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INEQUALITIES INVOLVING DERIVATIVES

RAY REDHEFFER AND WOLFGANG WALTER

This paper deals with generalizations of classical results
on real-valued functions of a real variable which are of
the following type: Bounds for the function and for its
mth derivative imply bounds for the fcth derivative 0 < k <
m. Our theorems extend these results in various directions,
the most important being the extension to functions of n
variables.

(A) The Hadamard-Littlewood three-derivatives theorem states
that if u(t) = o(l) and u"(t) = 0(1) as ί-> oo, then u\t) = o(l). In
Theorem 1, the more general version "u(f) = o(l) and u{m+1)(t) = 0(1)
implies u{k)(t) = o(l) for 1 ^ k ^ m" is generalized in three directions.
The assumption that u = o(l) is weakened, the functions considered
are Banach-space valued, and the boundedness of u{m+1) is replaced
by a condition on u{W/) which is weaker than uniform continuity. A
similar result for functions of several variables is given in Theorem 4.

(B) Let u(t) be of class Cm in an unbounded interval J and let

Uk = sup 1^(01 .
teJ

Inequalities of the form

Uk ^ A(m, k)Uo

ι-k/mU*/m , 0 ^ k ^ m ,

hold for such functions, as is well known. In Theorem 5 we extend
these inequalities to Banach-space valued functions u(x) defined in
suitably restricted domains of Rn. Counterexamples show that the
restrictions imposed on the domain are appropriate.

(C) If J is an interval of finite length \J\, the inequality (B)
is no longer valid. (It can be saved by imposing homogeneous boun-
dary conditions, but this will not be done here.) We shall show
that an inequality

Uk ^ A(my k)Urk/m(U£)k/m , 0 ^ k ^ m ,

still holds, where

tf* = max(l7o|J|-», UJ .

In Theorem 2 this result is presented for Banach-space valued functions
in bounded or unbounded domains of Rn.

It is not our aim to obtain the best or even good constants. In
the one-dimensional case, the problem of finding the optimal constants
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in the inequalities in (B) and (C) has a large literature. The complete
solution for the case J = R was given by Kolmogoroff (1939), for the
case / = R+ by Schoenberg and Cavaretta (1970). More information
and biographic references with respect to the one-dimensional case
can be found in the book by Mitrinovic (1970, pp. 138-140) and in
Kallman-Rota (1967).

The motivation for this research stems from certain problems in
ordinary differerential equations, calculus of variations, and partial
differential equations of parabolic type. Except for a simple example
in the last section, such applications are not considered here.

2* Notation* Throughout this paper X denotes a real Banach
space with dual X*. The open ball in X with center at xQ and
radius r is denoted by

B(x0, r) = {x 6 X: \ x — x0 | < r]

and its closure by B(xOf r). As usual, the real line and Euclidean n
space are denoted by R and Rn, respectively. (This notation was
already used above.) We also set R+ — [0, oo), and we denote various
continuity classes by Cm; for example, Cm(R, X) is the class of
functions R —> X with continuous mth derivatives. The letters m
and k denote integers and θ and h denote real numbers, with

0 ^ k £ m , 0<θ<— , h>0.
Δ

Further notation is introduced as needed.

3* Functions of a real variable* In this section we prove a
generalization of the Hadamard-Littlewood three-derivatives theorem.

DEFINITION 1. For v: R+ —> X and aeX the equation

lim* v{t) = a

means that the outer Lebesgue measure of the set

M(t) = {8B[t,t + 1]: \v(s) - a\ > e}

converges to § as t—> °° for every ε > 0.

For convenience, we sometimes omit the subscript t —» oo in lim*.

It is easily seen that lim* v(t) is unique if it exists; more gen-
erally, lim* v(t) = lim* w(t) if v and w differ only on a set of finite
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measure. Also lim* is linear, and lim v(t) = a implies lim* v(t) = a
though the converse is, of course, false.

DEFINITION 2. The function ω(t): R+ —> R+ is said to be a modulus
of continuity if ω is continuous and increasing and α>(0) = 0.

