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MODELLING EXPANSION IN REAL FLOWS

H. B. KEYNES AND M. SEARS

Dedicated to the memory of Rufus Bowen

We show that any real flow without fixed points is the
homomorphic image of a suspension of the shift on a
bisequence space and the homomorphism is one-to-one be-
tween invariant residual sets. If the original flow is one-
dimensional this homomorphism is an isomorphism. We
then use this model of a real flow to lift .J^-expansiveness
for any class &~ of continuous functions from the reals into
the reals fixing zero, and thus generalize the results of
Bowen and Walters [2]. Various other properties of the
suspension model are discussed.

O* Introduction* In [2] Bowen and Walters introduced the
concept of expansiveness for real flows relative to the class ^ of
all continuous functions from the reals into the reals which fix
zero. In [5] this concept was extended to arbitrary transformation
groups and to arbitrary classes ^ of continuous functions from
the acting group into itself which fixes the group identity. It is
well-known (see [4]) that any expansive discrete flow can be lifted
to a subshift and the authors of [2] managed to obtain an analogous
result for real flows: every ^-expansive real flow can be lifted to
the suspension of a shift on a symbol space. Results of this type
are also obtained for .^expansive discrete flows in [5] but no
results were given for other transformation groups. The main
direction of this paper is to extend the methods and results of [2]
to show that every fixed point free ^'-expansive real flow can be
lifted to a suspension of a shift on a bisequence space (of course,
not a finite symbol space in general) which is also .^-expansive.
This generalizes the Bowen and Walters result and also covers situa-
tions where real flows can not be ^-expansive but are expansive
for subclasses ^ such as certain real flows on a 2-torus (see [5]
and [3] for details).

Since the model that we obtain is independent of any expansive
properties of the original flow, we also obtain a result of interest
in its own right concerning real flows and suspensions. Birkhoff
[1] pointed out that certain dynamical systems have a global cross
section and can thus be regarded as real suspensions of discrete
flows. Schwartzman [6] showed that for real flows on compact
metric spaces, the property of possessing a global section was equiv-
alent to the flow being a suspension over a discrete flow on that

ill
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global section and the local section approach was used by Bowen
and Walters to obtain their suspension model under the assumption
that the original flow was real-expansive. We will show that every
real flow without fixed points can be modelled in this way. Precisely
if (X, R) is such a flow, then there is a space of bisequences X and
a continuous real-valued function t on X such that {X, R) is a
homomorphic image of the suspension of (X, σ) (where σ is the shift
on X) by t and the homomorphism is one-to-one between invariant
residual sets. Furthermore there is a nontrivial subshift (X(S^), σQ)
on a finite symbol space associated with X, and various conditions
(including ^-expansive, but also others) imply that (X, σ) and
(X(Sf\ σ0) are isomorphic. Finally, if X is one-dimensional, then
(X, R) is (isomorphic to) this suspension. We then show that this
suspension construction is a good model from the point of view of

1* Preliminaries* We begin by giving some definitions and
notation for real flows. All flows will be on a compact metric space
and if xeX, the action of teR on x will be denoted by xt.

DEFINITION 1.1. Given a set J^ of continuous functions /: R —>
R such that /(0) = 0, a flow (X, R) is called ά?~'-expansive if for
each ε > 0 there is a δ > 0 such that if fe^~ and x,yeX with
x&y(—ε, ε) then for some teR, d(xt, yf(t)) > δ.

^"-expansive flows are discussed in [2] and [5].

DEFINITION 1.2. Let X be a compact metric space and ψ a
homeomorphism from X onto itself. Let g be a positive continuous
real-valued function on X. Then the real suspension of (X, ψ) by
g is the real flow constructed as follows. Form the quotient space
X x R/ ~ where ~ is the equivalence relation (x, g{x)) ~ (ψx, 0).
The action is defined on this space by (x, t)s = (ψnx, u) where t + s =
u + x0 Σfi)1 gii^x) and 0 <: u < g(ψnx). Locally the metric o n l x j R / ^
can be taken as equivalent to the sum of the distances along the
orbit and across orbits, i.e., for t, s suitably small, D[(x, t), (y, s)] is
small precisely when both 11 — s \ and min {d(x, y), d(ψx, ψy)} are
small, where d is a metric on X. The suspension flow is denoted

(X9, Λ).
A complete discussion of suspensions is given in [2].

DEFINITION 1.3. Let (X, R) be a real flow. A local cross section
(or simply section) at a point x e X is a closed set SczX with x e S
and such that for some δ > 0, Sfl S(0, δ] = S Π S[-δ, 0) = φ. δ is
referred to as a section time for S.
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It is well-known (see for example [8]) that if (X, R) has no
fixed points then for any x e l , there is a section containing x. If
S is a section, S x [—δ, δ] is homeomorphic to S[ — δ, δ]. Further if
we define S* = Int(S(-<5, δ)) Π S then S*(-r, r) is open in X(r>0),
S* is open in S, and given x, we can assume xeS*. We can, in
fact, always choose sections such that S* is dense in S by the fol-
lowing lemma, whose proof is routine and thus omitted.

