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ON THE CHARACTERIZATIONS OF THE BREAKDOWN
POINTS OF QUASILINEAR WAVE EQUATIONS

PETER H. CHANG

We consider the mixed initial and boundary value pro-
blem of the quasilinear wave equation:

ut — vx = 0 ,
( 1 ) v t - Q2(u)ux = 0

u(χ9 0) = 0, v(x, 0) = vo(x), 0 g x ^ 1,
( 2 ) i ;(0,ί)=v(l,ί)=0,ί^0.

In general the solution of the system (1), (2) eventually
breaks down in the sense that some of its first derivatives
become unbounded at a finite time. It is shown that there
are only finitely many breakdown points and that at each
of them there originates one or two shock curves.

The fact that solutions of (1), (2) eventually break down has been
derived by many authors, e.g., see [12], [9], [5], [10], [6], [7], and
[1]. It should be pointed out however, that even though a solution
break down in finite time it can be extended to large t as a weak
solution. See e.g., [3], [4], and [11].

We define r = v + M(u) and s = v — M(u), where M(ζ) =
Q(ζ)dζ. Then r and s are Riemann invariants of (1). Let q(η) =

0

Q{M~\Ύ]I2)). After transforming (1) to equations with r and s as
dependent variables we apply a hodograph transformation to invert
the resulting equations to

χr-q(r- s)tr = o ,

xs + ?(r - s)ts = 0 .

Eliminating x in (3) gives

( 4) trs = p(r - s)(tr - ί.)

where p(η) = Q'(M'\η/2))/Aq\η).

We assume that

( 5 ) Q(ζ) is a positive analytic function over (-oo, <>o)

%(%) = f\ioAχ) i s concave over [0, 1], where f(x) is an odd
( o )

periodic analytic function over (—°°, c>o) with period 2 .

Let a = maXo^^/W = /(6)(0 < iί> < 1), Ω = {(r, β): | r | ^ α; |β| ^ α},

β, - {(r, 8) e Ω: ( - l ) ' " 1 ^ - β) ^ 0}(i - 1, 2), α t - ΛΓ(oo) and α2 =

— M(~oo). We assume further that
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( 7 ) d*p/dr\r - s) = (-lyd'p/ds'ir - s)< 0 f or i ^ 0 and (r, s) e Ω

( 8 ) α < min(αi, α2) .

We refer the part in (7) with i = 0 as (7) (i = 0) and that in
(7) with ΐ > 0 as (7) (ί > 0). We refer a breakdown point as a
b.d.p. We call a shock curve of the equations (1) propagating to
the left an 1-shock and that propagating to the right a 2-shock.

In this paper applying a method developed in [2] we prove that
the system (1), (2) has only finitely many b.d.p.'s. Each b.d.p. Po

can be characterized as being of one of the following two kinds:

I. There is exactly one shock curve originating at Po, which
is either an 1-shock or a 2-shock.

II. There are exactly two shock curves originating at Po; one
is an 1-shock and another a 2-shock.

The methods used in this paper are applicable to some other problems
of (1) (see Remark 1). The condition (7) is satisfied by the system
which governs the motion of an isentropic polytropic gas (see Re-
mark 2). I am grateful to Professor H. Weinberger and to the re-
feree for several helpful comments.

The condition (7) (ί = 0) is the genuine nonlinearity condition
of a hyperbolic 2-conservation law. Without imposing (7) (i > 0)
we find two other possible characterizations of a b.d.p. Po.

III. There is a (infinite) sequence of shocks originating at a
sequence of points {Pk} convergent to Po. Moreover, the set {PJ is
the only set with the above property in a neighborhood of Po and
{Pfc} contains no subsequence convergent to a point other than Po.

IV. There is a sequence of points {Pk} convergent to Po such
that for each k there is a sequence of shocks originating at a
sequence of points convergent to Pk.

The condition (8) is the first case of MacCamy and Mizel [10].
The second and third cases are min^, α2) ̂  a :g max(αx, α2) and
a > max(αx, α2). Under (7) α2 = oo and the third case does not occur.
As will be seen in Section 2 a local solution of (1), (2) can be con-
structed and extended from some solutions X(R) = (x(r, s), t(r, s)) of
(3) over Ω. The second case differs from (8) in the shapes of the
images X(Ω) in the (a?, t) plane. For this case applying the methods
used in this paper we obtain the same kinds of characterizations of
the b.d.p.'s.
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From now on in this section and § 2 the results are derived
without assuming (7). The following lemmas are Lemmas 1, 2, and
3 of [1].

LEMMA 1. Suppose X{R) is a solution of (3) in an open region
W with the property that any two points in W can be connected
by one of the following: (i) a horizontal segment or a vertical seg-
ment in W, (ϋ) one or two line segments in W of positive slopes,
(iii) one or two line segments in W of negative slopes, and if
tr-ts Φ 0 in W, then X(R) is a homeomorphism on W.

LEMMA 2. Suppose X(R) is a solution of (3). If W is an open
region in which X(R) is one-to-one with nonvanishing Jacobian
det VRX = 2qtrts, then

(9) U(X) =

is a solution of (1) on X(W).

LEMMA 3. // X satisfies the assumptions of Lemma 2 and is
continuous on W, and if tr —> 0 or ts —> 0 as R —> Roed W, then
\ux(X(R))\ -> co or \vx(X(R))\ -> co as R ->Ro.