THEOREM 1. Let vzCm{R+, X) satisfy lim*i;(ί) = 0 and the
following hypothesis (CJ):

There exists a modulus of continuity ω such that

* M«,.,* = sup \v{k)(τ)\: s <> τ <^ t , O ^ f c ^ m .

Then limt^ v{k)(t) = 0, 0 <; k ^ m.

Proof. Let fc(ί) — max|v ( f c )(ί)| for 0 ^ & <̂  m and assume that,
contrary to the conclusion of the theorem,

HQ ^ ε > 0 , ti+1 - tt ^ 2 , ίt > oo .

Let Jt be an interval around tt of length 1 and choose Siβ J* such
that

ikf, = max(A(ί)| Jt) = Λ(s,) ^ ε .

In what follows, i is fixed. For some k, 0 ^ fc ^ m, we have |ΐ>(*}(8<)| =
Λf<β Hence there exists ceX*,\c\ = l, such that f(t) = c(v{k)(t))
satisfies

If k < w, then

|/ '(t) | = |c(v«*+1'(ί))| ^ |v(*+1)(ί)| ^ M, in J 4 ,

hence

|/( ί) | ^ /(S i) - |/(ί) - / ( 8 i ) | >Mt-\t- sM ^ Mt/2 ,

if \t - 8«| ^ 1/2. Hence

/(t)^e/2 in J ? c / f t IJ? | = 1/2.

If A? = w then /(«) = c(v(w)(ί)) satisfies

- f(s{)\ 7>Mt-ω(]t- β< |)(l
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Choose δ < 1/2 such that ω(δ) < e/(2 + 2e), and note that the latter
expression is ^Af</(2 + 2Mt). We get

/(ί) ^ MJ2 ^ ε/2 in J*, where | J? | = δ , J? c J4 .

This statement holds for both cases k < m and k = m, with δ > 0
independent of i.

Now we use the following lemma which was given by Redheffer
(1974).

LEMMA 1. Let ε and δ be positive constants, and let u be a
real-valued function which satisfies \u{k)(t)\ ^ ε on an interval of
length δ. Then

\u(t)\ ^ δkε/2k{k+1) on a subinterval of length δ/Ak .

The function g(t) = c(v(t)) satisfies, according to Lemma 1,

21 g(t) I ̂  eδrl2r{m+" in Jf* c J? , | Jf* | = δ/4m .

Since \v(t)\ ̂  |flr(ί)|, the last inequality holds also for |ι;(ί)|, in con-
tradiction to the hypothesis lim* v(t) = 0.

4. Remarks. The hypothesis lim* | v(t) \ = 0 holds if [ v(t) \ ̂  p(t)
where p(t) satisfies the corresponding condition for functions R+ —> R+.
As seen in [1] the latter class contains all functions in Lp, 0 < p < °o,
as well as functions with limit 0. Hence, Theorem 1 generalizes not
only the three-derivatives theorem which forms the point of departure,
but also a number of theorems due to Boas and others for functions
satisfying various integrability conditions. We can even allow
functions p satisfying

S ί+l
φ(\p(τ)\)dτ =

t

where φ is strictly increasing and φ(0) — 0; for example, φ(p) =
exp(—1/|02). Since the class of functions p satisfying lim* p{t) = 0 is
closed under the formation of sums and products (cf. [1]) the hypo-
thesis lim* I v(t) I = 0 of Theorem 1 is more general than appears at
first glance.

If v{m) is absolutely continuous we have

vw(s) - v[m)(t) =

and the condition (C*) can be deduced from corresponding hypotheses
on v'm+1). For example if | v{m+1) | ^ K then (C?) holds with ω(t) = Kt.
The formulation of Theorem 1 has the advantage that the hypothesis
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does not involve derivatives of higher order than those in the con-
clusion.

It should be emphasized that the assumption lim* v(t) = 0 does
not imply that v is bounded, and the assumption (C™) does not imply
that v or any of its derivatives is bounded. For instance, if X = R,
the function v(t) = et satisfies (CΓ), as does every polynomial. It is
true that both hypotheses together imply that v and its derivatives
are bounded but this is part of the conclusion, not part of the
hypothesis. We return to this matter in §10.