LEMMA 1.4. Let S be a section and let A — S*. Then A is a
section for any point x e S* and A* = A.

THEOREM 1.5. (Bowen and Walters [2].) There is a ζ > 0 so
that the following holds: For each a > 0 there is a finite family
6^ of pairwise disjoint local sections of time ζ and diameter at
most a such that X=Y[ — a, 0]=F[0, a] where Y=\JSe* S. Further,
we may assume that S* = S(SeS^), and that if X is one-dimen-
sional, S = S*(S

Proof This is Lemma 7 of [2] with the extra condition that
S* = S, which follows from 1.4 and minor changes in the proof.

2* Lifting real flows to suspensions* Let (X, R) be a real flow
without fixed points. Choose ζ as in Theorem 1.5 and £/* and a
satisfying the conditions of that theorem and also 2α < ζ. Let
Y = \Jses-S have its topology as a subspace of X and let p be the
minimum flow time between sections i.e., if x e Y then cc(O, p)f)Y =
x(—Pt 0) Π Y = φ. Now if x e Y define the first return time t(x) by
the smallest positive time such that xt(x) 6 Y. Note that since X—
Y[0, a] such a time always exists and clearly t: Y-*[p,a]. Now
define a function φ: Y—> Y by φ(x) being the first return of x to
Y (i.e., the first point of the positive semi-orbit of x which inter-
sects Y). Thus φ(x) = xt(x). Note that t and φ are well-defined
but will not be continuous in general. The next few results are
concerned with the basic continuity properties of these maps.

LEMMA 2.1. φ is a one-to-one map from Y onto itself. If y e
Y such that <p(y) 6 S* for some S e S^, then φ is continuous at y.
The latter result holds for φ~λ

9 and for first return time t( ).

Proof That φ is one-to-one and onto (hence φ~x exists) is
routine. Now suppose yeY and φ(y)eS* for some SeS^ Choose
δ > 0 with δ < p/2 and let N be a neighborhood of φ(y) contained
in S*. By the continuity of the action we can find a neighbor-
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hood U(y) of y such that U(y)t(y) czN(-δ, δ). Now if xe U(y), then
xt(y) eN( — δ, δ) and so x(t(y) + rj) eN for some η with \rj\ < δ. Also
since y(0, t(y)) ΓΊ Y = 0, for all ε > 0 with ε < <o/2 we can find a
neighborhood V(y) of ?/ such that V(y)(ε, t{y) — ε) Π F = ̂ . Now if
x e F(τ/) n I7(i/) Π F then α(0, ε] n Y = x(e, % ) - ε ) Π Y=Φ and x(t(y) +
η)eN for some 77 with \rj\ < δ so #[%)-ε, % ) + 27) n F = ψ. Thus
ί(a ) = % ) + η and so art (a) e N and hence <p(V(y) Π 17(2/) Π F) c N. A
similar argument can be used for φ~\ and first return time ί( ).

Let A = U{S — S*; S e ^ } . Simple examples show that in gen-
eral φ(A) is not closed. However, we have:

LEMMA 2.2. For any integer m ^ 0, UίΓ=o ̂ &(A) is α closed
nowhere dense set in F.

Proof. We first show that fl?=o £>fe(ί̂ (A)) is open. If xe
f\k=,φ\c^{A)) then ?>-za e <if (A), 0 ̂  Z ^ m, and applying 2.1, we
have that φ~ι is continuous at x, 0 ̂  i ^ m. Since ^(A) is open,
there exists a neighborhood U of x with φ~\U) a^(A), 0 ̂  I ̂  m.
Thus, C7cΠ?=3^ fc(^(^)).

We show U?=o ̂ fe(A) is nowhere dense by induction on m. Clearly
m = 0 holds, and suppose it holds for m — 1. If U?=o φk(A) has
interior, then A nowhere dense implies that there must be an open
set, U say, with Uc\Jk=ι<Pk(A) and £7c<Sf(A). Now by Lemma
2.1 we can find an open set V in F with φ(V)aU. But then
y = φ~1φ(V)ciφ~1U(Z {jT^o <Pk(A), contradicting the induction hypo-
thesis. This completes the proof.

COROLLARY 2.3. Let Z = r^(\Jt=-oo<p\A)). Then Z is a dense
Gδ set in F.

Proof. Clearly Lemma 2.2. applies to φ~ι also.

COROLLARY 2.4. If xeZ, then ψ and φ~x are continuous along
the φ-orbit of x.

Proof. For every n, φn(x) $ A, and the result follows by Lemma
2.1.

