € hull(_.#;). Now m~idp, with Pe _Z U._«,. 1f Pe_+;, then
7(P) = 0, which by (i) is contrary to the choice of P. Thus Pe _#
whence by the previous reasoning, we€Y,. This verifies (2.10), and
(2.11) follows similarly.

Suppose kerre X, N3, Then _ /4 U._# Ckerw. But m~idp,
for some Pec_ 7, U . with n(P) # 0, a contradiction. Thus

(2.12) 2N =0.

It follows from (2.9)-(2.12) that {¥, 3,} disconnects Prim(.%7),
whence by Theorem 2.1, C*(T, P T,) splits.

Let o be natural map from <Z(2#) onto the Calkin algebra
B(IF)].2c°(5#). The following concept is also seen in [12].

DEFINITION. Let T be an element in <& (2#°). A projection P
in Z(7) is fully n-reducing for T if TP = PT, rank (P) < <o,
and C*(T)P = M,, the n x n matrix algebra. A projection P in
FB(OF) is essentially fully n-reducing for T if p(P)o(T) = p(T)p(P),
P has infinite rank and nullity, and o(C*(T))o(P)= M,. We denote
the set of all fully (essentially fully) n-reducing projections for T
by R(T)Ri(T)), and let B(T) = U, R.(T), R(T) = U, Bi(T), where
n ranges through all positive integers. Each P in RYT) (or in
R(T)) induces an irreducible representation, 7,, of C*(T) in a natural
way as:

(2.13) 7wp(A) = p(A)o(P) (mp(A) = AP) for all 4 in C¥(T).

DEFINITION. Let T and S be elements in C*-algebras .& and
<# respectively. T is algebraically equivalent to S, if there exists
a *-isomorphism @ of C*(T) onto C*(S) with o(T) = S.

PROPOSITION 2.6. Let T, 1 =1, 2, be two operators in (%)
such that every trreducible representation of C*(T,), i = 1,2, has a
JSinite-demensional representation space. C*(T, P T,), a C*-subalgebra
of B (# P 27), splits if and only if the following two conditions
hold: '

(1) If an operator in C*(T,) @ C*(T,) is of the form P, PO or
0D P, where P, is in R(T,)NC*T,),1=1,2, then it is 1in
CXT, @ T.).

(ii) If P,eR(T),t=1,2, then p(P.T,) s mot algebraically
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equivalent to o(P,T,).

Proof. Let .&7 be CYT. D T,), .57, be C*(T,), 72 =1, 2, and I, be
as in Theorem 2.1, 7 =1, 2.

(=) Condition (i) follows from the fact C*(T,) @ 0 and 0 C*(T,)
are contained in . P ., = 7.

(ii) Let P, be in RY(T,), 1 = 1, 2. If there exists a *-isomorphism
@ of C*(o(T,P,)) onto C*(o(T.P,)), with o(o(T.P,)) = o(T.P,), then the
kernels of the two irreducible representations 7, % of .& induced
by P, P, (n, =7,, as in (2.13)) are equal. Since ker #; is in %,
1 =1, 2, this contradicts the fact that ¥, N 3, = @ by Theorem 2.1.

(=) Any 7w in Irr(./ P .o7%) is of the form 7 = &, for some
o; in Irr(.&7), and hence is finite-dimensional. Since .o P . is
CCR, any two irreducible representations 7, 7, of .&7; @ ., are uni-
tarily equivalent if and only if kerz, = kerw, ([8], 4.3.7). .&, a
C*-subalgebra of .o @ .97, is also CCR, and also has the above pro-
perty. Next, we state a proposition ([8], 11.1.6), and then use the
proposition to show that .o splits.

PROPOSITION. Let <& be a C*-algebra, and <Z, a C*-subalgebra
of &. If B, satisfies the following two conditions:

(i) |z, ts in Irr(Z), iof © is in Irr(F);

(ii) 7|s, s mot unitarily equivalent to ='|s, if ®™ is not uni-
tarily equivalent to ' in Irr(<#), then &, = Z.

