PACIFIC JOURNAL OF MATHEMATICS
Vol. 85, No. 2, 1979

VECTOR VALUED ERGODIC THEOREMS FOR OPERATORS
SATISFYING NORM CONDITIONS

T. YOSHIMOTO

A new approach is developed in the theory of pointwise
ergodic theorems. Our consideration is based upon
220 = p < ), which is a linear space containing properly
the linear span of U,.,L,(X;%), where (X, &, ) is a o-finite
measure space and 227 is a reflexive Banach space. Some
weak and strong type inequalities are proved as vector
valued generalizations of the Dunford and Schwartz’s results,
and then, used to study the integrability of the ergodic
maximal function. These results do make it possible to
extend the Chacon’s vector valued ergodic theorem. We
have analogous extensions for the case of continuous semi-
groups, and the local ergodic theorem is shown to hold on
2. The results include two applications to the random
ergodic theorem and the ‘““strong differentiability’’ theorem.

1. Introduction. In [6] Hopf proved an ergodic theorem for
positive operators satisfying certain norm conditions and acting in
spaces of real valued functions. This result was generalized by
Dunford and Schwartz [3] to include nonpositive operators in spaces
of complex valued functions. The principle of proof adopted by
Dunford and Schwartz consisted in majorizing the operator in ques-
tion by a positive one so that the Hopf’s result could be brought
to bear on the problem. Chacon [2] proved a maximal ergodic
lemma for operators which are not necessarily positive and which
act in spaces of functions taking their values in a Banach space,
and then, used the result to obtain a vector valued ergodic theorem
as a generalization of the Dunford and Schwartz’s theorem. In this
paper we intend to generalize the vector valued ergodic theorem of
Chacon to operators acting in a function space which is wider than
the usual Banach spaces. Let (X, %, 1) be a o-finite measure space
and (.2, |l|-]ll) a reflexive Banach space throughout this paper. If
for 0 < »p < « we denote by 22 the class of all functions f which
are defined on X and take their values in 27, such that

@I (1 U@L Y
Sunmmrm t <10g ¢ > dp < o

for every t > 0, then these classes constitute a generalized descend-
ing sequence of linear spaces containing properly the linear span of
U,..L(X; ). We prove some weak and strong type inequalities
which enable us to investigate the integrability of the ergodic
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maxmal function. One of these inequalities will permit to extend
the Chacon’s theorem to functions f in the class 2. We also con-
sider the analogous extensions for the case of continuous semigroups
of operators and the local behavior of operator averages. Further,
our results have the additional advantage that they are sufficiently
general to obtain some extensions of the Beck and Schwartz’s random
ergodic theorem [1] and of the “strong differentiability” theorem of
Jessen, Marcinkiewicz and Zygmund [7] in its one-parameter form.

2. Preliminaries. Let L,(X; 2)=L,(X, &, t; Z),1 < p<eoo,
denote the space of all strongly measurable .2°-valued functions f
defined on X for which the norm is given by

171l = ({ @ de )™ < o5

and let L (X; 2) = L. (X, &, ¢; 2°) denote the space of all strong-
ly measurable #°-valued functions f defined on X for which the
norm is given by

e = ess sup [ f@I] < oo .

We shall suppress the argument of a function, writing f for f(x)
when convenient. Furthermore, the relevant equations are under-
stood to hold almost everywhere. Following Chacon [2], we define
for » > 0,

f (@) = [sgn f@)][max(, [[IF@)I) — 7]
fi (@) = [sgn f@)min(y, [[IF@)ID ,

where sgn f(») = f(2)/|||f@)|l] if f(x) # 0, and sgn f(») = 0 if f(z) = 0.
Let T be a linear operator in L,(X;2°) such that ||T|, =<1,
sup{|| T"||.: ®» = 1} £ K for some constant K = 1. Then T can easily
be extended to a linear operator, written by the same notation,
which maps L,(X; &2°) into L,(X; 2°) for 1 < p < «~,and ||T"|,= K
for n = 1. Let {T,:t =0} be a strongly continuous one-parameter
semigroup of linear operators in L,(X; .2°) such that ||T,||, <1 for
t=0 and sup{||T.|l.:t =0} < K for some constant K=1. Then
{T,:t = 0} may be regarded as a strongly continuous semigroup in
L,(X; %) with 1<p < o, and ||T;]|,£K for ¢=0. For any
A > 0, let us define E(\) = {x: ||| f@)||]| > M}, Ef(\) = {x: f¥(x) > A} and
E*(\) = {x: f¥(x) > N}, where

n—1

el

fi(x) = sup
nsl
0

o= ep |2 s
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For the meaning of the integral pertaining to the semigroup
{T,:t = 0}, see, for instance, [3] and [11].