2. The existence of a local solution* The equation (4) can be
written

(10) d/g"U = ?*(r-8)i,, or

(11) 0/Jt8)r=-q*(r-8)tr

where q*(η)=-Q\M-\Ύ)l2))l±qz>9{Ύ)). Integrating (10) and (11) with
the diagonal r — s of Ω as initial curve and applying successive ap-
proximations we have

LEMMA 4. Suppose t{r, s) is a solution of (4) over Ω. For
i = 1 or 2, if (-iγQ'(M-\(r - s)/2)) > 0 in Ωt and if (~1)% < 0
and ( — 1)% > 0 along the diagonal r = s of Ω, then ( — l)ιtr < 0 and
(-!)%> 0 in Ω<.

Assuming Q'(ξ) > 0 for ξ < 0 and Q'(ξ) < 0 for ζ > 0, MacCamy
and Mizel [10] construct the local solution of (1), (2) as follows. Let
f(x) be the portion of f(x) over [ — 6, b] and f2(x) that over [6, 2 — 6].
Solving (3) with the initial conditions

(12) xl(r, r) - fτ\r\ t%r, r) - 0
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one obtains a solution Xϊ(R) = (ajj(r, s), tj(r, s)) over ^ ( i = 1, 2).
Differentiating (12) with respect to r and using (3) we find

(13) ( - l ) U ( r , r) = (-l)*+1«s(r, r) - ( - l y / Γ W ^ O ) < 0 (i = 1, 2) .

It follows from Lemma 4 that

(14) ( —l)**Sr < 0 and (-1)%°, > 0 in 0,(i = 1, 2) .

By (6) and the uniqueness theorem of the initial value problem of
(3) we can derive that

(15) X%R) = (1 + (-1)' - $(-8, - r ) , «(-«, -r)){i = 1, 2) .

Solving (3) with the characteristic initial conditions

(16) X\a, s) = XJ(α, β), X'(r, α) - X°2(r, α)

one obtains a solution X\R) = (x\r, «), ̂ (r, s)) over Ω. Let {r = r0}
and {s = s0} denote the line segments r = r0 and s = s0 in i2. By
(16) and (14) there exists a neighborhood Z of {r = a} U {s = α} in
Ω such that

(17) ίr < 0 and t\ < 0 in ^ .

Let £>? = X°i(Ωt) (i = 1, 2). By (14), (17), Lemmas 1 and 2 the func-
tion defined by U(X) = U(Xΐ) for XeD%i = 1, 2) and U(X) = U{Xι)
for XeX\Z) as in (9) is a solution in Z>? U X\Z) U i)02 of (1) with
initial conditions u(x, 0) = 0, v(x, 0) = fix) for - 6 ^ a; ̂  2 - 6. By
(15) the function Σ7(χ) satisfies U(X) = (%(1 + (-1)* - a;, ί), -v( l +
(-1)*-a?,*)) for XeD%i = 1,2). Thus ?7(Z) is a local solution of
(1), (2). As we stated in Remark 2 of [1], without assuming any
condition on the signs of Q', applying (13) and Lemma 1 we can
also construct such a local solution.

From now on in this section we impose no condition on the
signs of Q'. Constructing X\R) as previously described we can
solve a series of characteristic initial value problems as described
in § 3 of [10] and construct the functions Xf, X\k+1, and X2k+1 over
Ω. For later reference we list the characteristic initial conditions
for the functions X\, X\ (i = 1, 2), and X3 as follows:

X\{-a, s) = (a£(-α, s) - 1 + (-1)', ίϊ(-α, s)) ,

χ\(r, -a) = (a£(r, -α) + 1 + (-1)', ί?(rf -α))

(18) XJ(α, β) - X\(a9 s), Xl(r, -α) = Xx(r, -α)

X2

2(-α, β) - XK~a, 8), Xl(r, a) = X\(r, a)

X 3 ( - α , 8) - XJ(-α, 5), X3(r, - α ) - X|(r, - α ) .

Let D2k+1 = X2λ+1(i2), Z?i*+1 = Xf+1(i2), and Z?|* = Xf(Ω) (see Fig. 1).
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-1

By (15), (16), (18), and the uniqueness theorem of the characteristic
initial value problem of (3) we can derive that

(19)
(~1Y - x?+\-s, -r), t?+X-s, -r)) ,

X?+\R) = (1 + (_l)« - χ?+%-s, -r), tf+\-s, -r))

%{R). The following is
f or k ^ 0 and i = 1, 2.

Let Ψ{R) = t\R) + t\-s, -r) - t\{R)
Lemma 5 of [1].

LEMMA 5. For k^O and i = l,2, tik+\R) = 2kΨ(R) + t\R),
tίk+\R) = (2k + Ϊ)Ψ(R)

- (2&

Let Ω denote the interior of Ω and V the set of four vertices
{(α, α), (-α, α), (-α, -α), (α, -a)} of β.

LEMMA 6. For k ^ 0 α^d ΐ = 1, 2 ίfee following hold.
( i ) J^or i = 0, 2(1 = 1, 3)tί*+y(ίί*+ϊ) is finite in φ U {s = α} U

(ii) Along {r = α} U {r = — α}

(iii) Along {s = a} U {s= — α}

The parts with fc = 0, j = 0, and I = 1 of Lemma 6(i) and those
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with superscripts 0, 1 of Lemma 6 (ii), (iii) are Lemmas 6 and 7 of
[1]. By Lemma 8 of [1] the function Ψ has finite first-order partial
derivatives in Ω. From Lemma 5 the other parts of Lemma 6
follow.

