ARITHMETIC PROPERTIES OF THE IDÈLE DISCRIMINANT

Donald Maurer

Abstract

A theorem of Hecke asserts that the discriminant $\mathfrak{D}_{K / F}$ of an extension of algebraic number fields K / F is a square in in the absolute class group. In 1932 Herbrand conjectured the following related theorem and was able to prove it for metacyclic extensions: If K / F is normal, then $\mathfrak{D}_{K / F}$ can be written in the form $\mathfrak{H}^{2}(\theta), \theta \in F$; where (i) $\theta \equiv 1$ $(\bmod \mathfrak{B}), \mathfrak{B}$ is the greatest divisor of 4 which is prime to $D_{D_{K}}$, and (ii) $\theta>0$ at each real prime v except when $K \otimes_{F} F_{U}$ is a direct sum of copies of the complex field and ($K: F$) \equiv $2(\bmod 4)$.

More recently, A. Fröhlich gave a unified treatment of these and related questions using the concept of an idèle discriminant. The purpose of this paper is to present a generalization of these results with some connections with the structure of the Galois group.

Our notation will be as follows. Let \mathscr{N}_{F} denote the finite prime divisors of F. The ring of integers in F will be denoted by \mathfrak{D} (or \mathfrak{O}_{F}), and for each $v \in \mathscr{M}_{F}, \mathcal{O}_{v}$ will be the integers of the completion F_{v}. Also, for $\alpha \in F_{\nu}$ we write $v(\alpha)$ for the order of α, so that if the prime ideal \mathfrak{B}_{v} of \mathfrak{D}_{ν} is generated by π_{v}, then $v\left(\pi_{v}\right)=1$. If x is an idèle with u-component x_{u}, then we shall write $x=\left(x_{u}\right)$, and $v(x)=$ $v\left(x_{u}\right)$. If $\alpha \in F^{*}$ then, unless otherwise stated, (α) will denote the principal idèle defined by $\alpha_{v}=\alpha$. The idèle group J_{F} contains, as a subgroup, the unit idèles U_{F} consisting of those x such that $x_{v} \in U_{v}$, the unit group in F_{u}, for all v. The idèle discriminant $d(K / F)$ defined in [1] is an element of J_{F} / U_{F}^{2}. The classical ideal discriminant is simply the ideal naturally determined by $d(K / F)$.

1. The general theory. Throughout the paper, p will be a fixed prime, and we shall assume that F contains ζ_{p}, a primitive p th-root of unity.

Our first results pertain to the case of cyclic p-extensions K / F. Let G denote the Galois group.

Lemma 1.1. Let K / F be cyclic of degree p. Then there is an element $\alpha \in F$ such that $K=F\left(\alpha^{1 / p}\right)$ and $\alpha \equiv 1(\bmod \mathfrak{B})$, where \mathfrak{B} is the greatest divisor of $\left(\zeta_{p}-1\right)^{p}$ which is relatively prime to the discriminant $\mathfrak{D}_{K / F}$. Moreover, v splits in K if and only if $\alpha \in F^{p}$.

Proof. For each $v \in \mathscr{M}_{F}$, let $K_{\nu}=K \bigotimes_{F} F_{\nu}$; then K_{v} is algebraisomorphic to a direct product $\Pi_{\omega / \nu} K_{\omega}$ of local field extensions K_{ω} / F_{ν}. Similarly, if we let $\left(\mathfrak{D}_{K}\right)_{v}=\mathfrak{N}_{K} \boldsymbol{\otimes}_{0} \mathfrak{D}_{u}$, then $\left(\mathfrak{D}_{K}\right)_{v}=\Pi_{\omega / 0} \mathfrak{N}_{\omega}$. Let \mathscr{P} be the set of all \cup which divide p (i.e., $v(p)>0$) but do not divide $\mathfrak{D}_{\bar{K} / F}$. Then for each $v \in \mathscr{P}, K_{v}$ is nonramified, and so K_{v} has a normal \mathfrak{D}_{-}-integral basis $\left\{x_{g}^{(b)}\right\}_{g \in \varphi}$. By the strong approximation theorem, it is then possible to find a normal F-basis $\left\{x_{g}\right\}_{g \in G}$ of K which is an \mathfrak{D}_{v}-integral basis of $\left(\mathfrak{N}_{K}\right)_{v}$ at each $v \in \mathscr{P}$. Moreover, we may also assume that $\sum_{g \in G} x_{g}=1$.