We can now construct the discrete flow which will be the base
for the suspension. For each integer k, let Xk = Y and form Ω =
Π?=-oo Xk9 the compact metric space of all bisequences whose entries
are elements of F. Let σ be the shift map i.e., o{x)i = xi+1 for
xeΩ. Let Z = {(φ^x))^; xeZ}aΩ, and X = els Z. Define π: X-* Y
by π(x) = x0, i.e., projection onto the zeroth coordinate.
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The following lemma summarizes several properties of the
discrete flow (Jt, σ).

LEMMA 2.5. ( i ) (X, σ) is a discrete flow.
(ii) π is a continuous map from X onto Y.
(iii) If φ is continuous, π is an isomorphism between (X, a)

and (Y, φ).
(iv) If X is one-dimensional, we can choose Sf so that (X, σ)

is isomorphic to (Y, ψ).
(v) If xe X, there is a t e [p, a] such that xot = xλ.
(vi) The function t: X —> [p, a] defined by setting t(x) to be

the first time t > 0 such that xot — x19 (x e X) is continuous.
(vii) // x G Y, π~\x) is the single point (φk(x))ΰl00 if φk is

continuous at x for every k.
(viii) π is a one-to-one map between invariant residual sets

which contain Z and Z respectively.

Proofs. ( i ) If x e Z, then φkx e Z for any k and thus Z is
invariant under σ, which means that X is invariant under σ.

(ii) Since π is continuous and τt{Z) — Z, τt{X) — els Z = Y.
(iii) If φ is continuous, i.e., (Y, φ) is a discrete flow, it is

routine to verify that X = {{φkx)cl0o \ x e Y), and that π is a homeo-
morphism onto. Since φπ(x) ~ φ{xQ) = π(σx), for x e X, π is an
isomorphism.

(iv) By Theorem 1.2 we can choose .9" such that S* = S for
every Se.9*. Then φ is continuous by Lemma 2.1 and the result
follows by (iii).

(v) Let^eXand suppose {z{n)} is a sequence in Z with z{n)~>x.
Then z{

o

n) —> x0 and zίn) —> x1 so z^n)t(z^n)) —> xλ. By choosing a sub-

sequence if necessary we can assume that t(z^n)) converges to some
point, s say, with p ^ s <; a. Now the continuity of the action
gives xos — xλ as required.

(vi) Let x e X and let {y{n)} be a sequence in X with y{n) ~-> x.
Note that y[n) = y{

Q

n)t(y{n)) for each n > 0 and x± = ^oί(x). Choose a
subsequence {̂ /(Wι)} such that t(y{n^) converges to some limit, s say.
Then clearly xoΐ(x) = a?0«

 N o w ^ o ( ^ ) ~ s) = χo a n ( i s i n c e l*6&) —*l^
2α < ζ, ί(x) = s. Thus we have a subsequence {]/(Wί)} with ί(2/(*ι>) ->

(vii) Suppose 9?& is continuous at x for every k, and suppose
w eX with 7r(w) = a?. Pick a sequence {z(%)} in Z with z{n) —> w.
Then wQ = a? and for every ft, 9>*(zJn)) = 4W) -> w*. But φk(z{

o

n))-^φ\x)
by continuity, and so w = (φk(x))°!O0.

(viii) We consider the invariant set V ~ {xe Y: φ and φ~ι

continuous along the orbit of x}. Then Z a V by 2.4, and if |
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π~\V)-+V is one-one by (vii). To complete the proof, we need
only show that Z is residual in X. But Z = ΓlS= - ^(U?=o ψ\A))
implies Z = π~\Z) = ΓiZ=-^π-\^(\jT=o<P\A))) and π-\^{\Jt=,ψ\A)))
is open and dense by 2.2.

Several comments are in order concerning 2.5. Points in 1 - 1
have the form x = (φnk(x0))°loo by (v). Simple examples show that
the sequence {nk} need not be increasing (i.e., in the case of periodic
points one need not pick up points on the φ-orbit in correct reduced
order), or that every point in the ^-orbit of x0 appears in this
representation. However, one can show that if φι(x0)<£A, i.e.,
φ\x0) is not a boundary point, then for some k, nk = L Since the
proof is not germane to the rest of the paper, we shall omit it.
Moreover, examples show that in general π is not an equivariant
map from (X, σ) to (Y9φ), and π~\x) may be a singleton even if φ
is discontinuous at x. In fact, one can have X homeomorphic to Y
for discontinuous φ. However, by forming the suspension (X>, R)
for (X, σ) with t as in (vi), then ft does induce an equivariant map
π from (X>, R) to {X, R), as we now proceed to show. Again, one
should note that even if π is a homeomorphism, π need not be an
isomorphism.

THEOREM 2.6. Let (X, R) be a real flow without fixed points.
Then (X, R) is a quotient of the flow (Xϊ, R) and the natural
quotient map is one-to-one between invariant residual subsets.
Furthermore, if X is one-dimensional, then (X, R) is isomorphic to
(Xt, R) for suitable choices of £f.

