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HARMONIC MAJORATION OF QUASI-BOUNDED TYPE

SHIGEO SEGAWA

Let O, (resp. O, be the class of open Riemann surfaces
on which there exists no nonconstant analytic functions f
such that log*|f| have harmonic (resp. quasi-bounded har-
monic) majorant. It is shown that O,, = O, for surfaces
of finite genus.

1. An analytic function f on an open Riemann surface R is said
to be Lindelofian if log™ |f| has a harmonic majorant ([2]). Denote
by AL(R) the class of Lindelofian analytic functions on R. Relating
to the class AL(R), consider the class AS(R) which consists of analytic
functions f on R such that log*|f| has a quasi-bounded harmonic
majorant. The class AS(R) is referred to as the Smirnov class ([4]
and [4]). Denote by O, (resp. O,5) the class of open Riemann surfaces
R such that AL(R)(resp. AS(R)) consists of only constant functions.
It is known that O; < O,, < O, (strict inclusions) in general and
that Oy = O,, for surfaces of finite genus ([2] and [5]). In this
paper, it is shown that O; = O, and therefore O, = O,, = O, for
surfaces of finite genus (cf. [3]).

2. Let s be a superharmonic function on a hyperbolic Riemann
surface R and ¢ be a compact subset of R such that R — ¢ is connected.
Denote by @(s, ¢) the class of superharmonic functions v on R such
that v=s on ¢ except for a polar set. Consider the function (s, e)(p)=
inf,.o4,0v(p) on R. Then (s, e) has following properties (see [1]):

LEMMA. (s, e) 18 superharmonic on R, (s, e) = HF° (the solution
of the Dirichlet problem with boundary values s on de and 0 on oR)
on R —e, and (s, ¢) = s on e except for a polar set.

3. THEOREM. The wrelation Og = O, s wvalid for surfaces of
finite genus.

Proof. We only have to show that O, > 0,5. Let F be of finite
genus not belonging to O; and S be a compact surface such that F'cS.
In order to show that F'¢ O,,, we may assume that K = F*= 8§ — F
is totally disconnected. Hence we can decompose K into two compact
sets E and e such that F and e have positive capacity. Set R =
E°=8 — E and choose a point xe€e which is a regular boundary
point for R —e¢. Let ¢, =enN{zeR; Gz, ) < n}(neN), where
Ggp(-, ) is the Green’s function on R with pole at 2. Set &, =
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(Gx(-, ), e,) for ne N. Then it is easily seen that {k,} is increasing
and h, € HB(R — e) (the class of bounded harmonic functions on B — e).
Here and hereafter, the lemma in no. 2 will be used repeatedly
without referring to it. Let y be an arbitrarily fixed point in R — e.
Again, we set u, = (Gz(-, ¥), e,.)(ne N) and u = (Gz(-, ¥), ¢). Then,
since {u,} is increasing and wu, < u, the limit function U of {u,} exists,
is superharmonic on R, and U < #. On the other hand, since u, <
U<ZGe(-, ¥) and u, = Gz(-, ¥) on e, except for a polar set for every
neN, U= Gg(-,y) on ¢ except for a polar set by the fact that the
union of countably many polar sets is also polar, and a fortiori U>u,
which implies that U = u. Observe that

ha(y) = Hipimy(y) = Ga(y, ) — Gr_., (¥, ®)
= Gx, ¥) — Gr_.,(x, ¥y) = Hi ()
= %, () T w(®) = (Gz(+, ¥), @)  (n— o)
= Gglx, ¥) .

Here the regularity of z is used in the last equality. Consequently
we see that the increasing sequence {4,} with h,c HB(R — e) con-
verges to Gi(-, x), i.e., Gg(-, ) is quasi-bounded on R — e.

Consider a meromorphic function f on S with a single pole of
order k& at . Then log*|f| < kGz(-, ) + C for a sufficiently large
constant C. Therefore fec AS(R — e¢) = AS(F'), i.e., F¢O,. This
completes the proof.
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