5* Cones in i2\ For x, yeRn, we use the customary notation
xy = XiUi + + xnyn, x2 = xx — \ x I2. A cone C(θ, ft) with vertex at
0, opening 2Θ and height h is the set of all x satisfying eQx ^ \x\ cosθ
and \x\ <* ft, where e0 is a unit vector defining the axis direction of
the cone. The reader is reminded that ft > 0, 0 < θ < π/2, as stated
in §2.

DEFINITION 3. A set GaRn belongs to the class K(β, h) if for each
x e G there exists a cone C(θ, h) such that x + C(θ, h) c G. The set
G is said to satisfy a cone condition if G e K(θ, h) for some θ, h.

LEMMA 2. All sets considered here are subsets of Rn.
( i ) If sets belong to K{θ, ft) so does their union.
(ii) If a set belongs to K(θ, h) so does its closure.
(iii) C(0, h) belongs to K(θ, ft/4) for small θ, say, 0 < θ < π/S.

Proof, (i) and (ii) are easily proved. For the proof of (iii), we
assume without loss of generality that ft = 1. In what follows,
e, e0, ex are unit vectors and eQ is the axis of the cone C(θ, 1). Let
x — te, 0 <; t ^ 1, ee0 ^ cos θ, be an arbitrary point of the cone. If
0 S t ^ 3/4, then x + C(θ, 1/4) c C(θ, 1), where C(θ, 1/4) is the cone
with the same axis eQ. Indeed, If y = seu eoet ^ cos θ9 0 <, s ^ 1/4, is
an arbitrary point in C{θ, 1/4), then \x + y\ ^ 1 and (x + y)e0 ^
(s + t) cos θ ^ I x 4- y I cos θ.

Now, since ee0 = cos θ implies | e — e0 \ = 2 sin 0/2, C(#, 1) is con-
tained in the convex hull of {0} U B(eQ, 2 sin θ/2), and a similar state-
ment holds for cones of height h. The cone C(θ, 1) being convex,
it suffices therefore to prove that for x = te, ee0 ^ cos θ, 3/4 <̂  t ^ 1,
there exists a ball ί?(α, 2ft sin θ/2) c C(0, 1) satisfying | a — x \ — ft ^
1/4. We choose α = se0, 8 = 2ί/3. If βe0 = cos ττ/8, then | e — (3/4)e0 =
d < .43. Hence, for ee0 ^ cos7r/8 and x = te, 3/4 ^ ί ^ 1, there exists
always a point α — se0, 1/2 ^ s ^ 3/4, such that 1/4 ^ |x — α| <Ξ d.
Since β(α, 2d sin 0/2) c £(α, 1/2 sin θ) c C(0, 1) (note that 1/2 sin θ < 1/4),
part (iii) of the lemma is proved.
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LEMMA 3. Let G be an open subset of Rn which belongs to K(θ, h)
with θ < π/8 and let Go be a compact subset of G. Then there exists
a compact set Gx belonging to K{θ, Λ/4) such that Go c Gx c G.

Proof Let x e Go and let C(θ, h) be a cone with axis e0 satisfying
x + C(θ, h)dG. Let δ > 0 be chosen in such a way that the cone
Cx — x — δe0 + C(θ, h) is still contained in G; this is possible since
x + C(θ, h) is a compact subset of G. Since xeintCx, the sets intC*,
where x runs through G09 cover Go. Hence a finite number of the
sets Cx cover Go. Their union has all the desired properties: it is a
closed, bounded subset of G, and it belongs, by Lemma 2, to K(θ, h/4).

COROLLARY. // G is an open set belonging to K(θ9 h), where
θ < ττ/8, then there exists an increasing sequence of compact subsets
of class K(θ9 h/4:) with union G.

6. Functions of n variables* We use the notation

Da = dlal/dxp dxϊ* , | α | = a, + + an ,

where the α{ are nonnegative integers. For u e Cm(G, X) we define

Uk = suv{\Dau(x)\:\a\ = Jc,xeG} .

The following theorem is the ^-dimensional version of the inequality
quoted in (C).

