ARITHMETIC PROPERTIES OF THE IDÈLE DISCRIMINANT

DONALD MAURER

A theorem of Hecke asserts that the discriminant $b_{K/F}$ of an extension of algebraic number fields K/F is a square in in the absolute class group. In 1932 Herbrand conjectured the following related theorem and was able to prove it for metacyclic extensions: If K/F is normal, then $b_{K/F}$ can be written in the form $\mathfrak{A}^{2}(\theta), \ \theta \in F$; where (i) $\theta \equiv 1$ (mod \mathfrak{B}), \mathfrak{B} is the greatest divisor of 4 which is prime to $b_{K/F}$, and (ii) $\theta > 0$ at each real prime v except when $K \bigotimes_{F} F_{v}$ is a direct sum of copies of the complex field and $(K:F) \equiv 2 \pmod{4}$.

More recently, A. Fröhlich gave a unified treatment of these and related questions using the concept of an idèle discriminant. The purpose of this paper is to present a generalization of these results with some connections with the structure of the Galois group.

Our notation will be as follows. Let \mathscr{M}_F denote the finite prime divisors of F. The ring of integers in F will be denoted by \mathfrak{O} (or \mathfrak{O}_F), and for each $v \in \mathscr{M}_F$, \mathscr{O}_v will be the integers of the completion F_v . Also, for $\alpha \in F_v$ we write $v(\alpha)$ for the order of α , so that if the prime ideal \mathfrak{P}_v of \mathfrak{O}_v is generated by π_v , then $v(\pi_v) = 1$. If x is an idèle with v-component x_v , then we shall write $x = (x_v)$, and v(x) = $v(x_v)$. If $\alpha \in F^*$ then, unless otherwise stated, (α) will denote the principal idèle defined by $\alpha_v = \alpha$. The idèle group J_F contains, as a subgroup, the unit idèles U_F consisting of those x such that $x_v \in U_v$, the unit group in F_v , for all v. The idèle discriminant d(K/F) defined in [1] is an element of J_F/U_F^2 . The classical ideal discriminant is simply the ideal naturally determined by d(K/F).

1. The general theory. Throughout the paper, p will be a fixed prime, and we shall assume that F contains ζ_p , a primitive *p*th-root of unity.

Our first results pertain to the case of cyclic *p*-extensions K/F. Let G denote the Galois group.

LEMMA 1.1. Let K/F be cyclic of degree p. Then there is an element $\alpha \in F$ such that $K = F(\alpha^{1/p})$ and $\alpha \equiv 1 \pmod{\mathfrak{B}}$, where \mathfrak{B} is the greatest divisor of $(\zeta_p - 1)^p$ which is relatively prime to the discriminant $\mathfrak{d}_{K/F}$. Moreover, υ splits in K if and only if $\alpha \in F_p^p$.

Proof. For each $v \in \mathscr{M}_F$, let $K_{\nu} = K \bigotimes_F F_{\nu}$; then K_{ν} is algebraisomorphic to a direct product $\prod_{\omega/\nu} K_{\omega}$ of local field extensions K_{ω}/F_{ν} . Similarly, if we let $(\mathfrak{O}_K)_{\nu} = \mathfrak{O}_K \bigotimes_{\mathcal{O}} \mathfrak{O}_{\nu}$, then $(\mathfrak{O}_K)_{\nu} = \prod_{\omega/\nu} \mathfrak{O}_{\omega}$. Let \mathscr{P} be the set of all ν which divide p (i.e., $\nu(p) > 0$) but do not divide $\mathfrak{d}_{K/F}$. Then for each $\nu \in \mathscr{P}$, K_{ν} is nonramified, and so K_{ν} has a normal \mathfrak{O}_{ν} -integral basis $\{x_g^{(\nu)}\}_{g \in G}$. By the strong approximation theorem, it is then possible to find a normal F-basis $\{x_g\}_{g \in G}$ of Kwhich is an \mathfrak{O}_{ν} -integral basis of $(\mathfrak{O}_K)_{\nu}$ at each $\nu \in \mathscr{P}$. Moreover, we may also assume that $\sum_{g \in G} x_g = 1$.