Proof. We map (X>, R) to (X, JR) by a map π defined by
π(x, s) — π(x)s for any (x, s) e (X$f R) (i.e., x e X and 0 <£ s < t(x)).
Note that since (x, s) -+ (π(x), s) is continuous and (ίr(ίc), s) —> π(x)s is
continuous, the map π is continuous and obviously onto.

To show that π is equivariant we want π[(x, s)t] — [π(x, s)]t.
Let (cc, s) e Xi and set s + t = Σ?=o t(σ'x) + u where 0 <; u < t{σnx).
(Interpret the sum as zero if n — 0.) Now (a?, s)t = (σnx, u) and so
π[(x, s)t] = π(σnx)u = xnu and [π(x, s)]t = π(x)(s + t) = xo(s + ί) =
^o(Σi=o t(σjx))u = xnu also.

Clearly, A[—α, α] is nowhere dense and closed so that AR =
U?=-oo (A[ — a, a])(nά) is a first category set in X. Note that this
set contains ^Z, and let TΓ be its complement. Then W is an
invariant dense Gδ set in X. We only need to check that π is one-
to-one as a map from π~\W) to FT and that π"\W) is dense. First
note that one can show that W — ZR. Now let (cc, ί) and (y, s) be
points in (Xt, R) with ττ(x, ί) = π(y, s) e W. Then π(x)t = π(y)s and
#o = Vote - ί), yQ = a?o(< - s ) e l f n 7 = ^ If 0 < ί ^ s, then s - t <
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t(y0) implies that s = t. Thus, x0 = y0 and x = y, since xo,yoeZ.
Thus (a, ί) = (y,8). Finally, the fact that Zaπ~\W) implies that
ZRaπ~\W) and ZR being dense in Xϊ proves that π'\W) is dense.

If X is one-dimensional, then (iv) of Lemma 2.5 implies one can
choose Y such that X = {(φ\x))-oo; x e Y}. It follows that for w e
X, t(w) = t(w0), and thus π clearly induces an isomorphism between
(Xϊ, R) and (X, R).

3* Lifting ^^-expansiveness* In this section we show that the
model constructed in section two is a good one from the point of
view of ^^expansiveness. In fact if (X, R) is .^expansive, then
(Xΐ9 R) is ^ e x p a n s i v e . We also obtain the results of Bo wen and
Walters in [2] for ^-expansive flows as a special case.

We first note that several other dynamical properties are lifted.

PROPOSITION 3.1. ( i ) If xeX and there is an integer I such
that φ\xQ)eS* for some SeS^, then x0- = φ\x0) for some integer j .

(ii) x e Xϊ is a transitive point if and only if π{x) e X is a
transitive point.

(iii) (Xt, R) is minimal if and only if (X, R) is minimal.

Proof. ( i ) For some t e R, xot = φ\x0). Choose {z{n)} c Z with
z{n) -> x and {an} a sequence with 0 < an S ot and an —> 0. Then there
is an increasing subsequence {Mn} such that z{

Q

Mn\t + τjn) e S * , for
some S e y and η% with \η%\ < an. Thus zι

0

M^(t+τ}n) = φj-(4Mn)) for
some sequence {jn}, and \t + ηn\ ^ \t\+a for all n so \jn\ p ^ \t\ + a
which implies {jn} is bounded. By choosing a subsequence if neces-
sary assume j n = j . Now z{

0

Mn)(t + ηn) = φ y ( ^ % ) ) = «}Jf») —> % but
^ >ί -> ^(a.o). Thus ίτy = ^(a o).

(ii) It suffices to show that x is transitive when π(x) is transi-
tive. We can assume x = (ί, 0) 6 X and it is enough to show that
x has a dense orbit in (jt, σ). Choose <?7_%, , Un) with each
Ut c S*, for some Se^f and <?7_%, , Un) Π X Φ φ. By continuity
of ψ\ I i I ̂  w, at ie)0 where w 6 < Z7_w, , Un) Π X, we can find an
open F c UQ such that X ! , ^ F c <C7_%, , C7%>. Since £0 = π(x) is
transitive under ψ in F we can find a & with ^>fex0 6 V and this
point is π(σjx) for some i by ( i ) . Thus {σβx)ίeUi for \i\Sn,
because φ is continuous at (σjx)i for | i | ^ w — 1, and so σjx e

(iii) Follows immediately from (ii).
It is not true in general that if π(x) is almost periodic then x

is almost periodic. Simple counter examples can be constructed
even in the codimension one case by using the flow on the 2-torus
induced by a nonminimal homeomorphism of the circle without
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periodic points.
Recall that (X, R) is topologically weak mixing if the product

flow (X x X, R) has a transitive point.

PROPOSITION 3.2. // (X, R) is topological weak mixing (strong
mixing) then (Xΐ, R) is weak mixing (strong mixing) also.