Now for each character $\chi: G \rightarrow \boldsymbol{C}$ (the complex field) set $\theta_{\chi}=$ $\sum_{g \in G} \chi(g) x_{g}$. It is well known that $\alpha_{\chi}=\theta_{\chi}^{p} \in F$, and $K=F\left(\alpha^{1 p}\right)$ for a nontrivial χ. Fix such a χ, and write $\alpha=\alpha_{\chi}$. We have

$$
\theta_{\chi}=1+\sum_{g \neq 1}(\chi(g)-1) x_{g} .
$$

But in the field \boldsymbol{Q}_{p} of the p th roots of unity over the rational field we can write

$$
\chi(g)-1=c_{\chi}\left(\zeta_{p}-1\right) \quad\left(c_{x} \text { integral in } \boldsymbol{Q}_{p}\right) .
$$

Hence $\theta_{\chi}=1+h_{x}^{\prime}\left(\zeta_{p}-1\right)$ with $h_{九}^{\prime} \in K$. It follows that $\alpha=1+$ $h_{x}\left(\zeta_{p}-1\right)^{p}$ with $h_{x} \in F$. Moreover, if $v \in \mathscr{P}$, then $h_{x} \in \mathfrak{D}_{v}$. Thus the lemma is proved.

We continue to suppose that K / F is a cyclic p-extension. For $v \in \mathscr{M}_{F}$, let G_{i} denote the i th ramification group of a localization K_{ω} / F_{ν}. We define the ramification number r_{ν} to be the smallest integer n such that G_{n} is trivial. Clearly r_{u} is independent of ω. Now v is nonramified, tamely ramified, or wildly ramified according as $r_{v}=0, r_{v}=1$ or $r_{v}>1$ respectively. If $(K: F)=p$, then the ramification numbers r, give a complete description of ramification, and $\nu(d(K / F))=r_{\iota}(p-1)$.

The next lemma gives a partial determination of the ramification numbers r, when $(K: F)=p$.

Lemma 1.2. Suppose $K=F\left(\alpha^{1 / p}\right)$ with $\alpha \in F$. If \cup is ramified and $v(\alpha) \not \equiv 0(\bmod p)$, then $r_{\nu}=1$ or $\cup\left(\zeta_{p}-1\right) p+1$.

Proof. Set $s=v\left(\zeta_{p}-1\right)$. If v is tamely ramified, the lemma is obvious. Therefore we may suppose that v is wildly ramified; so p divides the ramification number of v when extended to K, but $v(\alpha) \equiv \equiv 0(\bmod p)$. Then let $\alpha^{1 / p}=\varepsilon \pi_{\omega}^{a}$, where ω is the extension of \cup to K, π_{ω} a local prime, $\varepsilon \in U_{\omega}$ and $(a, p)=1$. Now there is a $\gamma \in U_{\iota}$ such that $\zeta_{p}=1-\gamma \pi_{\imath}^{s}$, and an element $\sigma \in \operatorname{Gal}\left(K_{\omega} / F_{v}\right)$ such that

$$
\zeta_{p}=\frac{\sigma\left(\alpha^{1 / p}\right)}{\alpha^{1 / p}}=\left(\frac{\sigma\left(\pi_{\omega}\right)}{\pi_{\omega}}\right)^{a} \frac{\sigma(\varepsilon)}{\varepsilon}
$$

Since $\pi_{\omega}^{r}\left(r=r_{\nu}\right)$ is the highest power of π_{ω} which divides $\sigma\left(\pi_{\omega}\right)-\pi_{\omega}$, it follows that

$$
\frac{\sigma\left(\pi_{\omega}\right)}{\pi_{\omega}} \in U_{r-1}-U_{r}
$$

where $U_{m}=1+\Re_{s}^{m}$. Since $(a, p)=1$, it is also true that

$$
\left(\frac{\sigma\left(\pi_{\omega}\right)}{\pi_{\omega}}\right)^{a} \in U_{r-1}-U_{r}
$$