THEOREM (Chacon). Let T be a linear operator in L,(X; . Z)
with ||T|, <1 and ||T|]. £ 1.

(i) If feL(X; Z),1=p < o, and N> 0, then
Vo0 0¥ = =@l < § fP@)lide.

(ii) If feL,(X;Z), 1= p < o, then the limit

lim LS T £(0)
n-0 4, k=0
exists strongly for almost all xe X.

(iii) If 1 < p < oo, then there exists a function f**e L, (X; 2)
such that

n--1

H;'-Zl—%T"f(w) |=lF @il ae mzD.

The continuous versions of (ii) and (iii) appearing in the Chacon’s
theorem were included in the author [11]. Suppose the conditions
Tl £ 1 and sup{||T"||.: » = 1} £ K for some constant K = 1. Then
for feL(X; 2Z), 1 <p < o, and \ > 0,

*) = @iy = | 1@l

Szjux
This fact (*) can be obtained by duplication of the Chacon’s proof
of (i) in the above theorem with trivial change. Using the appro-
ximation argument of Dunford and Schwartz, (*) also holds with
E*(\K) instead of Ef(\K) (cf. Hasegawa, Sato and Tsurumi [5]).

We denote by 22(0 < p < ) the class of all 2°-valued func-
tions f defined on X such that

IF@IL (1 @Y 4, — o
Smxf(x)um; t \log ¢ ) dp <

for every t > 0. Such classes were considered by Fava [4] in case
where p =0, 1,2, ---. Let L(X; 2) + L.(X; ) denote the class
of all functions f which can be written as the sum of g in L,(X;2")
and » in L (X; ). Let L(X; 2)[log*L(X; 2#)]* denote the class
of all functions f for which

[ I @lilog max(t, [If@IIDPdp < = .
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PROPOSITION 1. For each real » = 0, the class 2% is a linear
space:

(i) If fe2? and N is a scalar, then Mf € Q2.

(ii) If f, g€ 8% then f+ ge Q2.

PROPOSITION 2. The following inclusion relations hold:

(i) L(X;2)S2.C L(X;2) + L(X; 2).

(ii) L5c Qs for any a, B3 with 0 S a < 3.

(i) Ly(X; 2) & i c L(X; 2)[log” L(X; ) c L(X; &) +
L(X;2),p=0,qg>1.

(iv) 2% = LX;, 2)og"L(X; 2)]’(p =20) +f and only if
HX) < e

(V) 222 Uinear span [U,.,L(X; 2] = 0).

The proofs of these propositions are simple exercises (cf. Fava

[4D.

3. The results. According to our convenience in what follows,
we shall write f*(x) (resp. E*(\)) for f¥(x) (resp. EF(\)) in the
discrete time case and for f*(x) (resp. E*(\)) in the continuous time
case. We begin by giving a simple proof of the maximal ergodic
lemma.

LEMMA 1. Let T be a linear operator im L(X;2°) with
T, =1 and sup{||T"||.: n = 1} £ K for some constant K = 1. Let
{T;:t = 0} be a strongly continuous semigroup of linear operators
in L(X; 2°) such that ||T,]l, <1 for t =0 and sup{||T,||.:t = 0}=<K
for some constant K =1. Let A >0 and 0 <t < 1. Then for every
feL,(X; Z) with 1 £ p < oo,

1
min@, 1 — t)

#(E*(K)) < [ lr@lide.

Proof. Using the inequality (*) in §2 and its continuous version,
it follows that

(1 — OVUBOK\EOW))
<| 0 = @il
={ @iz

Therefore, we have

. 1 "
B OVK)) S B0 + <t 1@ lidg
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1 -
=L{ I @ld

1 .
Eveemroy I L2

1
S T e @

as required.

Lemma 1 generalizes both Lemma 7 in §3 and Lemma 6 in §4
of Dunford and Schwartz [3] who considered the case K =1,¢ = 1/2
for complex valued functions.

