HARMONIC MAJORATION OF QUASI-BOUNDED TYPE

SHIGEO SEGAWA

Let O_{AL} (resp. O_{AS}) be the class of open Riemann surfaces on which there exists no nonconstant analytic functions f such that $\log^+ |f|$ have harmonic (resp. quasi-bounded harmonic) majorant. It is shown that $O_{AL} = O_{AS}$ for surfaces of finite genus.

1. An analytic function f on an open Riemann surface R is said to be Lindelöfian if $\log^+ |f|$ has a harmonic majorant ([2]). Denote by $AL(R)$ the class of Lindelöfian analytic functions on R. Relating to the class $AL(R)$, consider the class $AS(R)$ which consists of analytic functions f on R such that $\log^+ |f|$ has a quasi-bounded harmonic majorant. The class $AS(R)$ is referred to as the Smirnov class ([4] and [4]). Denote by O_{AL} (resp. O_{AS}) the class of open Riemann surfaces R such that $AL(R)$ (resp. $AS(R)$) consists of only constant functions. It is known that $O_{G} < O_{AL} < O_{AS}$ (strict inclusions) in general and that $O_{G} = O_{AL}$ for surfaces of finite genus ([2] and [5]). In this paper, it is shown that $O_{G} = O_{AS}$, and therefore $O_{G} = O_{AL} = O_{AS}$, for surfaces of finite genus (cf. [3]).

2. Let s be a superharmonic function on a hyperbolic Riemann surface R and e be a compact subset of R such that $R - e$ is connected. Denote by $\Phi(s, e)$ the class of superharmonic functions v on R such that $v \geq s$ on e except for a polar set. Consider the function $(s, e)(p) = \inf_{v \in \Phi(s, e)} v(p)$ on R. Then (s, e) has following properties (see [1]):

Lemma. (s, e) is superharmonic on R, $(s, e) = H_{R - e}^{s}$ (the solution of the Dirichlet problem with boundary values s on ∂e and 0 on ∂R) on $R - e$, and $(s, e) = s$ on e except for a polar set.

3. **Theorem.** The relation $O_{G} = O_{AS}$ is valid for surfaces of finite genus.

Proof. We only have to show that $O_{G} \supset O_{AS}$. Let F be of finite genus not belonging to O_{G} and S be a compact surface such that $F \subset S$. In order to show that $F \in O_{AS}$, we may assume that $K = F^c = S - F$ is totally disconnected. Hence we can decompose K into two compact sets E and e such that E and e have positive capacity. Set $R = E^c = S - E$ and choose a point $x \in e$ which is a regular boundary point for $R - e$. Let $e_n = e \cap \{z \in R; G_R(z, x) \leq n\} (n \in N)$, where $G_R(\cdot, x)$ is the Green's function on R with pole at x. Set $h_n =$
Then it is easily seen that \(\{h_n\} \) is increasing and \(h_n \in HB(R - e) \) (the class of bounded harmonic functions on \(R - e \)).

Here and hereafter, the lemma in no. 2 will be used repeatedly without referring to it. Let \(y \) be an arbitrarily fixed point in \(R - e \).

Again, we set \(u_n = (G_R(\cdot, y), e_n)(n \in N) \) and \(u = (G_R(\cdot, y), e) \). Then, since \(\{u_n\} \) is increasing and \(u_n \leq u \), the limit function \(U \) of \(\{u_n\} \) exists, is superharmonic on \(R \), and \(U \leq u \). On the other hand, since \(u_n \leq U \leq G_R(\cdot, y) \) and \(u_n = G_R(\cdot, y) \) on \(e \) except for a polar set for every \(n \in N \), \(U = G_R(\cdot, y) \) on \(e \) except for a polar set by the fact that the union of countably many polar sets is also polar, and a fortiori \(U \geq u \), which implies that \(U = u \). Observe that

\[
 h_n(y) = H^{R-e}_{G_R(\cdot, y)}(y) = G_R(y, x) - G_{R-e}(y, x) \\
 = G_R(x, y) - G_{R-e}(x, y) = H^{R-e}_{G_R(\cdot, y)}(x) \\
 = u_n(x) \uparrow u(x) = (G_R(\cdot, y), e)(x) \quad (n \to \infty) \\
 = G_R(x, y).
\]

Here the regularity of \(x \) is used in the last equality. Consequently we see that the increasing sequence \(\{h_n\} \) with \(h_n \in HB(R - e) \) converges to \(G_R(\cdot, x) \), i.e., \(G_R(\cdot, x) \) is quasi-bounded on \(R - e \).

Consider a meromorphic function \(f \) on \(S \) with a single pole of order \(k \) at \(x \). Then \(\log^+ |f| \leq kG_R(\cdot, x) + C \) for a sufficiently large constant \(C \). Therefore \(f \in AS(R - e) = AS(F) \), i.e., \(F \in O_{AS} \). This completes the proof.

References

Received February 9, 1979.

Daido Institute of Technology

Daido, Minami, Nagoya 457

Japan