Let @ be in Irr(.57 @ .87%;) and of the form 7 = &, for some o,
in Irr(.7). So #n(T\P T, =6,(T.P T, = o,(T,), whence 7(.¥)=
g,(.7,) on 57, and 7|, is irreducible. Let # be an n-dimensional
irreducible representation of C*(T) for some T in <& (5#°). Theorem
1.1 in [12] implies that either (a) 3P C*(T)N R(T') such that z(P) =1
and the restriction of 7 to C*(T)P is a *-isomorphism of C*(T)P
onto M,, or (b) 3P R(T) and a *-isomorphism ¢ of o(C*(T))o(P)
onto M, such that 7(A) = p(o(4)o(P)) (A C*(T)).

Suppose 7, 7w, are two unitarily inequivalent elements in
Irr(.7, B 7)), and 7, = &, for o, in Irr(.,), © =1, 2.

Case 1. j(1) = j(2). We note 7(T, D T) =6 (T, D T2) = 0.(T;w),
1 = 1, 2, and unitary equivalence between 7,|. and 7,|. implies that
there exists a *-isomorphism @ of 7,(.%) onto 7,(.&%") with o(o,(T;,)=
o(n(T, P T) =7n(T. D T,) = 06(T;»). This @ induces a unitary
equivalence between 0,(.5,) and 0,(.,). If A, DA, are in
D 4, P64 D AN =(0,(A;)) = 0o A i) = T Aj) = Fo A, D 4.
The second equality in this equation is due to a property of o,
which 1is illustrated in the following commutative diagram:
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pl/’Mn

S0 < ls@
2 M,

It follows that =, and =, are unitarily equivalent on .7 & %%,
which is a contradiction. Therefore x|, is not unitarily equivalent
to 7, .

Case 2. j(1) # j(2). Let j(1) =1, j@2) =2. If o0, is of form
(a) relative to P in R(T)) N .5, with PP 0 in .&7, then 7, (PP 0) =
F(PB0)=7(P)=1 and 7 (PP 0) =, (PP0) = 0,(0) =0. It fol-
lows that x|, is not unitarily equivalent to w,|.,. Similary =, is
not unitarily equivalent to =,|, if =, is of form (a). Suppose both
7, and &, are of form (b), i.e., 3P, € R(T,) and a *-isomorphism o
of p(.57)0(P,) onto M,, such that o, (A4) = @(0(A)p(P)), (A€ ., i=
1,2. We note that

751(T1 @ T2) = ﬁx( Tx @ Tz) = 6:1( Tx) = @1(40(T1)9(P1))
7z'2(T1 @ Tz) = (72(T1 @ Tz) = 0'2(T2) = %(P(Tz)P(Pz)) .

Since o(T)p(P,) and o(T,)o(P,) are not algebraically equivalent,
there exists no *-isomorphism of @,(0(.%)o(P,)) onto @,(0(.57,)0(F.)),
which maps @,(o(T)o(Py)) to @.(o(T)o(P,)). This implies that there
exists no *-isomorphism of 7,(.%”) onto 7,(.97) which maps 7,(T, D T.)
to 7(T, P T,). Hence 7|, is not unitarily equivalent to 7|, .

In the following we wuse a Stone-Weierstrass theorem for
C*-algebras to obtain a significant improvement of Theorem 2.1 in
an important special case.

Recall that a subset <% containing the identity of a unital
C*-algebra .o separates the pure states of .o if to each pair p,
and 0, of distinct pure states of .o/, there corresponds a Be <#
such that o0,(B) +# p.(B).

We fix a unital C*-algebra . and elements T, T, of .. X,
and Y, are defined relative to C*(T, & T.,) as in Theorem 2.1.

LEemMA 2.7. If Z.N2,= O, then C*(T. D T,) separates the pure
states of C*(T) @ C*(T,).