THEOREM 1. Omn the hypothesis of Lemma 1, let A >0 and
0<t <l
(i) If1<p< oo and feL(X; Z), then

* b4 pr P
[ L@ s oo lr@lipdy

(ii) If (X) < o and feL(X;2)N L(X; 2)logt L(X; 27)],
then

[,/ @dp = 2] ) + —— e @ llinos Il @1ds |

where logtu is defined for w > 0 and logtu = log max(l, u).
Proof. (i). In view of Lemma 1 we have

|, r*@rdy = pK”S

(1K) f*(z)
S AP idnd e

R Lpeam (®)INd
XJo
°°v “t(B* (LK)

PK”
= min(, 1 —t)

—___PK” H N (@) 1L F @)l dpzdn
|

I

i)

3
l’ﬁt’)!."a

fv-z s defa

mln(t 1—-1)

X

(l/t)lllf(z)lll s
—— AL = @i |, Wt Jap

pK*
t*{(p — Dmin(¢, 1 — t)

| s @irde,

where 1,(x) denotes the indicator function of the set E (cf. [5]).
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(ii) This case is also treated similarly as follows.
(1K) f*(2)
[ @i = k| " "anay
X XJo
- KS S Lo (@) N
XJo
- KS“ (B OK))AN

;e(X) + K S WE* LK)\ .

On the other hand, by Lemma 1 again

[ waomman
it L @i o
=3 mm(t [, e Jon
=7 mm(t | | L@@l dpa
=g L @I e Ja

— 1 +
= TminG, 1= 1) lellf(w)IH[log Hf@)I[[1dse .

Hence, combining these two parts, we get (i) and complete the

proof of Theorem 1.

Theorem 1 generalizes both Theorem 8 in §3 and Theorem 7 in
§4 of Dunford and Schwartz [3] who considered the same case as

before.

Now let us write L(X)[log* L(X)]? for L(X;2)[logtL(X; 2)]*

if .2 is the real or complex linear space.

THEOREM 2. Let (X)) < o and fe L(X; Z). Then for every
a =0, fe L(X; 2)[logtL(X; 2)]** implies f* e L(X)[log*L(X)]".

Proof. According to Lemma 1, there holds

pE 0K = 2] i@l

Define F'*(\) = #(E*(\)) for » > 0. Then we have, for a > 0.
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SX FH@log* f*@)]rdp= — S:x[logm]"dF*()\,)

<cl1+ SWHI p(E*(xK)){logﬂxK)}adx]

=G 1+ g;ll’lll (og™(nK))" {%S

-

@l dpfax |

E(4/

—c[1+ r (log | 2K

MEKIIFlly N SE(/MK)

@Il defax |

el vaxf,,, e [T)" £ afar]
§Cz|:1 * SE(HfH ) 1 f(@)|||(log™ MK ||| f ()]|])*+'d e ]

<cl1+ | lir@)ldog I £@)ihe dp

for some constants M(=max(3/K, 2)), C;, = Ci(a, f, K)(i = 1, 2, 8). The
conclusion of Theorem 2 follows directly from this and Theorem 1.

It is interesting problem to investigate the converse of Theorem
2. Such a problem has been studied by Ornstein [8] for an ergodic
automorphism and by Petersen [9] for an ergodic measurable flow.

THEOREM 3. Let T be alinear operator on L,(X; 2°) + L (X; Z)
such that ||T], =1 and sup{||T"||l.:n = 1} £ K for some constant

K =1. Then for every fe £, the limit
. 1 n—1
lim = 3 T*f(x)
n—o 1, k=0

exists strongly for almost all xe X.

In proving Theorem 3, we make use of the following two lemmas.

LEeMMA 2. Let T be as in Theorem 3. For any fe L(X; 2°)+
L (X; #), put

71 = sup |25 v
Then there holds
C

* = 2Kt} < —S
tfi z 2Kt} = t Junswinza

A @)l dge

for every t > 0, where C is a constant independent of f and t.