THEOREM 2. Let G be a bounded or unbounded, open subset of
Rn belonging to K(θ, h)f and let u e Cm(G, X), where m ^ 1. There
exists a constant A = A{m, n, θ) {independent of u, X and h) such that

Uk ^ AUι

0-
k/m(U*)k/m , 0 ̂  k ^ m ,

where

Proof. It suffices to establish the inequality for h = 1. Indeed,
if G 6 K(θ, h) and u e Cm(G, X), then the set H = (l/h)G = {x/h: xeG}
is of class K(θ, 1), and v(x) = u(hx) e Cm(H, X). If Vk denotes the
supremum of | Dav(x) \ for | a \ = k and xeH, and if the inequality

is already established, then the inequality of the theorem follows
immediately since Vk — hkUk.

For the sake of clarity we use | \e to denote the Euclidean
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distance in Rn in contrast to | | which denotes the absolute value
in R and the norm in X We assume m > 1, Z70 < <*>, 17» < °°; if
one of these conditions fails, the result is trivial.

The case m = 2 is treated first. Let y e G be fixed, let C = C(θ, 1)
be the cone belonging to y and let ceX* with | c \ — 1 and % be
chosen in such a way that |uxj(y) | <; |ux.(y)| = c(ux.(y)) for i = 1,
• , w. Let /(a?) = c(u(x)) and let a = 1/ + ίe, 0 ^ t k 1, |e | = 1, be
a point in y + C, where eeC is chosen in such a way that \fx(y)e\ ^

sin0. (Here fx denotes the gradient of /.) We have

\f(x) ~ f(y)\ ^ \u(x) - u(y)\ ̂  2U0

and

/(*) ~ f(v) = {x ~ V)f.(ξ) = (* - V)(fM + /.(f) - /.(»)) ,

where ς = /̂ + λί^, 0 < λ < 1. Since

IΛ/ί) - /.,-(»)! ^ *|grad/.,.|. ^ tτ/Tmax | / w | ^ ti/ίΓtT,,

hence |/.(£) - fx(y)l ^ ίwl72, we obtain

2?70 ;> \f(x) - f(y)\ ^ \(x - y)fx(y)\ - \x - y\.\fm(ξ) - f.(y)\.

^ t\fx(y)\e sinθ ~t2nU2.

Observing that

\fM I ^ \fφ) i = I "•*(») I ̂  i U;(V) \f i = 1, , ^ »

we get

|^.(2/) I sin ^ ^ —Z70 + tnU2 .

If ί/o <U2, we choose ί = \/U0/U2, otherwise t = 1. Since # is an
arbitrary point in G and i an arbitrary index, the inequality

JTi ^ A(C70 max (17O, C/2))1/2, A = A(2, n, θ) = 1 ±
sinί

follows.
The general case is proved by induction on m. We fix n and ̂ ,

write Am for A(m, ̂ , θ) and assume that the inequality of the theorem,
which is denoted by (Hm), is true for the integer m ^ 2. Let u e
Cm+1(G, X) and assume for the moment that Uk is finite for 0 <; k ^
m + 1. To get (iϊm+i) we distinguish three cases.

Case I. Σ7m ̂ Uo. Here (JBΓJ gives C7* ̂  AmU0 ίor 0 ^k^ m.
This gives (£ΓW+1) for any Am+1 ^ Am (note that Am ^ 1).
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Case II. Um > Uo, Um^ > Um+1. By (H2) and (HJ,

Um^A2Um^ and Um_x ^ AJJ^Ό^'™ ,

hence Vm <; (A2Am)mU0, which is the case k = m of (H w + 1 ). By
again,

Uk ^ ^ ^ - ^ ( A Γ A Ξ t / o ) ^ , 0 ^ AJ ̂  m - 1 ,

hence (J5Γm+1) wi th Am+1 ^ (A2Am)m.

Case III. Um > Uo, Um_x £ Um+1. By (H2) and ( ί ί j ,

hence

TTm+1 <- λ2mJm|Γ7 TJm

This is the case k = m of (Hm+1). Using this relation and (iϊm), we
get

TT <Γ A Tn-k/mTTk m < J TTi-k/m/ A 2m A TJ TJm \k/m(m+l)

This gives (Hm+1) for 0 <: k <; m and finishes the induction proof. An
admissible constant Am+1 is given by Am+1 — (A2Am)m.