But $\sigma(\varepsilon) / \varepsilon \in U_{r}$, whence it follows that $\zeta_{p}=1-\gamma^{\prime} \pi_{\omega}^{p s}$ belongs to $U_{r-1}-U_{r}$.
This completes the proof.
It is not possible to say much about r_{v} when $v(\alpha) \equiv 0(\bmod p)$. A slight modification of the previous argument shows that $r_{v} \leqq s p$. However, if n is any integer in the range $0<n \leqq s p$, then according to [5] or [7], for a $y \in F_{v}$ with $v(y)=1-n$, the roots of

$$
x^{p}-x-y=0
$$

generate a cyclic extension of derree p with $r_{v}=n$.
Let K / F be cyclic of degree p, then a divisior $v \in \mathscr{A}_{F}$ will be called exceptional at K / F if the congruence $v(\alpha) \cdot x \equiv r_{,}(\bmod p)$ does not have a solution relatively prime to p. That is, v is exceptional if one, but not both, of $v(\alpha)$ or r is congruent to $0(\bmod p)$. Suppose $v(\alpha) \not \equiv 0(\bmod p)$, but $r_{v} \equiv 0(\bmod p)$. By Lemma $1.2 r_{v}=0$, and so K_{v} / F_{v} is nonramified. Since α is a p th power in K, p must divide $v(\alpha)$, a contradiction. Hence v is exceptional if and only if it is totally ramified, and $v(\alpha) \cdot x \equiv r(\bmod p)$ is not solvable, i.e., $v(\alpha) \equiv$ $0(\bmod p)$ but $r, \not \equiv 0(\bmod p)$.

Now let K / F be any finite Galois extension such that ($K: F$) is divisible by p. In order to state the main theorem, it will be convenient to introduce two functions $\phi_{K / F}$ and $\psi_{K / F}$ on \mathscr{M}_{F}. Suppose K / F is a p-extension, and let T be a subfield such that $(K: T)=p$. We define $\phi_{K / F}(U)=0$ unless v is totally ramified in K / F, and K / T is exceptional at the extension ω of v to T. In the latter case, $\phi_{K / F}(v)$ is to be the least positive residue $(\bmod p)$ of $-r_{\omega}$. This definition is independent of the choice of T. For suppose that T^{\prime} also satisfies the condition $\left(K: T^{\prime \prime}\right)=p$. We may suppose that v is totally ramified. The tower formula applied to the localization at v gives (since v is totally ramified, we can identify ω and v when convenient)

$$
N\left(d\left(K_{v} / T_{v}\right)\right) \equiv N^{\prime}\left(d\left(K_{v} / T_{v}^{\prime}\right)\right)(\bmod p)
$$

where N and N^{\prime} are the obvious norm maps. Recalling that $\omega(d(K / T))=r_{\omega}(p-1)$, this congruence then implies $\phi_{K / F}$ is well defined.

Now we extend our definition to the general case by letting L be the fixed field of a p-Sylow group G_{p}. We define $\phi_{K / F}$ to be the least nonnegative residue $(\bmod p)$ of the expression $(L: F) \phi_{K / L}(\omega) / e_{L / F}(v)$, where ω extends v to L, and $e_{L / F}(v)$ denotes the ramification index of v in L. Again, it can be verified that this definition is independent of the choice of either L or ω. If K / F is finite Galois, we say v is exceptional at K / F if $\phi_{K / F}(v) \neq 0$. This extends the earlier definition.

The function ψ is defined in a similar manner. If ($K: F$) $=p$, then $\psi_{K / F}(v)=1$ for all exceptional v. Otherwise $\psi_{K / F}(\nu)$ is the least positive residue $(\bmod p)$, satisfying the congruence $v(\alpha) \cdot \psi_{K / F}(v) \equiv$ $r_{v}(\bmod p)$, where $K=F\left(\alpha^{1 / p}\right)$. In the general case, if G_{p} is cyclic, let T be a subfield such that $(K: T)=p$ and define $\psi_{K / F}(\nu)=\psi_{K / T}(\omega)$, where ω extends u to T. If G_{p} is noncyclic, define $\psi_{K / F}(\nu)=1$ for all v. The definition is independent of T, ω or α. We can now state the main theorem of this section.