Proof. Suppose (X, R) is weak mixing. Let x, y eZ such that
(xslf ys2) has a dense orbit in (X x X, R). It is sufficient to show
that for any choice of nonempty basic open sets ((U^n, •••, Un}Γϊ
X)(-ε, έ)wι and «F_%, , Vn) Π X)( — ε, s)w2, where ε > 0, wl9 w2eR
and each UtaS* for some SoeS^ and F ^ c S * for some SeS^, we
can find t eR with (x, 0)(sx + (t~w1 + ηd) e <J7_n, , Z7Λ> and
(0, 0)(s2 + (ί - w2 + %)) e <F_%, - , Vn) for some | ^ | , |^2 | < ε. As
in 3.1 we can find open U, F c Y with X^φ'Uc: (U__n, , Un) and
Xϋ % 9 ί Fc<F_ % , •••, VΛ>. Now choose ί such that ^s^+Ti-^ i ) e ?7
and ys2(t + y2 — w2) e V for some ITJ < ε and |τ 2 | < ε. Then as π
is one-to-one over ZJB, (x, 0)(s1 + (t + yx — wj) e (U_n, , Z7W> and
(y, 0)(s2 + (ί + 72 - w2)) e <F_%, , Vn) as required.

The statement for strong mixing follows similarly by choosing
U and V as above, noting that for some T > 0 and all 11 \ > T,
U(t + d)C)Vφ φ for some |δ | < ε, and finding ze U(t + δ) Γ\ V f) Z,
because then ze(U_n, , J7n>(t + δ) Π <F_W, , F%> and thus
<?7_,, ••-, Un)(-e, eχw, + t) Π <V-n9 •••, F%>(-ε, ε)w2Φ φ for all ί
with \t\ > T -\- \wλ — w2\. This completes the proof.

It is not the case that all dynamical properties lift. Indeed,
minimal flows on the 2-torus (which lift to suspensions of subshifts
by 4.2) show that if (X, R) is equicontinuous (resp. distal), (Xϊ, R)
need not be equicontinuous (resp. distal). However, with these two
properties, (X, R) is pointwise almost periodic, and thus for every
x eπ~1(W), π~\πx) = {x} and πx almost periodic implies that x is
almost periodic. In other words, the almost periodic points are
residual in Xΐ. Finally, it is clear that if xeW is periodic and
π(x) — x, then x is periodic, or if x is strongly recurrent (x e a(x) Π
ω(x)), then so is x.

With regard to strict ergodicity, suppose μ is the only U-in-
variant measure on X and μ(W) = 1. If μ is any invariant measure
on Xu then π(μ) = μ yields that μ(π~λW) = 1, and thus π: (Xΐ, β)^i
(X, μ) is a measure isomorphism. This together with 3.1 yields that
(Xΐ, R) is strictly ergodic. However, it appears difficult to determine
when the condition μ(W) = 1 holds in general. One special case
where it does hold is when (X, R) has codimension 1, i.e., sections
can be taken homeomorphic to the unit interval. In this case,
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is countable (see 4.1) and W = r^(Z)R = \J-«> ̂ (Z)[n9 n + 1).
If μ(W) = 1, then for some n, μ(%\Z)[n, n + 1)) > 0, and thus for
some w e ̂ (Z), μ(w[n, n + 1)) > 0. But this contradicts that μ is
finite, noting that (X, R) is minimal and hence not periodic.

We now turn to the expansive properties of (Xϊ9 R).

LEMMA 3.3. Suppose x, y e X with x Φ y and π(x) = π(y). Then
for some n, xn and yn belong to different sections.

Proof. x0 = y0. Suppose that n is the first integer such that
xn φ yn; assume n > 0. (A similar argument covers n < 0.) Now
let t = t(σn~1x) and s = t{σn~1y). Then xn — xn_xt and y% — y^s and
so xjβ — t) = yn. Since \s — 11 <; 2α < ζ, xn and yn can not belong
to the same section.

Suppose that every pair of distinct points x, y e X have the
property that xt and yx belong to different sections for some i. Let
X(A) be the symbol space with A — {1, 2, , card (S^)}9 (here we
order S^ first), and define a map τ from (X, σ) into (X(A), σ) by

τ(x). = k where xt belongs to the λ th element of £f. It is easy to
check that r is an isomorphism from (X, σ) onto a subflow (Xr, σ) of
(X(A), σ). Furthermore if we define / on Xr by f(x) = t(z~xx) then
clearly (Xϊ, R) is isomorphic to {X'f, R). Thus in this case (J£>, JB)
is a suspension over a subshift on a finite symbol space (and it is
^-expansive via Theorem 3.6 or directly as in Theorem 6 of [2]).
With these comments we can now show that our construction
generalizes the symbolic dynamics of [2].