Now for each character $\chi: G \to C$ (the complex field) set $\theta_{\chi} = \sum_{g \in G} \chi(g) x_g$. It is well known that $\alpha_{\chi} = \theta_{\chi}^p \in F$, and $K = F(\alpha^{1p'})$ for a nontrivial χ . Fix such a χ , and write $\alpha = \alpha_{\chi}$. We have

$$heta_{\chi} = 1 + \sum\limits_{g
eq 1} ({oldsymbol{\chi}}(g) - 1) x_g \; .$$

But in the field Q_p of the *p*th roots of unity over the rational field we can write

$$\chi(g) - 1 = c_{\chi}(\zeta_p - 1)$$
 (c_{χ} integral in Q_p)

Hence $\theta_{\chi} = 1 + h'_{\chi}(\zeta_p - 1)$ with $h'_{\chi} \in K$. It follows that $\alpha = 1 + h_{\chi}(\zeta_p - 1)^p$ with $h_{\chi} \in F$. Moreover, if $\upsilon \in \mathscr{P}$, then $h_{\chi} \in \mathfrak{O}_{\nu}$. Thus the lemma is proved.

We continue to suppose that K/F is a cyclic *p*-extension. For $\upsilon \in \mathscr{M}_F$, let G_i denote the *i*th ramification group of a localization K_{ω}/F_{υ} . We define the ramification number r_{υ} to be the smallest integer *n* such that G_n is trivial. Clearly r_{υ} is independent of ω . Now υ is nonramified, tamely ramified, or wildly ramified according as $r_{\upsilon} = 0$, $r_{\upsilon} = 1$ or $r_{\upsilon} > 1$ respectively. If (K:F) = p, then the ramification numbers r_{υ} give a complete description of ramification, and $\upsilon(d(K/F)) = r_{\upsilon}(p-1)$.

The next lemma gives a partial determination of the ramification numbers r_{v} when (K: F) = p.

LEMMA 1.2. Suppose $K = F(\alpha^{1/p})$ with $\alpha \in F$. If υ is ramified and $\upsilon(\alpha) \not\equiv 0 \pmod{p}$, then $r_{\upsilon} = 1$ or $\upsilon(\zeta_p - 1)p + 1$.

Proof. Set $s = v(\zeta_p - 1)$. If v is tamely ramified, the lemma is obvious. Therefore we may suppose that v is wildly ramified; so p divides the ramification number of v when extended to K, but $v(\alpha) \neq 0 \pmod{p}$. Then let $\alpha^{1/p} = \varepsilon \pi_{\omega}^{n}$, where ω is the extension of v to K, π_{ω} a local prime, $\varepsilon \in U_{\omega}$ and (a, p) = 1. Now there is a $\gamma \in U_{v}$ such that $\zeta_p = 1 - \gamma \pi_{v}^{s}$, and an element $\sigma \in \text{Gal}(K_{\omega}/F_{v})$ such that

$$\zeta_{p} = rac{\sigma(lpha^{1/p})}{lpha^{1/p}} = \Big(rac{\sigma(\pi_{\omega})}{\pi_{\omega}}\Big)^{a} rac{\sigma(arepsilon)}{arepsilon} \, .$$

Since π_{ω}^{r} $(r = r_{\nu})$ is the highest power of π_{ω} which divides $\sigma(\pi_{\omega}) - \pi_{\omega}$, it follows that

$$rac{\sigma(\pi_\omega)}{\pi_\omega} \in U_{r-1} - \, U_r$$
 ,

where $U_m = 1 + \mathfrak{P}_{\circ}^m$. Since (a, p) = 1, it is also true that

$$\left(rac{\sigma(\pi_\omega)}{\pi_\omega}
ight)^a\in U_{r-1}-\ U_r\ .$$

But $\sigma(\varepsilon)/\varepsilon \in U_r$, whence it follows that $\zeta_p = 1 - \gamma' \pi_{\omega}^{ps}$ belongs to $U_{r-1} - U_r$.