The additional assumption in the above proof that the Uk are
finite can easily be disposed of. Let Uo aud Um+1 be finite and let
C = x + C(θ, ft) be an arbitrary cone in G. Since C is a compact
subset of G of class K(β, ft/4), inequality (JSΓm+1) holds with respect
to C (and ft replaced by ft/4). This gives a bound for \Όau\, \a\ ^ m,
in C, which depends only on Uo and Z7m+1. Since C is arbitrary, it
follows that the Uk are finite. (Alternatively, use §5, Corollary).

THEOREM 3. Let GaRn be an open set of class K(θ, ft), bounded
or unbounded, and let usCm(G, X). In addition assume that u is
bounded and that the following hypothesis (C™) holds:

'There exists a modulus of continuity ω such that for \β\ = m

\D>u(x) - D'u(y)\ ^ω(\x- y\)(l + \u\m,x>y)

whenever Xx + (1 — X)y eG, \x — y\ <* h, 0 < : λ < ^ l , where

\u\mfX>y = mz,x\D"u&% + (1 ~ λ)i/) | :0 ^ λ ^ 1, | α | ^ m .

Then there exists a modulus of continuity d(s) depending only on
m, n, θ, ft, ω (independent of u, X9 Ge K(θ, ft)) such that

In particular, all Uk are finite.
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Proof. We may assume without loss of generality that m >̂ 1,
h = 1 and that all the Uk are finite; cf. the reasoning at the beginning
and end of the proof of Theorem 2.

Let fc(l ^ k ^ m), 7 with | 7 | = k and | / G ( ? be fixed, and let C =
C(#, 1) be the cone belonging to y. There exists c e X * , \c\ = 1 such
that /(a?) — c(J9ru(α?)) satisfies f(y) — \ Dru(y)\. Let β be obtained from
7 by replacing one index 7* > 0 by 7* — 1, thus | /31 = k — 1, and let
g(x) = c(Dβu(x)), i.e., / = 0^. There is a unit vector e e C satisfying
\e gx(y)\ ^ I0β(l/)|βsin0. For α; = y + ίe, 0 ^ t ^ 1,

έ \g(χ) - g(y)\

where ζ = y + λ£β, 0 < λ < 1. We distinguish two cases
( i ) k < m: \ g.(ξ) - flr.(») |. ^ in E7»+1

( i i ) fc = m : I flf.(f) - gx(y) \e £ V n ω ( t ) ( l + U ) , U = U0+ ••• +Um

(cf. the proof of Theorem 2). Using \Dru(y)\ = \f(y)\ = |flrβ<(l/)| ^
l^(?/)le, we obtain

( i ) t(sin θ) I J9^(τ/) | ^ 2ί/fc_1 + M k + 1

(ii) ί(sin θ)] J5%(?/) | ^ 2l7jfc_1 + l/ntω{t){l + 17)
in the two cases, respectively. Since yeG and 7 with |jγ| = k are
arbitrary, the left hand sides of these inequalities can be replaced
by Ukt sin θ. Hence,

Uk sin θ ^ — £/*_! + toC7&+1 for 1 ^ & ̂  m - 1 ,

( 1 ) o _
Z7m sin ί ^ —«/„_! + τ/nβ)(ί)(l + U) ,

where 0 ^ ί ^ 1. Let Vk = i7A/(l + Z7) and t = i / T ^ . This gives

in the first case we used the fact that Vk+1 < 1, in the second case
we assumed ω(t) ^ t, which can be done without loss of generality.
It follows from these inequalities that

( 2 ) Vm^ Aω{BVfm\ B = A^1-

and hence that

V _ι_ v 4- 4- V — ^
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where

d(s) = s + Axs
m + + i^ iδ 2 1 " " 1 + Aω(Bs2~m) .

Let ε > 0 be such that d(ε) = 1/2. If UQ ^ ε, then

hence (1/2) U <; £7/(1 + £7), which gives the desired inequality

Uo + . . . + Um = £7 ̂  2ώ(Z70) .