COROLLARY 3.4. Suppose (X9 R) is real-expansive. Then we
can choose S^ in such a way that for every pair of distinct points
x, y 6 X there is an integer n such that xn and yn belong to different
sections. Thus (X, R) is the homomorphic image of a suspension
over a subshift of a finite symbol space and the natural homomor-
phism is one-to-one between invariant residual sets. Furthermore if
X is one-dimensional, (X, R) is (isomorphic to) this suspension.

Proof. Let ζ be as in Theorem 1.5 and let δ > 0 be a &-
expansive constant corresponding to ζ. Choose a > 0 such that if
x, y eX w i t h d(xf y) ^ a t h e n d(xsf yt) < δ f o r s,teR s u c h t h a t
\s\ <; α and | ί | <£α. Choose a collection of sections Sf satisfying
the conditions of Theorem 1.5 for this a. Now suppose x, y e X are
such that Xi and yt belong to the same section for every integer i
but x Φ y. Then x0 Φ y0 by Lemma 3.3 and, since they belong to
the same section, xo£yo[—ζ, ζ] and d(x0, y0) ̂  a. Now define a
piecewise linear increasing function / from R into R such that



120 H. B. KEYNES AND M. SEARS

/(0) = 0 and /(±Σ?=o t(σίx)) = ± ΣΓ=o t{aly), ± determined by sgn (n).
Then for any t eR, d(xot, yof(t))=d(xna, ynb) where ί = ± Σ S t(σix)±
a, 0 ̂  a < t(σnx) and f(t) = ± Σ^o1 t(σιy)±b, 0 ̂  δ < t(σ*y). Thus
since a ^ a and b <* a, d(xna, ynb) < <5 and thus cί(ίroί, yQf(t)) < δ for
all t e R which is a contradiction.

In passing, one should note that the subflow (X', σ) defined
above can be defined without any assumption on X, and τ induces
a homomorphism from (X, σ) onto (X', σ). Lemma 3.3 asserts that
if π is not a homeomorphism, X' is nontriviaL Corollary 3.4 shows
that ^-expansive implies that τ is an isomorphism; however, mini-
mal flows on the two-torus show that τ can be an isomorphism
without ^-expansiveness (see 4.2).

Before showing that .^-expansion lifts, we note a useful metric
on a suspension of a flow (W, ψ) induced by g, which we will utilize.
If 0 ̂  t < 1, x, y e W, set d((x, tg(x)\ (y, tg(y))) = (1 - t)D(x9 y) +
tD(ψ(x), ψ(y))f where D is the metric on W. Locally, distance along
an orbit is normalized to 1, i.e., d((x, a), (x, b)) = \a — b\/g(x). This
extends to the whole suspension by taking the infimum of lengths
of all "chains" along orbits and across orbits between two points.
Finally, we use the metric D(x, y) = max[do(xi, yt)/\i\ + ί\ on Z, where
d0 is the metric on X.

LEMMA 3.5. Suppose that x, y e X and xt and yt belong to dif-
ferent sections for some integer i. Then for any u, v e R such that
— t(G~xx) < u < t(x), — tiσ^y) <v< t{y) and \u — v\ < p/2 and each
f e<gf there is teR with d((x9 0)(u + ί), (y, 0)(v + /(ί))) ^ p/2.

Proof. Suppose that d((x, 0)(u + t), (V9 0)(v + /(ί))) < p/2 for all
teR and suppose i > 0. (The proof for i < 0 is similar.) Then for
every teR we must be able to write u + t = Σl=l t(<7j%) + a and
^ + /(*) = Σi=o t(σ*y) + b where n is the same for both sums,
\a — b\ <. p/2 and at least one of a and b is nonnegative. Now
choose t such that the corresponding n yields that xn and yn belong
to different sections and a = 0. Then d((x, 0)(u+t), (y, 0)(v+f(t))) =
d((σnx, 0), (σny, 0)6) ^ l/2D(σ*x, σny) ̂  l/2p, because | b | < p/2 so that
either 0 ̂  6 < l/2t(σny) or -l^ίίσ""1!/) < & < 0.

THEOREM 3.6. Suppose (X, R) is J^-expansive for some subset
of ^ . Tλew (XΪ9 R) is ^"-expansive also.

Proof. Let ε < p/2 and let δx > 0 be a corresponding ^^-ex-
pansive constant for (X, iJ). Let d0 be a metric on X. Now let
δ > 0 be such that if do(τφ, s), π(y, t)) > dλ then d((x, s), (y, t)) > δ.
Choose (x, s), (y, t) e XΪ such that {x, s) $ (y, t)(—ε, ε). If π(x, s) ί



MODELLING EXPANSION IN REAL FLOWS 121

π(Vf 0( — s> ε) then for each / G ^ " there is Te R such that do(π(x, s)T,
π(V, t)f(T)) = do(π[(fi, 8)T], π[(y, t)f(T)]) > δx and so d((x, s)T, (y,
t)f(T)) > δ. If π(x, s)eπ(y, t)(-ε, ε), then π(x, s) = π(j/, % with
1371 < ε. Assume t ^ s, then — p/2 < ί — s + 97 ̂  £(#) + p/2 and xo =
2/0(t — s + η) implies that 0 <> t — s + η <k t(y). We now have three
cases: (i) x0 = y0, (ii) x0 = 2/1 and (iii) neither of these in which case
x0 is a point on the ψ orbit of y0 strictly between y0 and y±.