This completes the proof.

It is not possible to say much about r_v when $v(\alpha) \equiv 0 \pmod{p}$. A slight modification of the previous argument shows that $r_v \leq sp$. However, if *n* is any integer in the range $0 < n \leq sp$, then according to [5] or [7], for a $y \in F_v$ with v(y) = 1 - n, the roots of

 $x^p - x - y = 0$

generate a cyclic extension of degree p with $r_v = n$.

Let K/F be cyclic of degree p, then a divisior $v \in \mathcal{M}_F$ will be called exceptional at K/F if the congruence $v(\alpha) \cdot x \equiv r_v \pmod{p}$ does not have a solution relatively prime to p. That is, v is exceptional if one, but not both, of $v(\alpha)$ or r is congruent to $0(\mod p)$. Suppose $v(\alpha) \not\equiv 0(\mod p)$, but $r_v \equiv 0(\mod p)$. By Lemma 1.2 $r_v = 0$, and so K_v/F_v is nonramified. Since α is a *p*th power in K, p must divide $v(\alpha)$, a contradiction. Hence v is exceptional if and only if it is totally ramified, and $v(\alpha) \cdot x \equiv r \pmod{p}$ is not solvable, i.e., $v(\alpha) \equiv$ $0(\mod p)$ but $r_v \not\equiv 0(\mod p)$.

Now let K/F be any finite Galois extension such that (K:F) is divisible by p. In order to state the main theorem, it will be convenient to introduce two functions $\phi_{K/F}$ and $\psi_{K/F}$ on \mathscr{M}_F . Suppose K/F is a p-extension, and let T be a subfield such that (K:T) = p. We define $\phi_{K/F}(\upsilon) = 0$ unless υ is totally ramified in K/F, and K/T is exceptional at the extension ω of υ to T. In the latter case, $\phi_{K/F}(\upsilon)$ is to be the least positive residue (mod p) of $-r_{\omega}$. This definition is independent of the choice of T. For suppose that T' also satisfies the condition (K:T') = p. We may suppose that υ is totally ramified. The tower formula applied to the localization at υ gives (since υ is totally ramified, we can identify ω and υ when convenient)

$$N(d(K_{\scriptscriptstyle extsf{v}}/T_{\scriptscriptstyle extsf{v}}))\equiv N'(d(K_{\scriptscriptstyle extsf{v}}/T_{\scriptscriptstyle extsf{v}}'))(extsf{mod}\ p)$$
 ,

where N and N' are the obvious norm maps. Recalling that $\omega(d(K/T)) = r_{\omega}(p-1)$, this congruence then implies $\phi_{K/F}$ is well defined.

Now we extend our definition to the general case by letting L be the fixed field of a *p*-Sylow group G_p . We define $\phi_{K/F}$ to be the least nonnegative residue (mod *p*) of the expression $(L: F)\phi_{K/L}(\omega)/e_{L/F}(\upsilon)$, where ω extends υ to L, and $e_{L/F}(\upsilon)$ denotes the ramification index of υ in L. Again, it can be verified that this definition is independent of the choice of either L or ω . If K/F is finite Galois, we say υ is exceptional at K/F if $\phi_{K/F}(\upsilon) \neq 0$. This extends the earlier definition.

The function ψ is defined in a similar manner. If (K: F) = p, then $\psi_{K/F}(\upsilon) = 1$ for all exceptional υ . Otherwise $\psi_{K/F}(\upsilon)$ is the least positive residue (mod p), satisfying the congruence $\upsilon(\alpha) \cdot \psi_{K/F}(\upsilon) \equiv$ $r_{\upsilon}(\text{mod } p)$, where $K = F(\alpha^{1/p})$. In the general case, if G_p is cyclic, let T be a subfield such that (K: T) = p and define $\psi_{K/F}(\upsilon) = \psi_{K/T}(\omega)$, where ω extends υ to T. If G_p is noncyclic, define $\psi_{K/F}(\upsilon) = 1$ for all υ . The definition is independent of T, ω or α . We can now state the main theorem of this section.