If E70 > ε, let λ be defined by λZ70 = ε. Since λ < 1, the function
satisfies the assumptions of the theorem, i.e.,

λ(E70+ . . . + £7J ^ 2d(λ£70) = 1 .

If δ is defined by

\2d(s) for O ^ s ^ ε

(s/ε for s > ε ,

then δ is a modulus of continuity satisfying

This completes the proof.

7* Remarks* The hypothesis (Cΐ) of Theorem 3 is required
only when xey + C where C is the cone belonging to y. Hence, by
the mean-value theorem, we can replace this hypothesis by a condition
on the next higher derivatives, \Dau\ with \a\ = m + 1. In particular,
if these derivatives are bounded, the hypothesis holds with ω(s) =
(const)s.

If we have a Holder condition, ω(t) = Ktp with 0 < p ^ 1, the
choice t = (y^)1/*1-^ in (1) gives

( 3) (sin θ) Vm ^ (2 +

Using (2) with k = m — 1 for Fm_x in (3) we get an estimate of form

Vm ^ (const) VI 7] = 2ι~™pl{l + p) .

By (2) sharper estimates hold for Vk, k^m — 1, and hence an estimate
of the same form holds for the sum Vo + Vx + ••• + Vm. Passing
from V to U as in the proof of Theorem 3, we get the following
corollary:

COROLLARY. // u satisfies the conditions of Theorem 3 with
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ω(t) = Ktp, where K and p are constant, with 0 < p ^ 1, then there
exists a constant L such that

Uo+U1+ ••• +Um^(LUoy for U0

Uo + U, + + Um ^ LU0 for UQ > 1/L

where η = 21~w

1o/(l + p).

8* Two theorems for unbounded domains* First, we extend
Theorem 1 to functions of n variables. Let v be a function G —> X
where G is an unbounded domain in Rn, let α e l , and let h > 0 be
constant. We write

lim* v(x) — a
|»|->oo

if the outer Lebesgue measure of the set

G(x) = {yeG: \y - x\ < h, \v(y) - a\ > ε)

converges to 0 as | x \ -^ co for every ε > 0. This definition is analogous
to Definition 1.

THEOREM 4. Let G be an unbounded open subset of Rn belonging
to K(θ, h), and let u be a function in Cm{G, X)} m jΞ> 1, which satisfies
the condition (CT) of Theorem 3 and

lim* u(x) — 0 .
I X j — > c o

Then

lim Dru(x) = 0 for 171 S m .
|3|-»oo

Proof. Assume that Z70 is finite and that u(x) —> 0 as | x \ —> ^ .
Then Z7fc is finite for 0 ̂  k <; m according to Theorem 3. Now let G>
be the set of points in G such that \x\ > r and let (r* be the union
of all cones α; + C(θ, h) belonging to points in Gr. For large r we
have seen that \u\ is small in G*, hence the corresponding quantity Z7«f
computed relatively to G* is small, and Ϊ7* is small by Theorem 3.
This gives Theorem 4 when Uo is finite and lim u(x) = 0.

The assumption that Z70 = oo leads to a contradiction in the
following way. Let δ(s) be the modulus of continuity corresponding
to ω(t) and h/i, according to Theorem 3. The function δ(s) is linear
for large s, say, δ(s) = iΓs for s ^ K (cf. the proof of Theorem 3).
Assume that |u(yp)\ 7> K9\yp\-+ oo as p —> co. Then, with respect
to the cone Cp = 2/p + C(θ, h) c G, which is of class K(θ, h/4), we have
Z7* ^ iΓZ70* where Z7* is taken with respect to Cp. Hence
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\u(x)\ ^ \u(xp)\ - \u(x) - u(xp)\ ,

where x, xpeCp and \u(xp)\ =U* If \x — xp\ ^ 1/(2]/nK), we get

I M(05) I ̂  Uϊ — |α? — B p l v T ϋ ? ^ U* ^ K/2 ,

which contradicts lim* u = 0. Now that we have l/j < oo, a similar
argument gives a contradiction if | w(i/p) | ^ iΓ for any K > 0 as
I ^ I —> oo. This completes the proof of Theorem 4.