3* The zero curves of t°2r and of t0

2β. We now assume (7).

LEMMA 7. Let t(R) denote either tf(Jt) or t2k+\R) (Jfc ̂  0; i = 1,
2). // Cr(Cs) is a zero curve of tr(ts), then Cr(Cs) contains no hori-
zontal line segment or vertical line segment.

Proof. Since Q(ξ) and f(x) are analytic, the function t{R) is
analytic. For a fixed s0, tr(r, s0) is analytic in r. Now a real ana-
lytic function of one variable either is a constant function or does
not take a constant value on any set with an accumulation point.
It follows from Lemma 6 (ii) that tr(r, s0) does not vanish on a
closed interval. Hence Cr contains no horizontal segment. Similarly
Cs contains no vertical segment. By (10) and (11) we then derive
that Cr contains no vertical segment and that C8 contains no hori-
zontal segment.

Applying (10) and (11) we can prove

LEMMA 8. Let t{R) denote either t?(R) or t2k+1(R) (k ̂  0; i =
1, 2). // tr(rlf sx) = tr(ru s2) = 0 along {r = r j , then ts(ru s0) = 0 for
some s0 between s± and s2. If ίβ(r8, β8) = ί,(r4, β8) = 0 along {s = s3},
then tr(r0, s3) = 0 for some r0 between r3 and r4.

Under (7) by Theorem 4(i) of [1] the solution U of (1), (2) breaks
down. By Lemma 4, t\r > 0 and t°ls < 0 in Ωx. It follows from
Lemmas 2 and 3 that U does not break down in D{. Now
Q\M~\(r — s)/2)) < 0 in Ω2. The method of successive approximations
used in showing Lemma 4 is not applicable to show that t\r < 0 and
t°2s > 0 in Ω2. In this section we assume that t°2r tls vanishes some-
where in J22. That is, U breaks down in D°2. By (15)

(20) tl(r, s)=- tl( - s, - r) for (r, s) e Ω2 .

Then both t°2r and t\s vanish somewhere in Ω2.
From now on in this section let X(R) — (x(R), t(R)) denote

X%R). By (13) ίr(r, r)=-t.(r, r) < 0. Let F be the family of sub-
sets S of Ω2 which satisfy: (i) S is open and connected with respect
to the induced Enclidean topology on Ω2, (ii) S contains the diagonal
r = 8, (iii) tr<0 and ts>0 in S. The set N = \JseFS is the largest
member of F; N^Ω2. Let Ar = {ReΩ2: tr(R) = 0} and As = {R e
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Ω2: t.(R) = 0}.

LEMMA 9. (i) In N,tr<0 and t8 > 0. (ii) dNQ Ar U As.

For a fixed number r° we denote the curve t(r, s) ~ t(r°f — r°)
through the point (r°, — r°) by Ct̂ o,-**)- Let α = inffr: —a < r < 0;
Cί(r,_r) lies in iSΓ} (-α < a < 0), TQ = t(a, ~α), and Co = CTo. Let
r = τo(s), s* ^ 8 ^ α, describe Co. From now on by an increasing
(decreasing) function we mean a strictly increasing (decreasing)
function. By a method similar to that used in showing Lemma 3.3
of [2] we can show

LEMMA 10. (i) The function rQ(s) is increasing, (ii) dNf]C0Φφ.
(iii) The interior of the region to the right of CQ in Ω2 is contained
in N.

We describe the X images of the region JV, of a curve
Ct(ro^rΊ(r° > a), and of the curve Co in Fig. 2. By Lemma 9 and
Lemma 10 (iii)

FIGURE 2

(2i) dNv\ c0 - (Ar n Q υ {A. n Q .

LEMMA 11. The set dN n Co is countable.

Proof. For any arc 7 of Co, applying Lemma 7, integrating
(10) and (11) with 7 as initial curve, and applying successive appro-
ximations, we can prove that Ar Π 7§i7 and i s n τ £ τ . Then the
closed sets {s: β* ^ s ^ α; £r(r0(s), s) = 0} and {s: 5* <s 5 <£ α; ts(rQ(s),
s) = 0} contain no closed interval. Thus both of them are countable.
It follows from (21) that dN Π Co is countable.

We denote a zero curve s = s(r) (r = r(s)) of dmt/drm(dmt/dsm) in
β2 by C^iCs^im ^ 1) and Cμ(Csi) by Cr(Cs). We call a number xQ a
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relative maximum (minimum) point of a certain function φ{x) if φ(x)
has a relative maximum (minimum) at x0. We call x0 a relative ex-
treme point of φ(x) if it is either a relative maximum point or a
relative minimum point of φ(x).

DEFINITION 1. A point Ro = (r0, s0) is a bending maximum point
of Crm(CU) if the function s = s(r) (r = r(s)) describing Crm(CU) has
exactly one relative extreme point ro(so) in a neighborhood of ro(so),
which is a relative maximum point. We define the bending minimum
point similarly. The point Ro is a bending point of Cr*(CU) if it is
either a bending maximum point or a bending minimum point of
Crm(Csm). A Crm(Csm) is of the first kind through Ro if it contains
only finitely many bending points in a neighborhood of Ro.