Proof. We may consider only the case that for fe L,(X; 2°)+
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L (X;2) and t >0, f is (B)-integrable over the set {||[f(2)||| = t},
because if the right hand side is infinite then the lemma holds
trivially. Thus, putting

Fi@) = (Flinrmmza)@), £i®) = (FLins@in<e)(@) ,

it follows that f = f*+ f, and f} = (f9)5 + Kt. Therefore by
Lemma 1 we have

MF: 2 2K < (7 2 KY)
@i e

=

Il

¢
t
—‘;1 7@ dee -

S(Illf(z)lllzt}

Hence the lemma follows.

LEMMA 3. Let T be a linear operator on L,(X;2°) with
T, =1 and sup{||T"||.:n =1} < K. Then for every fe L,(X; Z)
with 1 < p < o, the strong limit

lim = Z T*f(x)

n-0 N k=0

exists almost everywhere.

Proof. Note that it follows from the Riesz convexity theorem
that sup{||T"||,:n = 1} < K. For 1< p < oo, L(X; ) is reflexive
and thus, from Corollary 1.4 of [3] it results that the limit in ques-
tion exists strongly in L, (X;.2°). So, by virtue of the Kakutani
and Yosida’s mean ergodic theorem, the linear manifold ¥ generat-
ed by vectors of the form f =g + (h — Th) with ge L (X; 2),
Tg =g, heL,(X;2)N L.(X; Z), is dense in L,(X;2). For such
a function f, one has

|25 pa) — g@) | < 2K pin)l.—

as n— oo almost everywhere, and hence

— lim = Z‘, T (%) = g(x) a.e.

7 00

This guarantees that for every fe <, the limit in question con-
verges almost everywhere. If feL,(X;2),1=<p < , then by
Proposition 2 and Lemma 2 we have
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. <
p{fi =z 2Kt} < ¢ S(lllf(x)}ll;tl

= 2] lis@lirap—so

HIf @I dee

as t — c and so, fi(x) < a.e. Therefore, for any feL,(X;2)
with 1 < p < o, the almost everywhere convergence of (1/%)>;=;
T*f(x) follows from the Banach convergence theorem. Moreover,
since L, (X;2) N L(X; &) is dense in L\(X;2), we may apply the
Banach convergence theorem again to obtain the almost everywhere
convergence in question for every f in L(X;2).

Proof of Theorem 3. For any fe L(X; 2°) + L.(X; %), define
o(H@ = limsup |15 T4@) - LT -
n,m-o [N k=0 m k=0

It is then clear that w is subadditive and that w(f) < 2fF. Now
for feQ), we choose a sequence {f,} of simple functions having sup-
port of finite measure, such that lim,_. ||| f.(®) — f(®)||| = 0 a.e. and
[l f@) — fu@Ill < 2||[f@)|]| for each n. Since w(f,) =0 by Lemma
3, one gets

o(f) = o(f — fa) =20 — f)i .

Thus, in view of Lemma 2, we have

Ho(f) =z 8Kt} = p{(f — f)i = 4Kt}

C

é?S(Hlf(a;)—fn(z)lszt)”]f(x) — fa@)l|| de
C

§7§“”m””g”|||f(w) — @)l dpe

for every t > 0, which tends to zero letting n — « by the Lebesgue
dominated convergence theorem. Consequently the theorem follows
at once from this.

COROLLARY 1. On the hypothesis of Theorem 3, if (X) < oo
then for every fe L(X; 27)[log*L(X; 2°)]F with 0 < p < o, the limit

lim LS T%f()

n— N, k=0

exists strongly for almost all x e X.

4. The case of continuous semigroups. Let {T,:t = 0} be a
semigroup of linear operators on L,(X;.2) + L. .(X;2), such that
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T =1 for ¢t =0 and sup{||T,|l.:t = 0} < K for some constant

K=1. We assume that
(i) T, is strongly continuous when restricted to L,(X;.2°).
(ii) T, is strongly integrable over every finite interval when
restricted to L. (X; 2). Define

|\ 7.2t = @) | Tugat + (L) | Tohat

for f=g9g + h with ge L\(X; 2°) and he L (X;.2°). It is easy to
see that this definition is consistent. Choosing scalar representations
(T.9)(x) and (T.h)(x) of T,g and T, respectively, we obtain a scalar
representation (T,f)(x) of T,f

(T @) = (T.9)@) + (Teh)(@) ;

and the Bochner integral

| @it = | To@a + | (wm@at

as a function of x is a scalar representation of Sa T.fdt (cf. Fava
0
[4]).