( i ) If #0 — y09 then since | ί — s + 771 < 2α < ζ, ί — s + 77 = 0
and thus \t — s\ < jθ/2 and so either x = y, or Lemmas 3.3 and 3.5
imply that we can find TeR with d((x, s)T, (y, t)f(T)) ^ p/2. But
05 = y is impossible, since then (x9 s) — (y, t)η e (y, t)( — ε, ε) which is
false.

(ii) If x0 = 7/i then ί — s + 57 = t(y) and 7r(a?) = π(α*2/) so that
either x = σy or Lemma 3.3 implies that xt and (σy)i belong to
different sections for some integer i. But if x ~ σy then (x, s) =
(V, 0)(s + t(y)) = (2/, ί)3? e (2/, £)( — $, e) which is false. Now \s - (ί —
?(y))| = |« + ί(j/) — ί| = 1571 < jθ/2 so that by Lemma 3.5 we can find
TeR such that d((x, 0)(β + Γ), (σ(y), 0)(ί - ί(») + /(Γ))) = d((x, β)Γ,

(iii) x0 = yo(t — s + 57) and 11 — s + 271 < ζ, so x0 and y0 are in
different sections. Also, D(x, y) ^ p, D(σx, σy) ^ p/2, and since x0

and 2/1 belong to different sections, D(x, σy) ^ p. Finally since
t — s + Ύ] < £(2/), #0 = 2/_1t; for some v with 0 < v < 2α, so that x0 and
t/_! belong to different sections and thus D(σx, y) ^ p/2. Thus we
always have d((x, s), (y, t)) ^ p/2 for 0 ^ s < t(x) and 0 ^ t < % ) .

Thus min (δ, /o/2) is an ^^-expansive constant for (Xt, R) cor-
responding to ε, completing the proof.

4* Codimension one real flows* In this section we will use
the special nature of sections in codimension one flows to obtain a
geometric realization of the flow (Xϊ, R) in this case and to point
out a further property of this model for minimal flows.

(X, JB) will be said to be codimension one if it has no fixed
points and if all the local sections can be taken to be homeomorphic
to [0, 1]. {X, R) is codimension one if X is a 2-manifold and the
action is locally free and differentiable. This gives us a situation
to which the results of [2] do not apply; it is shown in [3] that
there are no ^-expansive flows on two manifolds. Indeed if X is
an orientable compact metric space minimal under R, then it is a
suspension over the circle ([7]) and so it can not be ^-expansive
but it will exhibit various types of ^expansiveness as discussed
in [5].

The Model 4.1. The section arguments are similar to those of
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section two so we will only sketch the proofs. Choose S? =
{Sl9 S2, , Sm} to be a collection of unit intervals i.e., St ~ [0, 1] and
S* = (0, 1). Let φ be the first return map and t be first return
time as before. Set Ajk =• {xeS*; φ(x) eS*}, then φ and £ are
continuous on Ajk. Let F$ = {xeS*;φ(x) is an endpoint of some
Se<9*}. Each i^ is a finite set. (Note that the set A of §2 is just
the 2m endpoints so that here each φιA is closed and nowhere
dense). Now Sά — (Fό U (endpoints of Sό)) = \Jΐ=iAjk and so each
Ajk is a union of a finite number of disjoint open intervals. Call
the collection of all these intervals {Il9 I2, •••, JJ . In fact (Γ, φ)
can be thought of as an interval exchange transformation on the
collection permitting contractions and expansions (or piecewise
monotonic). Now if xeF3- then limyixφ(y) = φ(y), \imy*xφ(y) =
φ(y), limy ixt(y) = t(y), \\my^xt{y) — t(y) all exist and this also
holds if x is an endpoint of an interval. For suppose that {xn} and
{yn} are sequences increasing to x and that lim,^ xn and
lim^^ yn exist. We can form the combined monotonic sequence {zn}
and since we can regard φ as a map from (0, 1) into (0, 1), {φ(zn)}
must also be monotonic for n large enough. Thus {<p(zj} converges
and so lim^*, xn — l im,^ yn. The other proofs are similar. Further-
more if xeFj, then φ(x) e{φ(x), φ(x)}. For if we let [α, 6] be a
small interval containing x, then for ε > 0, [α, b](t(x) — ε, t(x) + ε) is
a connected set containing φ(x) in its interior so that for some β
either [φ(x)f β] is contained in this set or [β, φ(x)] is contained in
it. It immediately follows that φ{x) — φ{x) in the first case and
φ(x) = φ(χ) in the second. In fact, φ is uniformly continuous on
each Ijf and thus extends to a homeomorphism on Ίά.