In considering Ar n Co and As n Co, by (21), Lemma 10 (ii), and
Lemma 6(ii), (iii), we have the following five cases:

Case 1. (Ar f) Co n 4 ) - A8 Φ φ.
Case 2. (Ar n Co n {s = α}) - (A. U F ) ^ ^ .
Case 3. (A, Π Co n 4 ) ~ Λ Φ φ.
Case 4. (As n Co n {r= -α}) - (Ar [jV)Φφ.
Case 5. Ar n As n Co Π 4 Φ Φ

We consider whether there exists a Cr or a Cs through each point
in these intersections and whether these intersections contain only
isolated points of dN Π Co.

For Case 1, given Ro e (Ar n Co n fl2) - A., by a method similar
to that used in Case 1 of § 3 of [2], we can show that there is a
unique Cr, which is of the first kind through Ro, with Ro as a bend-
ing minimum point. We describe this Cr in Fig. 3. By (21) the
point RQ is an isolated point of dN Π Co

(-a, a)

(a-a)

FIGURE 3
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For Case 2 we prove

LEMMA 12. Given Ro = (r0, a) e (Arf]CQf]{s = a}) - (As U V), the
following hold.

( i ) There is a deleted neighborhood of RQ in Ω2 in which
tr < 0.

(ii) There is a unique zero curve Cr of tl, which is of the first
kind through Ro, with RQ as a bending maximum point. Suppose
s — s(r) describes Cr. We also have that t\{r, s) < 0(>0) for s > s(r)
(s < s(r)) and \r — ro\ small.

(iii) The point Ro is an isolated point of dN Π Co.

Proof. By Lemma 6(iii) there is a convex neighborhood W of
Ro in Ω2 such that ts > 0 in W. Suppose there is a zero curve Cr

of tr through Ro. By Lemma 8 it is the only such curve through
Ro. By Lemma 10 (iii) Cr lies to the left of Co. In W we choose a
point R° — (r°, s°) in Ω2 lying strictly between Cr and Co such that
the line segment {(r, s°): r° ^ r ^ ro(s0)} lies in iV. Then
ί(i?°) > ί(ro(8°), s°) = TQ. By (10) we can show, however, that the
curve t(r, s) = t(R°) through R° meets CQ. This is a contradiction.
Thus there is no zero curve of tr through RQ. This derives (i).

By (16) #(r, a) = tr(r, a){-a<>r <> a). By (4), (7), and Lemma
6(iii) tι

rs < 0 in a neighborhood Wx of RQ in Ω2. Then ft(r0, s) > 0
for small positive α — s. Since ίj.(r, α) < 0 for r in a deleted neigh-
borhood of r0, we may choose Wλ sufficiently small such that t\ < 0
along (WiΓi{$ = α}) — {̂ 0} It follows from (10) that there is a uni-
que zero curve Cr of t\ lying in Wx U {Ro} through Ro.

We prove that Cr is of the first kind through RQ.

Since t\(r9 a) is analytic in r at r0, there is an even number m
such that

(22) d%ldr\RQ) = 0(0 ^ i ^ m - 1) and δ - dmtl/drm(RQ) < 0 .

We claim that for R in some neighborhood W2 of i?0,

(23) dkt\ldr\R) < 0 (0 ^ ft ^ m) .

For, by Lemma 6(iii) t\ < 0 in a neighborhood of J?o. For m ^ 4
or for & ̂  3, by (4), (22), and (7) we can verify directly that (23)
holds. For m ^ k Ξ> 4, by (4), (22), (7), and by induction we can
prove that in a small neighborhood of Ro, the sign of the function
dktl/drk is the same as that of the following function:
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<=* \k — i
i

+
i-2

i - 3 + 1.
3-2 I i-i (i — 2\ /ί-i-h Ii — 3 — i,\

+ Σ I Σ . Jd'YVδr1* Σ o I . ηS' /o/Sr'
/ i — 5 — i o ~ •••—if_ 1 /V T // . . V

( ϊ 1 \

i - j + l-i* ij

It follows from (7) that (23) holds.
By (22) we can choose W2 sufficiently small in which d^l/dr™ < 0.

This and (23) imply that the curves 3mί73rm(r, s) = constant in W2

are decreasing. Then there is a unique zero curve Crm of dmt1/drm

through Ro, which is decreasing in W2. Let r = φ(s) describe Crm.
Expanding d^ld^ir, a) into power series about r0 gives 3mί73rm(r, α) =
δ(r - r0) + o(|r - ro |). By (22) 3mίV3rm(r, s) > 0(<0) for (r, s) e W2

such that r < φ(s)(r > ^(s)). It follows from (23) that there is a
unique zero curve Crm-i of dm~1tιjdrm~ι in W2> which is of the first
kind through Ro, with i20 as a bending maximum point. Let s = ^(r)
describe Cr»-i. We also find that dm~Ψldrm~\τ, s) < 0(>0) for
(r, s) 6 TF2 such that s > φ{r)(s < φ(r)). Applying similar argument
repeatedly we can derive that Cr is of the first kind through Ro

with the other properties listed in (ii).

By (i) and (21) we have that (iii) holds.

For Case 3, given Ro e (A, Π Co Π Ω2) — Ar, by (20) and applying
the result of Case 1 we find that there is a unique zero curve Cs of
ts as shown in Fig. 3, which is of the first kind through Ro, with
RQ as a bending maximum point and that Ro is an isolated point of
3Nf)C0.