In the next theorem we assume that each point in G is the
vertex of an infinite cone lying in G. A cone C(θ, oo) with vertex
at 0 is the set of all xeRn satisfying xeQ ^ \x\ cosθ, where e0 is a
fixed unit vector. The set GaRn belongs to K(θ, oo) if to each xeG
there corresponds a cone C(θ, oo) such that x + C(θ, oo)cG.

THEOREM 5. Let GaRn be an open, unbounded set belonging to
K(θ, oo), and let ueCm(G, X). Then there exists a constant A =
A(m, n, θ) (independent of u, X, Ge K(θ, oo)) such that

Uk ^ AVl~hlmU%m for 0 ^ k ^ m .

In particular, all Uk are finite if Uo and Um are finite.

This follows immediately from Theorem 2 for h —• oo.

9* Remarks and counterexamples* Let X — R and n — 2. The
function u(x, y) — xy, considered in G: x > 1, 0 < y < 1/x, yields Uo =
lf t7 1=oo f ί72 = 1. Hence Theorems 2,3 and 5 are not valid for
m = 2 without a cone condition. An even simpler counterexample
to Theorem 5, m = 2, is given by w(a?, y) = y, G = R x (0, 1), Ϊ7O = 1,
ϋTj. = 1, U2 = 0. The functions w = α:^" 1 and ^ = 2/m~x, considered in
the same regions, serve as counterexamples to Theorems 2, 3 and 5
for arbitrary m ^ 2.

As an application to differential equations, consider the equation

u<m+ί)(t) = /(ί, u, u', , ^ ( w )) (ί > 0)

for u: R+-* X and assume that lim* u(ί) = α and
ί->oo

\f{t,z0, . . . , 2 j |

I t is easily seen t h a t t h e function v(t) = «t(ί) — α satisfies

|t;(-)(β) - t>i-i(ί)| £L\s - ί | m a x ( l + \a\ + \v(τ)\ + ••• + \vίm)(τ)\) .

Hence, by Theorem 1 wi th ω(s) — L(2 + | a \ + m)s

u(t) >a,uik)(t) >0 (k=l, ,m) as t > oo .
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The behavior of uim+1)(t) &s t —> oo can now be determined by looking
at the differential equation.

Other applications to ordinary and partial differential equations
will be given elsewhere.

10* Interrelations among the theorems. It is evident that, in
the original one-dimensional setting, the three statements in (A), (B),
(C) are not independent of each other. Indeed, without considering
the optimal constants, (B) follows from (C) by letting |J|—> °°, and
(A) follows from (B) or (C). In the same manner, Theorem 5, the
^-dimensional analog of (B), follows from Theorem 2, the ̂ -dimensional
analog of (C). But it seems to be impossible to obtain Theorem 1,
our generalized one-dimensional version of (A), from either (B) or
(C), even if lim*v(t) = 0 is replaced by the sharper assumption
liniί >0O v(t) — 0. It should be noted in this connection that assumption
(CΓ) does not simply replace the boundedness of the derivative v{m+1)

by the uniform continuity of v{m). Indeed, the modulus of continuity
ω is multiplied by a factor which becomes large if v or one of its
derivatives becomes large. These remarks apply also Theorem 4,
the ^-dimensional version of Theorem 1.

Theorem 3 states that all derivatives of u up to the mth order are
small if u itself is small. The situation is similar to the one described
above in connection with Theorem 1. If the (m + l)th derivatives
are bounded, then the conclusion of Theorem 3 is a consequence of
Theorem 2. The importance of Theorem 3 lies in the fact that the
same conclusion follows from the much weaker assumption (C™) on
the mth derivatives, which is the %-dimensional analog of the same
assumption in Theorem 1.

Acknowledgment* At first we defined lim* v(t) — a to mean
that the outer Lebesgue measure of the set {teR+: \v(t) — a\ > ε is
finite. The more general formulation given in Definition 1 is due to
Professor P. Volkmann. The proof of Lemma 3 given here is due
to Professor R. Lemmert; our proof was more difficult. The fact
the results [1] should extend to functions R+ —> X was pointed out
to one of us by Professor P. Hartman in 1975.
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