We can now produce X constructively. If x e Flf we produce
sequences {xf} and {xj} as follows. "Split" x to create xt and xo~\
If φ(x) — φ{x), set xi = φ(x) and don't define XΪ at all and if <p(x) =
φ(x), set xΐ = φ(x) and don't define xt at all. Given a positive
integer Z, suppose we have defined {x0

+, x+a), , x£a)} and {ίco~,
7̂(i), , X^D) where p(l) ^ I, q(l) ^ I and {p(i)} and {g(ί)} are increas-

ing. If zι+1 = φι+\x)eS* for some Se<9*, "split" zI+1 and set
p(l + 1) = p(f) + 1, q(l + 1) = q(l) + 1, &ί(l+1, = ^++i, »ί"α+D = «Γ+i If
^z+1 is an endpoint and ^ + 1 = φ(φιx), set p(ϊ + 1) = p(l) + 1, a?ί(ϊ+D =
zι+1 and ί(ί + 1) = ί(ί); if Zz+i = ^(^^) , set q(l + l) = ?(i) + 1 , x~a+D =
2;z+1 and p(i + 1) = ί>(ϊ). We can continue the construction in this
way and by deleting repetitions we obtain sequences {xj} and {xj}.
Repeat the process for the points of F2 not on the orbit of any
point in F1 and so on. Note that if φ is the continuous map induced
by φ then φ(xk) = xffl so that φ is still "first return". The result-
ing set X becomes a compact metric space if we choose a metric d
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such that (Z(ί»ί"(ϊ,, α?r<o) —> 0 as Z -* °o where r(Z) and s(Z) are such
that a?ί(l) and a?r(l) are the "splits" of the same point. Intuitively,
we have "cut" points to insure continuity of φ. We can now define
π: X—• Y by π(xΐa)) = 7r(̂ 7(ί)) = <p*(#) Note that if is continuous, at
most 2-to-l, and π{φ{x^)) = φ{%) - xt(x) and π(φ(χ-0)) = φ\x) = xtk(x)
(where tk{x) is kth return time) for some k > 1 if x e JJJU F5 and
<p(x) — <p(x), and similarly in the other case. Similarly we can
extend first return time ί to a function t continuous on X, t(x) =
t(x) if x is not a split point and t(x) = tk(π(x)) for some k ^ 1 if x
is a split point. We can now form the suspension (Xϊ, R) and
show that (X, R) is a quotient as in 2.6. The key to establishing
that this "split point" construction is, in fact, the model of section
two is to note that π~\x) is one point when φ is continuous along
the orbit of x in both settings.

The next proposition shows that the model may well add ex-
pansiveness which was not present in the original flow (i.e., the
converse of Theorem 3.5 does not hold). In fact, in the minimal
case, flows which are never ^-expansive always have ^-expansive
models.

PROPOSITION 4.2. If (X, R) is a codimension one minimal flow,
then (Xt, R) is a suspension of a minimal subshift.

Proof (Xt9 R) is minimal by Proposition 3.1. We will show
that X is zero-dimensional and (X, φ) is expansive which gives the
result. In view of the method of 4.1 and Theorem 6 of [7] we can
see that we are producing a suspension of the appropriate Sturmian
minimal flow.

Suppose α, b are distinct points in a connected component of X.
Then [a, b] c X, but since every point of Y has a dense orbit under
φ we can find a split point x such that a < φ\x) < δ, for some
integer k, and since z = φk(x) is not an endpoint, we have a < z+ <
z~ < 6 which is a contradiction, showing zero-dimensionality.

Choose 0 < ε < p such that if α, b e Si and do(a, b) < ε, then
there is at most one ceSt with <p(c) an endpoint of some section
and c lying between a and 6. Now let x, y eX and suppose that
π(x), π(y) eSjf some j , π(x) <π(y) and do(π(x), π(y)) < ε. Choose ze Y
and k > 0 such that π(x) < z < π(y)9 φ

k(z) is an endpoint of a
section, and k is minimal with respect to this property. The ex-
istence of such a point follows since every point of Y has a dense
orbit under φ. It now follows that for 0 <; j <* k — 1, φj is continu-
ous on (π(x)f π(y)) and by the remarks of 4.1 we can extend φ so
that φj is continuous on [if(as), π(y)]. Then w = φk~\z) lies between
^-^(aO and φ^πiy) and thus d{φk~1x, φ^y) > d(wt, WΪ). Finally,
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if 0 < ε0 < p satisfies dQ(π(w), π(v)) ^ ε implies d(w, v) ^ ε0 then
min {ε0, d(α0

+, αo~); a e Uf=i F3) is an expansive constant for (X, φ).
It would be interesting to generalize the results of [2] and of

this paper to flows with other acting groups, for example R2. At
present the authors know of no results along these lines.
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