Theorem 1.3. ${ }^{1}$ Let $\zeta_{p} \in F$, and suppose K / F is a finite Galois extension whose group G contains a nontrivial p-Sylow group G_{p}. Then there are idèles a, b and c in J_{F} such that

$$
d(K / F) \equiv a^{p} b c\left(\bmod U_{F}^{2}\right)
$$

Moreover, the following conditions are satisfied for all $v \in \mathscr{M}_{F}$.
(i) $c_{v}=\theta^{\psi(0)}\left(\psi=\psi_{K / F}\right)$ for some $\theta \in F$ satisfying the congruence $\theta \equiv 1(\bmod \mathfrak{B})$, where \mathfrak{B} is the greatest divisor of $\left(\zeta_{p}-1\right)^{p}$ which is prime to $\mathrm{D}_{\mathrm{K} / \mathrm{F}}$.
(ii) If \cup is exceptional, $v(c) \equiv 0(\bmod p)$
(iii) If G_{p} is noncyclic, then $\theta=1$. Moreover, if K / F is a cyclic p-extension, a nonramfied \cup prime to p splits in K / F if and only if $\theta \in U_{\nu}^{p}$.
(iv) $b_{v}=\pi_{0}^{\phi(\nu)}\left(\phi=\phi_{K / F}\right)$.

We do not deal with the infinite components of $d(K / F)$, for when $p=2$ this is discussed in [1]; and for $p>2, F_{u}=C$ for all infinite v, whence $d(K / F)_{v}$ is trivial. The remainder of this section is devoted to proving the theorem, while in the final section some consequences are discussed. In particular, the case $p=2$ is developed.

We first deal with p-extensions, so let $(K: F)=p^{m}$. If $m=1$, let $K=F\left(\alpha^{1 / p}\right)$, where α satisfies the congruence condition of Lemma

[^0]1.1. A field basis for K is then $1, \gamma, \gamma^{2}, \cdots, \gamma^{p-1}$ with $\gamma=\alpha^{1 / p}$. Therefore $d(K / F)$ will have a local representation at v of the form
$$
d(K / F)_{v} \equiv(-1)^{p(p-1) / 2} p^{p} \beta_{c}^{2} \alpha^{p-1}\left(\bmod U_{v}^{2}\right)
$$
for some $\beta_{u} \in F_{u}$. Using the relation $v(d(K / F))=r_{\iota}(p-1)$, this gives the congruence $2 v\left(\beta_{u}\right) \equiv-r_{u}+v(\alpha)(\bmod p)$. Hence there is a function $\dot{\phi}_{K / F}^{\prime}$ which satisfies the congruence equation $2 \phi^{\prime} \equiv \phi(\bmod p)$. In particular if $p=2$, then $\phi \equiv 0$ and so there are no exceptional primes. Now if v is exceptional, then our result implies that $\beta_{v}=\varepsilon, \pi_{v}^{\phi(v)}$ for some unit ε_{v}. On the other hand, if v is nonexceptional, then $v(\alpha) \cdot \psi(\nu) \equiv r_{\nu}(\bmod p)$. Therefore in the above representation for $d(K / F)_{v}$ we can replace α by $\alpha^{\psi(0)}$. Again, β_{v} is of the form $\varepsilon_{\nu} \pi_{0}^{\phi^{\prime(\nu)}}$. Thus we obtain the global idèle representation
$$
d(K / F) \equiv \delta^{p} \beta^{2} \tau^{p-1}\left(\bmod U_{F}^{2}\right)
$$
where each component of β is given by $\beta_{v}=\varepsilon, \pi_{v}^{\phi^{\prime}(\nu)}$, and $\tau_{v}=\alpha^{\psi(\nu)}$. Moreover, for all nonramified $u, \alpha \in U_{v}^{p}$ if and only if v splits in K.