LEMMA 4. Let {T,:t = 0} be a semigroup of linear operators on
L(X; 2Z7) + L(X; 27) with ||T,|, =1¢ =z 0), sup{|T.[[.:t =0} < K

for some constant K = 1, which satisfies the conditions (i) and (ii).
For fe L(X; 2°) + L.(X; =), put

f¥x) = §1>10plii%8:th(x)dtm .
Then

prr =2k < 9| 17 @)l d

(HF @zt

for every t > 0, where C is a constant independent of f and t.
The proof of Lemma 4 is exactly the same as that of Lemma 2.

LEMMA 5. Let {T,:t = 0} be a strongly continuous semigroup of
linear operators on L(X; 2) with ||T,||, < 1¢ = 0) and sup{||T,||.:

t =0} < K. Then for every fe L,(X; Z) with 1 < p < <, the limit

lim lS“ T, f(x)dt

a—so  (f Jo

exists strongly almost everywhere.
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Proof. For a=1 and fe L, (X;2) with 1 <p < «, it holds
that

S T,.fdt — Lo.‘l{i[“]___l T (S T, fdt>

[a] #=0

- [a][;r] : [a]1+ (3 -E (| rsa)},

where a = [a] + 7,0 < r < 1. While, a priori

Nzsael=us, |

Then these relations serve to ensure the assertion by reducing the
present lemma to Lemma 3.

LEMMA 6. On the hypothesis of Lemma 5, let
1 8
m = {ES T.fdt:0 < 8 <1, feL(X; J%)} .
0

(i) m s dense in L(X; Z).
(ii) For every Fem, the equality

lim L STtF(x)dt Flx)

a—0+ (¥

holds strongly almost everywhere.

The proof of Lemma 6 may be done similarly as in Terrell
[10] (cf. Yoshimoto [11]). Making use of Lemma 6, we have

LEMMA 7. Let {T,:t = 0} be as in Lemma 5. Then for any f
in L(X; 27), there holds

lim L ST f@)dt = flx)

a~0+ (¥

strongly for almost all xe X.
Proof. Let f be in L,(X; ") and define

o(f)(x) =

S T,f(@)dt — ES , f(ac)dt“‘

Clearly w is subadditive. Now we select a sequence {f,} of functions
in m with lim,_.. [|f — /.l = 0. Then w(f) = 2(f — f.)! + ®(f,) and
o(f,) = 0 because of (ii) of Lemma 6. Thus by Lemma 4 we have
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tao(f) =z 4Kt} < ({(f — fu)¢ = 2Kt}

< %lf — fulli—0

for each ¢ > 0, letting n — o. On the other hand, the repeated use
of Lemmas 4 and 6 yields that for each ¢t > 0,

pvi (%So T.f(w)dt — f(x)”‘g 4Kt}

=plllf (@) — L@l = 2Kt} + p{(f — )7 (@) = 2K}

g%nf—fnnl——»o

u {lim sup

as m —co, since

|2 .0 0]
slllf@) — L@l + (f — fi@)

almost everywhere. Accordingly, the conclusion of Lemma 7 follows
at once from what the above fact shows.

LEMMA 8. Let {T,:t = 0} be as in Lemma 5. Then for every f
m Ly(X;27) with 1 < p < oo, the equality

lim iS“Tt fx)dt = f(@)

a0+ (X Jo

holds strongly almost everywhere.

Proof. For any fe L, (X;2") we choose a sequence {f,} of simple
functions having support of finite measure such that lim,_. |||f(x)—
L@l =0 a.e. and [|[f(x) — fu@)]| = 2[[|f(@)|]| everywhere for all
n =1. Since w(f,) =0 by Lemma 7, we have w(f) £ w(f — f,) =
2(f — fuo¥. Therefore w(f) =0 by Lemma 4 using the same argu-
ment as in the proof of Theorem 3. This guarantees the existence
of the limit in question. On the other hand, since we can select the
functions f, such that lim,_.||f — f.||2 = 0, we have that for each
t>0,

i i oo | S - s 2 419
=HlIlf @) — L@l = 2Kt} + p{(f — f)F (@) = 2K1}
_»

<Zlf = fullz—0
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as n — o, which, together with the above fact, concludes that
Lemma 8 follows immediately.

By combining the last two lemmas just observed above, we have
established the following theorem.