For Case 4, given Ro e (A. Π Co Π {r= -a}) - (Ar U V), by (20)
and applying Lemma 12 (i), (iii) we find that there is a deleted
neighborhood of Ro in Ω2 in which ts > 0 and tr < 0 and that iϋ0 is
an isolated point of dN (1CO. By (18) t\s{ — a, s) = ίβ( — a, s){ — a 5g s ^ a)
while by (19) t\s(r, s)=— ίj(—s, — r). Applying Lemma 12 (ii) we
find that there is a unique zero curve Cs of t\si which is of the
first kind through Ro, with Ro as a bending minimum point. Sup-
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pose r = r(s) describes C$. We also have that t\s(r, s) > 0 (<0) for
r < r(s) (r > r(s)) and \s — so\ small.

For Case 5 we prove

LEMMA 13. Given Ro = (r0, s0) e Ar n As Π Co Π fl2, t/ie following
hold.

( i ) There is a convex neighborhood W of Ro in Ω2 such that
t, > tr in W - {Ro}.

(ii) There is a unique zero curve Cr(Cs) of tr(ts), which is of
the first kind through Ro, with Ro as a bending minimum (maxi-
mum) point.

(iii) Suppose s — s(r) (r = r(s)) describes Cr(Cs). The function
s ~ s(r) (r — r(s)) is smooth everywhere except perhaps at r = r0

(s = s0). For s < s(r)(s > s(r)), \r ~ ro\ and \s ~ so| small, tr(r, s) < 0
(>0). For r > r(s) (r < r, (s)), \r — ro\ and \s — sQ\ small, ts(r, s) > 0

(iv) Cs lies to the left of Cr as shown in Fig. 4.

s

FIGURE 4

( v ) The point Ro is an isolated point of dN ΓΊ CQ.

Proof. By Lemma 10 (i), (iii) and Lemma 9 (i)

(24) ί r(r, s0) < 0 for r0 < r ^ sQ and ίβ(r0, s) > 0 for r0 ^ s < s0 .

Since ί(?% s) is analytic, there are positive integers m and n such
that

(25)
d%/dsj(R0) ^

- l ) , α o = dmtr/drm(R0) Φ 0 ,

- 1), /So = dnts/dsn(R0) Φ 0 .
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Using (4) and (25) we can show by induction that

(26) d'+H/dr^s'XRo) = 0 (1 ^ i £ m; 1 ^ j ^ n) .

Expanding t(r, s) into power series about Ro and applying (26) give

(Z I )

+ o ( | r - r o r + 1 ) + o(|β — βo|*
+1) .

Differentiating (4) and using (25) and (26) we obtain

(28) ai = dm+lt°'drm+1(R^ = P(r« - *°)α° φ ° '
β l = d*+%/ds*+1(R0)=-p(r0 - so)/3o =* 0 .

Expanding ίr and ίβ into power series about RQ and applying (25),
(26), and (28) give

tr(r, s) = ( α 0 M ! ) ( r - r o ) w + (ft/fa + l ) ! ) ( s - So)
n+1 + o(\r - r o | m )

+ O ( | 8 - 8 o | + 1 ) ,
( 2 9 ) ί.(r, β) =

+ o(| β - so|
%) + o(| v - r 0 Γ + 1 ) .

Recall that ί(ro(s), β) = To, where r — rQ(s) describes Co. By the
continuity of ίr and by Lemma 11, given any η > 0, there is a
point (r<, s j lying to the left of Co, 0 < (~lY(r0 - r%)<Ύ] and 0 < ( - l ) *
(s0 — s^ < 77, such that the line segments {(r, s j : rt^ r ^ τo(Si)} lie
in iSΓ (i = 1, 2). Then by Lemma 9(i)

(30) ί(r,, 8,) > Γ0(i = 1, 2) .

By (24), (29), (27), and (30) we can show that m and n are even
numbers. It follows from (24) and (29) that

(31) a0 < 0 and β0 > 0 .

By (29) and (31) we can derive (i).
Differentiating (4) and using (7), (25), (26), (31) we obtain

(-l)i+1as = (-iy+1dj+m+ίtldrm+1dsj(R0) > 0 (1 ^ j ^ n) ,

A = dt+n+ιt/drid8n+ί(R0) > 0(1 ^ i ^ m) .

Expanding dmts/drm into power series about i?0 gives

dmtjdrm(r, s) - αx(r - r0) + (βjn\)(β - so)
n

It follows from (32) that dmtjdrm(r, s) > 0 for small positive r — r0

and |β — 80|. This and (31) imply that for small nonnegative s — s0

there is a unique zero curve Crm of dmtjdτm through Ro, which is
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increasing. Let r = φ(s), s ^ s0, describe Cr». By (31)

dmt/drm(r, s) > 0 for r < φ(s), \r - rQ\ and s - s0 small,

and

(33) dmt/drm(r, s) < 0 for r > φ(s), r - r0 and s - s0 small .