THEOREM 1.3.¹ Let $\zeta_p \in F$, and suppose K/F is a finite Galois extension whose group G contains a nontrivial p-Sylow group G_p . Then there are idèles a, b and c in J_F such that

$$d(K/F) \equiv a^{p}bc \pmod{U_{F}^{2}} .$$

Moreover, the following conditions are satisfied for all $\upsilon \in \mathscr{M}_{F}$.

(i) $c_{\nu} = \theta^{\psi(\nu)}(\psi = \psi_{K/F})$ for some $\theta \in F$ satisfying the congruence $\theta \equiv 1 \pmod{\mathfrak{B}}$, where \mathfrak{B} is the greatest divisor of $(\zeta_p - 1)^p$ which is prime to $\mathfrak{d}_{K/F}$.

(ii) If v is exceptional, $v(c) \equiv 0 \pmod{p}$

(iii) If G_r is noncyclic, then $\theta = 1$. Moreover,

if K/F is a cyclic p-extension, a nonramfied υ prime to p splits in K/F if and only if $\theta \in U_{\upsilon}^{p}$.

(iv) $b_{\upsilon} = \pi_{\upsilon}^{\phi(\upsilon)}(\phi = \phi_{K/F}).$

We do not deal with the infinite components of d(K/F), for when p = 2 this is discussed in [1]; and for p > 2, $F_v = C$ for all infinite v, whence $d(K/F)_v$ is trivial. The remainder of this section is devoted to proving the theorem, while in the final section some consequences are discussed. In particular, the case p = 2 is developed.

We first deal with *p*-extensions, so let $(K: F) = p^m$. If m = 1, let $K = F(\alpha^{1/p})$, where α satisfies the congruence condition of Lemma

¹ Results of a similar nature, although somewhat weaker, can be proved without the restriction $\zeta_p \in F$.

1.1. A field basis for K is then $1, \gamma, \gamma^2, \dots, \gamma^{p-1}$ with $\gamma = \alpha^{1/p}$. Therefore d(K/F) will have a local representation at υ of the form

$$d(K/F)_v \equiv (-1)^{p(p-1)/2} p^p \beta_v^2 \alpha^{p-1} (\text{mod } U_v^2)$$
,

for some $\beta_v \in F_v$. Using the relation $v(d(K/F)) = r_v(p-1)$, this gives the congruence $2v(\beta_v) \equiv -r_v + v(\alpha) \pmod{p}$. Hence there is a function $\phi'_{K/F}$ which satisfies the congruence equation $2\phi' \equiv \phi \pmod{p}$. In particular if p = 2, then $\phi \equiv 0$ and so there are no exceptional primes. Now if v is exceptional, then our result implies that $\beta_v = \varepsilon_v \pi_v^{\phi'(v)}$ for some unit ε_v . On the other hand, if v is nonexceptional, then $v(\alpha) \cdot \psi(v) \equiv r_v \pmod{p}$. Therefore in the above representation for $d(K/F)_v$ we can replace α by $\alpha^{\psi(v)}$. Again, β_v is of the form $\varepsilon_v \pi_v^{\phi'(v)}$. Thus we obtain the global idèle representation

$$d(K/F)\equiv \delta^peta^2 au^{p-1}(\mathrm{mod}\ U_F^2)$$
 ,

where each component of β is given by $\beta_{\nu} = \varepsilon_{\nu} \pi_{\nu}^{\phi'(\nu)}$, and $\tau_{\nu} = \alpha^{\psi(\nu)}$. Moreover, for all nonramified ν , $\alpha \in U_{\nu}^{p}$ if and only if ν splits in K.