Proof. Let .o =C*(T) & CH(T,), # =C*T.D Ty, ., =C*(T),
1 =1, 2.

Suppose p, and p, are pure states of .o such that o,z = 0))s.
For i =1,2, there is an irreducible representation =, of .9~ and
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a unit vector & e 577, for which o(-) = (w,(-)&, &). Now x; is of
the form & for ocelrr /,Ulrr &,. If oelrr .o, then

P(AD B) = (0(4), §), VAD Be .,

and so o, = f for some pure state f on .%. Similarly, 0; =g for
some pure state g on %7 if oelrr 7.

Suppose p; = fa f: a pure state on ., i = 1,2. We denote by
& the set of all polynomials in two noncommutating variables and
for pe P, we set »(T) = (T, T#), 1 =1,2. Since o)z = Pulas, it
follows that

Ji(o(TY) = filo(Ty) , VpeF .

Let 2#; = GNS Hilbert space corresponding to f;, and set kerf,=
{Ae .7 fi(A*A) = 0}. Define the mapping U: Z#(T))/ker f, — F(Ty)/
ker f, by U: o(T,) + ker f, —» (T, + ker f,, e . Then by (1),

o(T) + ker fi|3, = fulp(T)*p(TY))
= fo(p(T)*p(Ty)
= ||p(Ty) + ker f;|l%,, VpeF,

and so U extends to a unitary transformation of 57 onto 57,. Also,
if p,qe < and w;, is the GNS representation corresponding to f;,
then

T (P(T)U(Q(T) + ker f,) = ms,(0(To))(q(T:) + ker f)
= p(T)a(T.) + ker f,
= U(T)e(T,) + ker f)
= Uﬂ.fl(p(Tl))(q(Tl) + ker f)) .

Since p and g are arbitrary, it follows that 7,|. is unitarily equi-
valent to 7)., and so ker(%,|s) = ker(#;,|s) € ¥, N %, contrary to
assumption.

We conclude that either

(a) p. =0, 0, a pure state on %, 1 =1, 2,

or
(b) p. =6, 0, a pure state on .&%, 1 =1, 2.
Suppose (a) holds. Let p,qe.”. We have

(2.14) 0.(0(T) D (1Y) = o,(n(TY)) ,

(2.15) (1) D 9(T2)) = ox(p(TY)) .

Now p(T,) @ p(T.) € &£, and so since p,|s = 0z,
(2.16) a.(p(T) = a(p(T)) .
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Thus by (2.14), (2.15), (2.16), and the arbitrariness of p and g, o, = p,.
For case (b), argue similarly.

THEOREM 2.8. Suppose C*(T, D T, is strongly amenable (con-
sult ([11], definition, p.70). Then C*(T, D T,) splits if and only if
2N, = Q.

Proof. We need only verify the “if” part. By Lemma 2.7,
C*(T, D T,) separates the pure states of C*(T) & C*(T.,). Thus by
Proposition 8.8 in [3], C*(T, @ T.) = C*(T.) D C*(T)).

COROLLARY 2.9. Suppose T, and T, are GCR celements (i.e.,
C*(T,) is a GCR algebra, 1 =1,2). Then C*(T.D T, splits if and
only if Z.N32, = Q.

Proof. Since all GCR algebras are strongly amenable ([11],
Theorem 7.9, p. 78), this corollary is evident from the above theo-
rem.

REMARK 2.10. Theorem 2.8 (and hence Corollary 2.9) also holds
in the nonunital case. One need only check that there can exist no
nonzero pure state of C*(T,) @ C*(T,) which vanishes on C*(T, P T,),
and this follows from the fact that each pure state of C*(T,)PC*(T,)
is “evaluation at coordinates” of a pure state of either C*(T) or
C*(T,) (see the beginning of the proof of Lemma 2.7).