Expanding dm~1tjdrm~1 into power series about Ro and applying (32)
give that dm~~1tjdrm~1 > 0 in a deleted neighborhood of RQ. This
and (33) imply that for small nonnegative s — sQ there is a unique
zero curve Crm_i of dm~lt/drm~\ which is of the first kind through
Ro, with Ro as a bending minimum point. Let s = ^(r) describe
Cr«-i. By (33) we have that dm~ιtldτm~\r, s) < 0 (>0) for
s0 ^ s < φ(r)(s > φ(r)), \r — ro\ and s — sQ small. Applying similar
argument repeatedly we can derive that there is a unique zero
curve Cr of tr, which is of the first kind through Ro, described by
a function s = s(r) with RQ as a bending minimum point and that
tr(r, s) < 0 (>0) for sQ ^ s < s(r) (s > s(r)), \r — ro\ and s — s0 small.
By (29), (31), and (32) we also have that tr(r, s) < 0 for s < s0,
r — r o | and s0 — s small. This derives the first parts of (ii) and

(iii). Similarly we can drive the remaining parts of (ii) and (iii).
The part (iv) follows from (i), (ii), and (iii), and the part (v)

follows from (ii) and (21).

LEMMA 14. The set dN Π CQ is finite.

Proof. According to the discussions of Cases 1, 3, and 4 and
Lemma 12 (iii) for Case 2 and Lemma 13 (v) for Case 5, we find that
both the sets Ar Π CQ and As f] CQ contain only isolated points of
dN Π Co. It follows from (21) that dN Π Co contains only isolated
points. This and the Bolzano-Weierstrass theorem imply that dN Π Co

is finite.
We now drop the condition (7) (i > 0) and assume only (7)

(ΐ = 0). Lemmas 7, 8, 9, 10, and 11 still hold. The results of Cases
1 and 3 also hold.

Presently for Case 2 we are unable to exclude the possibility
that the zero curve Cr of t\ in Lemma (12) (ii) contains countably in-
finitely many bending maximum points in any neighborhood of Ro.
Likewise for case 4 the zero curve Cs of t\s may contain countably
infinitely many bending minimum points in any neighborhood of Ro.

Recall that r = ro(s), s* <̂  s ^ α, describes Co. By Lemma 11
any subset of the set {s: s* <> s ^ α; (ro(s), s) edN Π Co} is not a per-
fect set. For Case 5 there may be three cases. Case 5a. The point
RQ is an isolated point of dN Π CQ. Case 5b. There is a (infinite)
sequence of isolated points {Rk} of dN ΓΊ Co convergent to Ro. More-
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over, the set {Rk} is the only subset of dN Π Co with the above pro-
perty in a neighborhood of Ro and {Rk} contains no subsequence
convergent to a point other than Ro. Case 5c. There is a sequence
of points {Rk} of dN Π Co convergent to RQ such that for each k the
point Rk is of Case 5b. Suppose {RkJ is the sequence of isolated
points of dN Π Co convergent to Rk.

For Case 5a, Lemma 13(i), (iii), (iv), (v) still hold. The proof of
Lemma 13(i) is exactly the same as before. Lemma 13(ii) is modi-
fied to:

There is a unique zero curve Cr(Cs) of tr(ts) through Ro which
lies above {s — s0} (to the left of {r = r0}).

To verify this statement and Lemma 13(iii), (iv) we use the re-
sults obtained in proving Lemma 13(i). By (28), (7) (i = 0), and (31)

(34) a, > 0 and β1 > 0 .

By (29), (31), and (34) we can choose the convex neighborhood W
of RQ in Lemma 13(i) sufficiently small such that

ί r(r, s)< 0 for (r, s) e {(r, s) e W: s ^ s0} - {#o} ,

ίr(r0, 8) > 0 for (r0, s) e {(r, s) e W: s > s0} ,
(oo)

t.(r, s)>0 for (r, s) e {(r, s) 6 T7: r ^ r0} - {J?o} ,

t.(r, s0) < 0 for (r, s0) 6 {(r, s) e W: r < r0} .

Now J?o is assumed to be an isolated point of dN Π Co. By
Lemma lθ(iii) there exists an arc 7 on Co containing Ro such that
7 - {#()}<= ΛΓ. We choose T7 such that WnC0(Z7. By Lemma 9(i)
tr < 0 and ί, > 0 along (TΓΠ CQ) - {i?0}. Let

ΐ^x = {(r, s) e PΓ: r > ro; s > so; (r, s) lies to the left of CQ} ,

W2 = {(r, s) e 17: r < r0, β > s0} ,

t^3 = {(r, s) e TΓ: r < ro; 8 < so; (r, s) lies to the left of CQ} .

According to (35) tr vanishes somewhere in Wλ and in W2; ts vanishes
somewhere in W2 and in Wz. By (4), (7) (ΐ = 0), and Lemma 13(i),

(36) tr8 > 0 in ΪΓ - {i20} .

It follows from the implicit function theorem that there is a unique
Cr = C^U C?\ which is described by a function s = s(r) smooth
everywhere except perhaps at r = r0, through J?o such that C?} —
{B0}ciW1 and C<2) - {i?0}c:TF2. There is also a unique C8 = CiυU Ci2),
which is described by a function r = r(s) smooth everywhere except
perhaps at s = sQ9 through Ro such that Ciυ — {JB0} C WZ and Ci2) —
{i20}cT72. This derives the above modified version of Lemma 13 (ii)
and the first part of Lemma 13(iii). From (36) the second part of
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Lemma 13 (iii) follows. This and Lemma 13(i) imply Lemma 13(iv).
There are two subcases of Case 5a. (i) Both Cr and Cs are of

the first kind through Ro. (ii) Cr (or Cs) contains countably infinitely
many bending minimum (or maximum) points in any neighbourhood
of J?o.