This representation can be generalized to any cyclic p-extension. There is a sequence of subfields

$$F=arOmega_{_0}\subset arOmega_{_1}\cdots \subset arOmega_{_r}\subset arOmega_{_{r+1}}=K$$

with $(\Omega_i: \Omega_{i-1}) = p$. For notational simplicity we set $T = \Omega_r$. According to our previous arguments, we have the representation $d(K/T) \equiv \delta_T^p \beta_T^2 \tau_T^{p-1} (\mod U_T^2)$. The tower formula gives $d(K/F) \equiv \delta^p \beta^2 \tau^{p-1} (\mod U_F^2)$, where $\beta = N_{T/F}(\beta_T)$ and $\tau = N_{T/F}(\tau_T)$. By a straightforward computation, $\beta_v = \varepsilon_v \pi_v^{\phi'(v)}(\phi' = \phi'_{K/F})$. Similarly, if we define $\alpha = N_{T/F}(\alpha_T)$, then $\tau_v = \alpha^{\psi(v)}(\psi = \psi_{K/F})$.

Suppose that v divides p but not $\mathfrak{d}_{K/F}$. Then an extension ω of v to T also divides p but not $\mathfrak{d}_{K/T}$; therefore in \mathfrak{O}_{ω} , $\alpha_T = 1 + h_{\omega}(\zeta_p - 1)^p$. Since T/F is normal, we have

$$N_{\scriptscriptstyle{arphi/arphi}}(lpha_{\scriptscriptstyle{T}}) = \prod_{\scriptscriptstyle{-}} \left(1 + \sigma(h_{\scriptscriptstyle{\omega}})(\zeta_{\scriptscriptstyle{p}} - 1)^{\scriptscriptstyle{p}}
ight)$$
 ,

where σ runs through the elements of the Galois group of T_{ω}/F_{ν} . Hence it follows that $\alpha = 1 + h_{\nu}(\zeta_{p} - 1)^{p}$ is in \mathfrak{O}_{ν} .

Now we must show that if v is nonramified in K, and prime to p, then v splits if and only if $\alpha \in U_v^p$. Suppose that such a vdoes not split in K. Then $\alpha_T \notin T_v^p$. In general if U_i denotes the unit group of $(\Omega_i)_v$, we have $(U_i: U_i^p) = p$, so that the norm map induces an isomorphism $U_{i+1}/U_{i+1}^p \cong U_i/U_i^p$; hence $\alpha \notin U_v^p$. Since there are infinitely many primes which do not split in K/F, α cannot be a *p*th power, and therefore $(F(\alpha^{1/p}): F) = p$.

Now a nonramified v will split in K/F if and only if it splits

in Ω_1/F , for if it splits in K, then the decomposition field contains Ω_1 , whence v also splits in Ω_1/F . Hence if v splits in Ω_1 , then it splits in K and so also in $F(\alpha^{1/p})$; therefore $F(\alpha^{1/p}) = \Omega_1$. This proves our assertion, and extends the representation of the idèle discriminant to arbitrary cyclic *p*-extensions.

Suppose now that K/F is a noncyclic *p*-extension. The Galois group G must contain a proper noncyclic subgroup. For suppose a maximal subgroup N is cyclic. Let a be a generator of N and choose b not in N. Then p is the smallest positive integer m such that $b^m \in N$. It follows that G is generated by a and b. The subgroup generated by a^p and b is proper and noncyclic. By a simple induction argument we conclude that G contains a subgroup H of type (p, p).

Let L be the fixed field of H. Then there is a subfield $K \supset T \supset L$ such that $K = T(\mu^{1/p})$ with $\mu \in L$. As before, d(K/T) has a representation of the form $\delta_T^p \beta_T^2 \tau_T^{p-1}$, where each component of τ_T is a power of μ . Since $N_{T/L}(\mu) = \mu^p$, the tower formula gives for each $\omega \in \mathscr{M}_L$ the representation $d(K/L)_\omega \equiv \delta_\omega^p \beta_\omega^2 \pmod{U_\omega^2}$, where $\beta_\omega = \varepsilon_\omega \pi_\omega^{\phi'(\omega)}(\phi' = \phi'_{K/L})$. The tower formula applied to $K \supset L \supset F$ then gives a representation of d(K/F) of the form $\delta^p \beta^2 \tau^{p-1}$, with $\beta_v = \varepsilon_v \pi_v^{\phi'(\omega)}$ and $\tau_v = 1$ for all $v \in \mathscr{M}_F$.