This representation can be generalized to any cyclic p-extension. There is a sequence of subfields

$$
F=\Omega_{0} \subset \Omega_{1} \cdots \subset \Omega_{r} \subset \Omega_{r+1}=K
$$

with $\left(\Omega_{i}: \Omega_{i-1}\right)=p$. For notational simplicity we set $T=\Omega_{r}$. According to our previous arguments, we have the representation $d(K / T) \equiv \delta_{T}^{p} \beta_{T}^{2} \tau_{T}^{p-1}\left(\bmod U_{T}^{2}\right)$. The tower formula gives $d(K / F) \equiv$ $\delta^{p} \beta^{2} \tau^{p-1}\left(\bmod U_{F}^{2}\right)$, where $\beta=N_{T / F}\left(\beta_{T}\right)$ and $\tau=N_{T / F}\left(\tau_{T}\right)$. By a straightforward computation, $\beta_{v}=\varepsilon_{v} \pi_{v}^{\phi^{\prime}(\nu)}\left(\phi^{\prime}=\phi_{K / F}^{\prime}\right)$. Similarly, if we define $\alpha=N_{T / F}\left(\alpha_{T}\right)$, then $\tau_{v}=\alpha^{\psi(u)}\left(\psi=\psi_{K / F}\right)$.

Suppose that u divides p but not $\mathfrak{D}_{K^{\prime} F}$. Then an extension ω of ν to T also divides p but not $\mathfrak{D}_{K / T}$; therefore in $\mathfrak{O}_{\omega}, \alpha_{T}=1+$ $h_{\omega}\left(\zeta_{p}-1\right)^{p}$. Since T / F is normal, we have

$$
N_{\omega / v}\left(\boldsymbol{\alpha}_{T}\right)=\prod_{\sigma}\left(1+\sigma\left(h_{\omega}\right)\left(\zeta_{p}-1\right)^{p}\right)
$$

where σ runs through the elements of the Galois group of T_{ω} / F_{v}. Hence it follows that $\alpha=1+h_{,}\left(\zeta_{p}-1\right)^{p}$ is in \mathfrak{O}_{j}.

Now we must show that if u is nonramified in K, and prime to p, then v splits if and only if $\alpha \in U_{v}^{p}$. Suppose that such a v does not split in K. Then $\alpha_{T} \notin T_{0}^{p}$. In general if U_{i} denotes the unit group of $\left(\Omega_{i}\right)_{\text {, }}$, we have $\left(U_{i}: U_{i}^{p}\right)=p$, so that the norm map induces an isomorphism $U_{i+1} / U_{i+1}^{p} \cong U_{i} / U_{i}^{p}$; hence $\alpha \notin U_{i j}^{p}$. Since there are infinitely many primes which do not split in $K / F, \alpha$ cannot be a p th power, and therefore $\left(F\left(\alpha^{1 / p}\right): F\right)=p$.

Now a nonramified v will split in K / F if and only if it splits
in Ω_{1} / F, for if it splits in K, then the decomposition field contains Ω_{1}, whence v also splits in Ω_{1} / F. Hence if ν splits in Ω_{1}, then it splits in K and so also in $F\left(\alpha^{1 / p}\right)$; therefore $F\left(\alpha^{1 / p}\right)=\Omega_{1}$. This proves our assertion, and extends the representation of the idele discriminant to arbitrary cyclic p-extensions.

Suppose now that K / F is a noncyclic p-extension. The Galois group G must contain a proper noncyclic subgroup. For suppose a maximal subgroup N is cyclic. Let a be a generator of N and choose b not in N. Then p is the smallest positive integer m such that $b^{m} \in N$. It follows that G is generated by a and b. The subgroup generated by a^{p} and b is proper and noncyclic. By a simple induction argument we conclude that G contains a subgroup H of type (p, p).

Let L be the fixed field of H. Then there is a subfield $K \supset$ $T \supset L$ such that $K=T\left(\mu^{1 / p}\right)$ with $\mu \in L$. As before, $d(K / T)$ has a representation of the form $\delta_{T}^{p} \beta_{T}^{2} \tau_{T}^{p-1}$, where each component of τ_{T} is a power of μ. Since $N_{T / L}(\mu)=\mu^{p}$, the tower formula gives for each $\omega \in \mathscr{M}_{L}$ the representation $d(K / L)_{\omega} \equiv \delta_{\omega}^{p} \beta_{\omega}^{2}\left(\bmod U_{\omega}^{2}\right)$, where $\beta_{\omega}=$ $\varepsilon_{\omega} \pi_{\omega}^{\phi^{\prime}(\omega)}\left(\phi^{\prime}=\phi_{K / L}^{\prime}\right)$. The tower formula applied to $K \supset L \supset F$ then gives a representation of $d(K / F)$ of the form $\delta^{p} \beta^{2} \tau^{p-1}$, with $\beta_{j}=$ $\varepsilon_{v} \pi_{v}^{\phi(v)}$ and $\tau_{v}=1$ for all $v \in \mathscr{I}_{F}$.