For Case 5b (Case 5c), for each k (for each k and for each n)
the point Rk(Rk%) is of one of the following three cases: (i) Rk(RkJ e
Ar - Aa. This is Case 1. (ii) Rk{Rκ) eAs - Ar. This is Case 3.
(iii) Rk(RkJ eArf] Aβ. This is Case 5a.

4* The characterizations of the breakdown points•

THEOREM 1. Suppose X(R) is α solution of (3) over Ω. Given
α point Ro — (r0, s0) in Ω, — α < rQ < α and ~ a <Ξ s0 < α, assume that
there is a zero curve Cr of tr, which is of the first kind through
RQ, described by a function s — s(r) with RQ as a bending minimum
point. Assume further that s(r) is smooth everywhere in a neigh-
borhood of r0 except perhaps at r0. Suppose W is a convex neigh-
borhood of R, in Ω. Let W, = {(r, s) e W: s ^ s(r)} and W2 = {(r, s) e
W: s ^ s0}. Suppose the following hold.

( i ) tr < 0 in W2 - W17

(ii) ts>0 in W2~ {Ro},
(iii) ts > tr (or, by (3), -xs > xr) in W2 - {RQ}.

Then there is a unique 1-shock originating at PQ — X(R0). More-
over, if ts(RQ) > 0, then this shock is the only shock curve originat-
ing at Po.

By a method similar to that used in proving Theorem 4.3 of
[2] we can prove Theorem 1.

DEFINITION 2. Let ίB = {(x, T0):0^x^ 1}, To > 0, be the line
segment at which the solution U breaks down. Suppose γ is a
segment of lB. Then 7 is strongly regular (s.r.) if it contains no
b.d.p.; 7 is weakly regular (w.r.) if it contains only finitely many
b.d.p.'s, each of which is of one of the kinds I and II as stated in
§ 1; 7 is regular (r.) if it is either s.r. or w.r.

THEOREM 2. Under (5), (6), (7), and (8) the segment 1BC\D\ is r.

Proof. It suffices to assume that the solution of U breaks
down in D°2 and to prove that lB Γl D\ is w.r.

From Lemma 14, lB n D\ contains only finitely many b.d.p. 's.
To show that each of them is of one of the kinds I and II we con-
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sider the five possible cases in § 3. Let Po = Xl(R0).
For Case 1 by Theorem 1 there is a unique shock curve origi-

nating at Po, which is an 1-shock. Then Po is of the kind I. For
Case 3 by (20) and using the result of Case 1 we find that there is
a unique shock curve originating at Po, which is a 2-shock. Thus
Po is of the kind I.

For Case 2, by Lemma 12 (ii) and Lemma 6(iii) and applying
the same methods as those used in proving Theorems 3.1 and 4.3 of
[2], we can prove that there is a unique shock curve originating at
Po, which is an 1-shock. Then Po is of the kind I.

For Case 4, by (19) and applying the above arguments for Case
2 we find that there is a unique shock curve originating at Po,
which is a 2-shock. Thus Po is of the kind I.

For Case 5, by Lemma 13(ii), (iii), (i) the conditions (i) and (iii)
of Theorem 1 hold. We can weaken the condition (ii) of Theorem 1
to: ts > 0 in {(r, s) e W2: r ^ r0, or r > θ(s) for r < r0} — {Ro}, where
θ(s) is a decreasing function describing a Cs in W2 through Ro, and
derive the first conclusion of Theorem 1. For Case 5 by Lemma 13
(ii), (iii), (iv) this modified condition holds. Thus there is a unique
1-shock originating at Po. By Lemma 13 (ii), (iii) and (20), and ap-
plying the above modified version of Theorem 1 we can also prove
that there is a unique 2-shock originating at Po. Thus Po is of the
kind II.

THEOREM 3. Under (5), (6), (7) (ΐ = 0), and (8) the segment lBnD°2

is either r. or with countably many b.d.p.'s, each of which is of one
of the four kinds as stated in § 1.

Proof. We assume that the solution U breaks down in D\ and
consider the five possible cases in § 3. Let Po = Xl(R0).

As we observed at the end of § 3 the results of Cases 1 and 3
still hold. For each of these two cases, from the proof of Theorem
2 we can verify that Po is of the kind I.

For Case 2 since the zero curve Cr of t\ either is of the first
kind through Ro or contains countably infinitely many bending max-
imum points in any neighborhood of Ro, from the proof of Theorem
2 we can verify that Po is of one of the kinds I and III. Similarly
for Case 4, Po is of one of the kinds I and III.

For Case 5a(i), by the proof of Theorem 2, Po is of the kind II.
For Case 5a(ii), by the proof of Theorem 2 we can show that Po is
of the kind III. For Case 5b (5c) from the above discussions of
Cases 1, 3, and 5a we can see that Po is of one of the kinds III and
IV (of the kind IV).
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DEFINITION 3. For k ^ 0 and ί = 1, 2, the initial signs (i.s.) of
tt and tfs(tf+1 and t2

s

k+1) are their own signs if Dl\D2k+1) lies strictly
below lBf or their original signs before the occurence of the changes
of signs if lB intersects Df(D2k+1); the initial signs distribution
(i.s.d.) of a region D\\D*k+1) is ( + , - ) if the i.s.'s of if* and tfs

(tf+1 and tf+1) are + and — respectively. We define the i.s.d.'s ( —, +),
( —, —), and ( + , +) similarly.