This representation generalizes to arbitrary extensions K/F by applying the tower formula to $K \supset L \supset F$, where L is the fixed field of a p-Sylow subgroup of G. To obtain the theorem, we now take $b_v = \pi_v^{\phi(v)}$ and $\theta = (N_{L/F}(\alpha))^{p-1}$, or $\theta = 1$ depending on whether G_p is cyclic or noncyclic. If G_p is cyclic, then

$$egin{aligned} arphi(c) &\equiv -\psi(\upsilon) \cdot \upsilon(N_{L/F}(lpha)) \ &\equiv rac{(L\colon F)}{e_{L/F}(\upsilon)} (-\psi(arphi) \cdot arphi(lpha)) (\mathrm{mod}\ p) \ , \end{aligned}$$

where ω extends υ to L. For an exceptional υ , $\omega(\alpha) \equiv 0 \pmod{p}$. It is therefore clear that

$$v(c) \equiv 0 \pmod{p} \ .$$

The proof of the theorem is now complete.

2. Applications. The purpose of this section is to consider some consequences of Theorem 1.3. We first suppose that p = 2. Then there is no restriction on the ground field F, since $\zeta_p = -1$ always belongs to F. Fröhlich [1] defined the *discriminant field* Ω/F of an extension K/F as a quadratic subfield ($\Omega = F$ possible) uniquely characterized by the relation

$$d(K/F) \cdot J_F^{\scriptscriptstyle 2} = d(\Omega/F) \cdot J_F^{\scriptscriptstyle 2}$$
 .

Hence $\Omega = F(\theta^{1/2})$. We use the properties of Ω to prove

THEOREM 2.1. The 2-Sylow groups of the Galois group G of an even degree extension K/F are cyclic if and only if $d(K/F) \in J_F^2/U_F^2$.

Proof. Suppose a 2-Sylow subgroup G_2 is cyclic. Then G_2 has a normal 2-complement N so that $G/N \cong G_2$. Let L be the fixed field of N. Then the tower formula yields $d(L/F)J_F^2 = d(\Omega/F)J_F^2$, so that by Fröhlich's characterization, $\Omega \subset L$.

Now $\theta \equiv 1 \pmod{F^2}$ implies that almost all v split in L, whence G_2 cannot be cyclic. The converse, of course, is contained in Theorem 1.3.

REMARK. An independent proof is given in [2]. Also, a proof when G is abelian appears in [6].

We now prove two further results for p = 2.

THEOREM 2.2. If K/F is normal and nonramified, and G contains a noncyclic 2-Sylow group, then \mathfrak{D}_{κ} has an \mathfrak{D}_{F} -integral basis.

Proof. Immediate from Theorem 2.1 and Theorem 2.5 of [1].

THEOREM 2.3. If K/F is a Galois extension and $d(K/F) \in J_F^2/U_F^2$, then G is solvable.

Proof. Since θ is not a square, the degree (K:F) must be even since $(\Omega:F) = 2$. Therefore by Theorem 2.1 the 2-Sylow groups are cyclic. Hence any such subgroup G_2 has a normal 2-complement Nwith $G/N \cong G_2$. Since both N and G_2 are solvable, G is itself solvable.

For the remainder of the section, consider an arbitrary prime $p \ge 2$. This now imposes a restriction on F. Moreover, if p > 2 then θ is not determined, up to a *p*th power, by d(K/F), as was the case when p = 2. Hence the notion of a discriminant field does not extend to an arbitrary prime. Also, the exceptional primes, which play no role in the p = 2 theory, are now important. The results for p > 2 are therefore not as strong as these obtained for p = 2.