This representation generalizes to arbitrary extensions K / F by applying the tower formula to $K \supset L \supset F$, where L is the fixed field of a p-Sylow subgroup of G. To obtain the theorem, we now take $b_{v}=\pi_{0}^{\phi(0)}$ and $\theta=\left(N_{L / F}(\alpha)\right)^{p-1}$, or $\theta=1$ depending on whether G_{p} is cyclic or noncyclic. If G_{p} is cyclic, then

$$
\begin{aligned}
v(c) & \equiv-\psi(v) \cdot v\left(N_{L / F}(\alpha)\right) \\
& \equiv \frac{(L: F)}{e_{L / F}(v)}(-\psi(\omega) \cdot \omega(\alpha))(\bmod p),
\end{aligned}
$$

where ω extends u to L. For an exceptional $\nu, \omega(\alpha) \equiv 0(\bmod p)$. It is therefore clear that

$$
u(c) \equiv 0(\bmod p)
$$

The proof of the theorem is now complete.
2. Applications. The purpose of this section is to consider some consequences of Theorem 1.3. We first suppose that $p=2$. Then there is no restriction on the ground field F, since $\zeta_{p}=-1$ always belongs to F. Fröhlich [1] defined the discriminant field Ω / F of an extension K / F as a quadratic subfield ($\Omega=F$ possible) uniquely characterized by the relation

$$
d(K / F) \cdot J_{F}^{2}=d(\Omega / F) \cdot J_{F}^{2}
$$

Hence $\Omega=F\left(\theta^{1 / 2}\right)$. We use the properties of Ω to prove
Theorem 2.1. The 2-Sylow groups of the Galois group G of an even degree extension K / F are cyclic if and only if $d(K / F) \in J_{F}^{2} / U_{F}^{2}$.

Proof. Suppose a 2 -Sylow subgroup G_{2} is cyclic. Then G_{2} has a normal 2 -complement N so that $G / N \cong G_{2}$. Let L be the fixed field of N. Then the tower formula yields $d(L / F) J_{F}^{2}=d(\Omega / F) J_{F}^{2}$, so that by Fröhlich's characterization, $\Omega \subset L$.

Now $\theta \equiv 1\left(\bmod F^{2}\right)$ implies that almost all v split in L, whence G_{2} cannot be cyclic. The converse, of course, is contained in Theorem 1.3.

Remark. An independent proof is given in [2]. Also, a proof when G is abelian appears in [6].

We now prove two further results for $p=2$.
Theorem 2.2. If K / F is normal and nonramified, and G contains a noncyclic 2-Sylow group, then \mathfrak{D}_{K} has an \mathfrak{D}_{ℓ}-integral basis.

Proof. Immediate from Theorem 2.1 and Theorem 2.5 of [1].
THEOREM 2.3. If K / F is a Galois extension and $d(K / F) \notin J_{F^{2} / U_{F}^{2}}^{2}$, then G is solvable.

Proof. Since θ is not a square, the degree ($K: F$) must be even since $(\Omega: F)=2$. Therefore by Theorem 2.1 the 2 -Sylow groups are cyclic. Hence any such subgroup G_{2} has a normal 2 -complement N with $G / N \cong G_{2}$. Since both N and G_{2} are solvable, G is itself solvable.

For the remainder of the section, consider an arbitrary prime $p \geqq 2$. This now imposes a restriction on F. Moreover, if $p>2$ then θ is not determined, up to a p th power, by $d(K / F)$, as was the case when $p=2$. Hence the notion of a discriminant field does not extend to an arbitrary prime. Also, the exceptional primes, which play no role in the $p=2$ theory, are now important. The results for $p>2$ are therefore not as strong as these obtained for $p=2$.