THEOREM 4. Let {T,:t = 0} be a strongly continuous semigroup
of linear operators on L,(X;2°) with ||T/||. <1 =0) and sup
{ITle:t= 0} < K for some constant K=1. Then for every f€
L(X; ) with 1 < p < oo, the local ergodic equality

lim iS"Tt F@)dt = f(@)

a—-0+ ¢ Jo
holds strongly for almost all xe€ X.

Now, from Lemmas 4-6 and Theorem 4, we can derive the fol-
lowing theorems.

THEOREM 5. Let {T,:t = 0} be a semigroup of linear operators
on L(X;2)+ L (X;27) with ||[T.,=<1t=0) and sup{|[T,[l.:
t =0} < K for some constant K = 1, which satisfies the conditions
(i) and (ii) in the beginning of §4. Then for every fe 2 the limit

lim ig“ T, f(x)dt

a-woa 0

exists strongly for almost all x e X.

The proof of Theorem 5 is omitted, since the argument is es-
sentially the same as that in Theorem 3.

THEOREM 6. On the hypothesis of Theorem 5, if f is in £ then
the local ergodic equality

lim ls T,.f(@)dt = f()

a—0+ (¥

holds strongly for almost all x ¢ X.

Proof. With the semigroup 7', and a function f in 2%, we de-
fine a subadditive operator w as in Lemma 7. For fe 29, choose a
sequence {f,} of simple functions having support of finite measure,
such that lim, . [|[f(®) — fo(@)|[| =0 a.e. and [[[f(z) — fu@)]]| =2
|| f(@)||] everywhere for all » = 1. Then w(f) < 2(f — f.)f + o(f,)
and o(f,) = 0 on account of Theorem 4. Thus, after a simple cal-
culation using Lemma 4, we have w(f) = 0, from which follows the
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existence of the limit in question. Moreover, noticing that by virtue
of Theorem 4

2~ lim {17 ,@0dt = £.@)

a—=0+ (X

for almost all x€ X and every » = 1, we have

12 Tor@) — )| = 8}

a Jo

=plllf(@) — f@) 2 AKY) + p(f — £)1(@) 2 4KY)
L 1) — £l de

7 {lim sup

a—0+

_S——S
t Julirminze

which tends to zero as n— « by the Lebesgue dominated conver-
gence theorem. This completes the proof of Theorem 6.

COROLLARY 2. On the hypothesis of Theorem 5, suppose the
measure 18 finite. Then both conclusions of Theorems 5 and 6 re-
main true for every fe L(X; 2)[log*L(X; 27)]> with 0 < p < co.

5. Applications. The general results of §§3-4 can readily be
applied to give some generalizations of the vector valued random
ergodic theorem of Beck and Schwartz [1] and the “strong differ-
entiability” theorem of Jessen, Marcinkiewicz and Zygmund [7] in
its one-parameter form. We first state and sketch the proof of the
random ergodic theorem.

THEOREM 7. Let there be defined on X a strongly measurable
Sunction U, with values in the B-space B(Z°) of bounded linear
operators on ZZ. Suppose that |||U,||| =1 for all x€ X. Let @ be
a measure preserving transformation in (X, &, ). Then for every
fe 2, the strong limit

lim LS U0, - Usrf(@)

now 9 =l
exists for almost all x € X.
Proof. For every fe £, define
Uf(x) = U.f(px) .

Then it can easily be seen that U satisfies the conditions of Theorem
3 and hence the conclusion follows at once from Theorem 3.

Let R be the one-dimensional Euclidean space equipped with the
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Lebesgue measure m. The integral of a function f in L,(R; 2)+
L (R; ) is said to be strongly differentiable at the point x e R if
the limit

lim
atp B —

|| fwydm)

exists and is finite, where a < 2 < 8. The limit function is then
called the strong derivative of the integral of f at x. Using the
method of §4, applied to concrete analytic situations, we have

THEOREM 8. (i). For each €5, the integral of f is strongly
differentiable at almost every point x € R and the derivative is equal
to f(x) almost everywhere. (ii). Let I be the wunit interval. Then
for every fe L(I; 2°)|log*L(I; 22)]® with 0 < p < oo, the integral of
f is strongly differentiable at almost every point x el and the
strong derivative s equal to f(x) almost everywhere.
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