However, we have the following generalization of Herbrand's theorem.

THEOREM 2.4. Assuming the hypotheses of Theorem 1.3, then $\mathfrak{d}_{K/F}$ can be written as a product of ideals in the form $\mathfrak{A}^p\mathfrak{D}(\theta)$, where $\theta \equiv 1 \pmod{\mathfrak{B}}$, and \mathfrak{B} is the greatest divisor of $(\zeta_p - 1)^p$, prime to $\mathfrak{d}_{K/F}$; \mathfrak{D} is divisible only by ramified primes and is characterized by the relations

DONALD MAURER

$$\upsilon(\mathfrak{D}) = egin{cases} \phi_{{\scriptscriptstyle K/F}}(\upsilon) & \mbox{if υ is exceptional} \ -\upsilon(\theta) - rac{(L:\,F)}{e_{{\scriptscriptstyle L/F}}(\upsilon)} & \mbox{if υ is ramified, nonexceptional} \ . \end{cases}$$

Proof. In the representation of Theorem 1.3, let the idèle d be defined by $d_v = 1$ at all infinite divisors, and $d_v = \pi_v^{\phi(v)} \theta^{\psi(v)-1}$ at all $v \in \mathscr{M}_F$. Let \mathfrak{D} be the ideal naturally determined by d; then $v(\mathfrak{D}) = \phi(v) + v(\theta)(\psi(v) - 1)$. The computations are straightforward, using the congruence relation at the end of the previous section.

Since $\phi \equiv 0$ and $\psi \equiv 1$ when p = 2, it is evident that, for $\upsilon \in \mathscr{M}_F$ at least, this result is consistent with Herband's theorem.

If the exceptional divisors are known, b can be determined from d(K/F), for a consequence of the representation theorem is that for an exceptional divisor v, $\phi_{K/F}(v) \equiv d(K/F) \pmod{p}$. In this case, the next result gives a sufficient condition for G_p to be cyclic.

THEOREM 2.4. Under the hypotheses of Theorem 1.3, suppose that

$$d(K/F) \equiv a_1^p b c_1 \pmod{U_F^2}$$
,

where b is as determined in Theorem 1.3. Then G_p is cyclic if $c_1 \notin U_F^2 J_F^p$. If K/F is a cyclic p-extension, then a necessary condition for υ to split in K is that $c_{1\nu} \in U_{\nu}^2 F_{\nu}^p$.

Proof. Let c be determined as in Theorem 1.3. Then $c_1 \equiv c \pmod{U_F^2 J_F^p}$. If G_p is noncyclic, then c = 1, whence $c_1 \in U_F^2 J_F^p$. Now if K/F is a cyclic p-extension, then $\theta \in F_v^p$ if and only if v splits in K, whence $c_1 \in U_v^2 F_v^p$ if v splits.

The results of this section show how d(K/F) can be used to obtain structural information about the Galois group of K/F, or in the case of cyclic *p*-extensions, the splitting of primes.

References

1. A. Fröhlich, Discriminants of algebraic number fields, Math. Zeitschr., 74 (1960), 18-28.

2. V. Gallagher, The trace-form on Galois field extensions, pre-print.

3. E. Hecke, Vorlesungen uber die Theorie der algebraischen Zahlen, New York, 1948.

4. J. Herbrand, Une propriété du discriminant des corps algébriques, Ann. Ecole normale (3), **49** (1932), 105-112.

5. R. Mackenzie and G. Whaples, Artin-Schreier equations in characteristic zero, Amer. J. Math., **78** (1956), 473-485.

6. D. Maurer, Invariants of the trace-form of a number field, Linear and Multilinear Algebra, **6** (1978), 33-36.

7. J. P. Serre, Corps Locaux, Paris, 1968.

400

Received June 24, 1977 and in revised form March 9, 1979.

Center for Naval Analyses 2000 N. Beauregard St. Alexandria, VA 22331