However, we have the following generalization of Herbrand's theorem.

Theorem 2.4. Assuming the hypotheses of Theorem 1.3, then $\mathfrak{D}_{K / F}$ can be written as a product of ideals in the form $\mathfrak{V p} \mathfrak{D}(\theta)$, where $\theta \equiv 1(\bmod \mathfrak{B})$, and \mathfrak{B} is the greatest divisor of $\left(\zeta_{p}-1\right)^{p}$, prime to $\mathfrak{D}_{K / F} ; \mathfrak{D}$ is divisible only by ramified primes and is characterized by the relations

$$
v(D)= \begin{cases}\dot{\phi}_{K / F}(v) & \text { if } v \text { is exceptional } \\ -v(\theta)-\frac{(L: F)}{e_{L / F}(v)} & \text { if } v \text { is ramified, nonexceptional }\end{cases}
$$

Proof. In the representation of Theorem 1.3, let the idèle d be defined by $d_{v}=1$ at all infinite divisors, and $d_{v}=\pi_{b}^{\delta())} \theta^{\mu(0)-1}$ at all $v \in \mathscr{M}_{F}$. Let \mathfrak{D} be the ideal naturally determined by d; then $v(\mathfrak{D})=\phi(\nu)+$ $u(\theta)(v(\nu)-1)$. The computations are straightforward, using the congruence relation at the end of the previous section.

Since $\phi \equiv 0$ and $\psi \equiv 1$ when $p=2$, it is evident that, for $v \in \mathscr{M}_{F}$ at least, this result is consistent with Herband's theorem.

If the exceptional divisors are known, b can be determined from $d(K / F)$, for a consequence of the representation theorem is that for an exceptional divisor $u, \phi_{K / F}(v) \equiv d(K / F)(\bmod p)$. In this case, the next result gives a sufficient condition for G_{p} to be cyclic.

Theorem 2.4. Under the hypotheses of Theorem 1.3, suppose that

$$
d(K / F) \equiv a_{1}^{p} c_{1}\left(\bmod U_{F}^{2}\right),
$$

where b is as determined in Theorem 1.3. Then G_{p} is cyclic if $c_{1} \notin$ $U_{F}^{2} J_{F}^{P}$. If K / F is a cyclic p-extension, then a necessary condition for v to split in K is that $c_{1 \nu} \in U_{v}^{2} F_{v}^{p}$.

Proof. Let c be determined as in Theorem 1.3. Then $c_{1} \equiv c$ $\left(\bmod U_{F}^{2} J_{k}^{p}\right)$. If G_{p} is noncyclic, then $c=1$, whence $c_{1} \in U_{F}^{2} J_{F}^{p}$. Now if K / F is a cyclic p-extension, then $\theta \in F_{b}^{p}$ if and only if v splits in K, whence $c_{1}, \in U_{\partial}^{2} F_{b}^{p}$ if v splits.

The results of this section show how $d(K / F)$ can be used to obtain structural information about the Galois group of K / F, or in the case of cyclic p-extensions, the splitting of primes.

References

1. A. Fröhlich, Discriminants of algebraic number fields, Math. Zeitschr., 74 (1960), 18-28.
2. V. Gallagher, The trace-form on Galois field extensions, pre-print.
3. E. Hecke, Vorlesungen uber die Theorie der algebraischen Zahlen, New York, 1948.
4. J. Herbrand, Une propriété du discriminant des corps algébriques, Ann. École normale (3), 49 (1932), 105-112.
5. R. Mackenzie and G. Whaples, Artin-Schreier equations in characteristic zero, Amer. J. Math., 78 (1956), 473-485.
6. D. Maurer, Invariants of the trace-form of a number field, Linear and Multilinear Algebra, 6 (1978), 33-36.
7. J. P. Serre, Corps Locaux, Paris, 1968.

Received June 24, 1977 and in revised form March 9, 1979.
Center for Naval Analyses
2000 N. Beauregard St.
Alexandria, VA 22331

[^0]: ${ }^{1}$ Results of a similar nature, although somewhat weaker, can be proved without the restriction $\zeta_{p} \in F$.