3. The splitting of W*(T, T,). In this section necessary and
sufficient conditions for the splitting of W*(T.@ T, are given,
where T, e & (57,) for Hilbert spaces 5+, 1 =1, 2.

We begin by considering a slightly more general problem. Let

& ={I,P0,0P T, T*PO0,06p T;},
F ={I'® T, Tr D T:},
7r=<U{IPo}.
We are interested in deriving conditions under which the W *-algebras
generated by &7, &, and 7' coincide. By the double commutant

theorem, it suffices to consider &, # ", and 7" (' denotes com-
mutant), and we easily see that &# " < " 7.

Let S = (gl g) be in F”, with §* = 8, i.e., St =8, i=1,2,

21 22.
and S,;, = S¥%. From
T, 0 T, 0>
S = S,
oz) =o'z
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it follows that

(Su T1 S12 Tz) . /T1 Su T1 S12>
<T2 Sm Tz Szz .

S T, S» T
Thus we have
ST, =TS, 7=1,2
(3.1) ST, = TS, ,
SiT, = T,S% .
Similarly from

T: 0 T 0
S = s btai
<0 T;‘) <0 Tz*> S, we obtain

SiiTi* = Ti%Siiy 1= 1; 2
(3-1)* SmTz* = Tfkstz
SETr = TFSy .

Since (3.1)* is just the “adjoint” version of (3.1), we have the fol-

lowing lemma:

LEMMA 3.1. Let S* = S = (g g) be in B (97D ). Then
21 22.
Se F" if and only if

SiiTi = Tisii’ 1=1,2,
S12T2 = T1S12
ST, = TSy .

Now suppose Se¢.9”’ and S = S*. From

7,0\ (T, 0 00_(0 0)
S<0 o>'<o 0>S and S<o T)_\O )5

we get

Tisii = Su‘Tm 1= 1: 2,
S1*2T1 = T1S12 = SmTz = Tzsi*z =V.

Similarly from

T: 0 T 0) 0 0 0 O
S(O 0> - (o o/5 #nd S<o Tz‘) '(o T;)S’

we get
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TfSu=S“Ti*,i=1,2,
S{szl* = Tl*Sn:SnTz* = Tz* 1*2:0~

Therefore we have

LemMMA 8.2. Let S* =S = @“ §’2> be in F( D 7). Then
21 22.
Se. & if and only if

SiiTi = Tisii’ 1= 1’ 2,
SlZTZ = T1S12 = S1*2T1 = Tzsfez =0.

Finally if Se 7"’ if follows from

S <I O) = <I 0) S that <S“ Sm) = (Sn O) , Where S, =0.
00 00 0 0 5 0

12

The following theorem is an immediate consequence of Lemmas 3.1
and 3.2.

THEOREM 3.8. (1). & " =" if and only if for any bound-
ed linear operator S from =5, into o7, we have S T, =S*T, =0
whenever ST, = T.S and S*T, = T,S*.

(2) " =7" if and only +f for any bounded linear operator
S from 57, into 57, we have S = 0 whenever ST, = T.S = S*T,=
T.8* = 0.

(3) F" =" 4if and only if for any bounded linear operator
S from 57, imto 9%, we have S =0 whenever ST,= TS and
S*T, = T,S*.

Let 4+ be a W*-algebra, .4, its predual, and let Rep, (. +")
denote the family of all o(_#", _#",)-continuous representations of
~¥". Each point of the positive part of the unit ball of 4", gives
rise to an element of Rep,(_#") via the Gelfand-Naimark-Segal con-
struction, and therefore Rep,(.#") separates points in .4 .

Now, let T,e Z(57),1=1,2, and set 4" = W*(T.6D T,),
N7=W*T),1=1,2. For weRep,(+;), defined as in §2,
T, D T,) = n(T;). Then 7eRep,(_#"). There hence exists a central
projection P = P: ¢ 4" such that ker 7 = _#"P. Let supp@ =1— P,
and let

II, = {supp #: t € Rep,(.#7)}, ©=1,2.
Suppose that
) I, 11, (ie., S;S,=0, S,ell,, =12,
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sup(ll, U I1,) = sup{P: Pell, U Il,} = I = identity on 57, P 57,. Let
P, =sup{P: Pell;}, i=1,2. P, is a central projection in _¢#~, and
by (*), P,LP,P,+P,=1 Let Q=P, so that I —Q = P,. Let
Q = Q1 @ Qz-

Since @ = P, P, 1 P,, and 7(Q,) = 7A(Q) = A(P,) = 0 for all « in
Rep,(_773), we conclude that @, = 0. Similarly, for all = in Rep,(.#7,)
we have

n(l, — Q) = n(l) — 7n(Qy)

=1 —7@)
= I —7P)
=I—-I=0.

Hence I, = Q,. Therefore Q =1, 0, and W*(T,P T,) splits.

From the preceding discussion and Theorem 3.3, we may hence
deduce the following result, which gives spatial and space-free
criteria for the splitting of W*(T,. D T,).

THEOREM 3.4. Let T, & (57,),1=1,2. The following are
equivalent:

(a) W*(T.,6b 1T, splits.

(o) M, LI, and sup(ll, U II,) = I.

(e¢) For any bounded linear operator S from 57, into 57, we
have S = 0 whenever ST, = T.S and S*T, = T,S*.

Furthermore, W*T, P T,) splits if either W*(Re T, Re T,) or
W*(Im T, D Im T,) splits.

Proof. (a) < (b). This follows immediately from the discussion
following Theorem 3.3.

(a) = (¢). Notice first that by the double commutant theorem,
W*(T, D T, splits precisely when # " = 7. Now apply Theorem
3.3(3).

Suppose W*(Re T. D Re T,) splits. Let S be a bounded linear
operator from H, into H, such that ST,= TS and S*T, = T,S*.
Then TS = ST¥, so

(Re T)S = Z’_l_‘;ﬂs - sl’zié_@i —~ SReT), .
Thus from Theorem 3.3 (3) and the fact that W*Re T, D Re T,)
splits, we conclude that S = 0. This verifies (¢), and so W*(T, P T,)
splits. Argue similarly if W*(Im 7. P Im T,) splits.

REMARK 3.5. We now show by example that W*(T, P T,) can
split with neither W*(Re T, @ Re T,) nor W*(Im T, P Im T,) split-
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ting.

Let a, =1/n,8,=1/n+14, n=12,3,..- . Let T, (resp. T,)
be the diagonal operator with diagonal {a,, 8., a;, B, -+ -} (resp. {5,
oy, By, Ay, -+ +}), acting on the separable Hilbert space H. We have

A(T1> = {0: 7/} U {aly :82; &y -+ } ’
A(T2) = {07 7’} U {Bly &, B2r ot } .

If A and B are normal operators, it follows from Theorem 3.4
(b) or ([9], Theorem 4.71) that W*(A & B) splits if and only if a
scalar spectral measure of A is orthogonal to a scalar spectral
measure of B. Let E, denote the projection-valued spectral measure
of T,k =1,2. If {X,} is a countable dense subset of the unit ball
of 27, then

() = 227 | B I

is a scalar spectral measure for T, k = 1,2. Since 0 and 7 are not
eigenvalues of T, k = 1, 2, it follows by ([14], Theorem 12.29) that
1({0,4}) =0,k =1,2. Since p, is supported on A(T)), k = 1,2, we
conclude that g, and g, are orthogonal, and so W*(T,@ T.) splits.
But one easily checks that A(Re T, = A(Re T,), A(Im T,) = A(Im T,)
and therefore neither W*(Re I, Re T,) nor W*(Im T, P Im T,)
splits. This also provides an example of operators T) and T, such
that W*(T, @ T,) splits, but C*(T, P T.) does not.
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