By Lemma 6(ii), (iii) we have

LEMMA 15. For k^O if the region D\\D\\ D*k+\ D{k+2, Dik+\
j)ik+3 respectively) either lies strictly below lB or intersects lB, then
its i.s.d. is ( + , - ) ( (- , +), (-, - ) , (-, +), ( + , - ) , ( + , +) respect-
ively).

THEOREM 4. Under (5), (6), (7), and (8) the segment lB is w.r.

Proof. We consider first the following four cases: Case 1.
isCzDΊUD^Dl, Case 2. \B(zDl\jDι\jDl, Case 3. IBcD?U D3{J Ό\,
Case 4. I*cD[ Uΰ3U Dl

Case 1. We have observed in §3 that lB fl D\ is s.r.. By
Theorem 2, I* n £>°2 is r.

By Lemma 15 the i.s.d. of D1 is ( —, —). As we construct the
set N in § 3 we construct the set N1 which is the largest subset
of Ω satisfying (i) N1 is open and connected, (ii) N1 contains the
vertex (α, α), (iii) t\ < 0 and # < 0 in JV1. Also as we construct the
curve Co in § 3 we construct the curve CJ in Ω such that X\Cl) =
(IJB Π D1) - (DJ U J9°2). The curve C\ satisfies: (i) CJ is decreasing.
(ii) The interior of the region to the right of C\ in Ω is contained in
N1. Suppose the solution U breaks down at (ίB n -D1) - (J9ί U Z>S). Then
N'^Ω; if RedN1, tι

r(R) = 0 or tί(#) = 0; SJSPnCJ^ 0 . LetAJ: = {J2e
.0; ίi(Λ) = 0}. The condition (7) (i = 0) implies that ^*(r - s) > 0
for (r, s) 6 Ω. By (11) we can derive that t\ < 0 along Co and so
that dN1 (Ί CJ = A^ n Co1. Given any point Ro e A\ n CJ, by (4) and
the implicit function theorem we derive the same conclusion of
Lemma 12(ii). Applying the same methods as those used in proving
Theorems 3.1 and 4.3 of [2] we can prove that at X\R0) there
originates a unique shock curve, which is an 1-shock. Thus the
b.d.p.'s on (lB n D1) - (DJ U D°2) are of the kind I. By the method
used in proving Lemma 14 we can prove that dN1 Π CJ is finite.
That is, the segment (lB n D1) - (DJ U D°2) contains only finitely
many b.d.p.'s. We recall that we assumed that U breaks down at
(lB Π D1) - (Dl U JD°2). It may not break down there. Thus (lB n D1)-
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(Dl U Dl) is r. It follows that lB is w.r.

Case 2. By the same argument used in Case 1 we can show
that (lB Π D1) - (Dl U Dξ) is r.

By Lemma 15 the i.s.d. of Dl is ( + , — ) . We construct the set
N£ which is the largest subset of Ω satisfying (i) JV2

2 is open and
connected, (ii) N2

2 contains the vertex ( —α, α), (iii) t\r > 0 and tls < 0
in N£. We also construct the curve C2

2>0 in Ω such that {(x, t) e
X2

2(C2

2,0): x ^ 1} = I β n ΰ 2

2 . The curve Cl,Q satisfies: (i) C2

2,0 is increas-
ing, (ii) The interior of the region to the left of C\Λ in Ω is con-
tained in N2

2. By (19) the curve Clt0 is symmetric with respect to
the diagonal r— — s. Let Rλ = (r0, a) and R2 = ( — a, — r0), — α < r o < α ,
be the points of intersection of C2,0 with {s — a} and {r=—a}. Now
R2 is one of the end points of the curve CJ constructed in Case 1
over which t\ < 0. It follows from (18) that t\s{R2) = tl(R2) < 0. By
(19) tlr(R1)=-tl(R2)>0. Combining this with the fact that the
interior of the region to the left of C2,0 in Ω is contained in N2 we
find that t\r(r, a) > 0 for -a<>r <: r0 and tl( — a, s) < 0 for
— ro<Ls^a. Let O be the square with vertices ( —α, α), ί?^ (? 0, — r0)
and iϊ2. Integrating (10) and (11) with the sides {(r, a): —a^r^ r0}
and {( — α, s): — r0 ^ s ^ α} as initial curves and applying successive
approximations we can prove that t\r > 0 and t\s < 0 in O. Now
the curve C§,0 is contained in Ω. It follows from Lemmas 2 and 3
that lB Π JDI is s.r.

By Lemma 15 the i.s.d. of D\ is ( —, + ) which is the same as
that of D\. By a method similar to that used in proving Theorem
2 we can prove that lB Π D\ is r. It follows that lB is w.r.

Case 3. As in Case 2, Iΰ Π Dl is s.r. and I 5 Π D\ is r.

By Lemma 15 the i.s.d. of D* is ( + , + ) . We construct the set
Nz which is the largest subset of Ω satisfying (i) Nz is open and
connected, (ii) N3 contains the vertex ( —α, — α), (iii) t\ > 0 and ίs> 0
in iSP. We also construct the curve Co in Ω such that XZ(CQ) —

(IBΠ # 3 ) - W U -DD The curve Cl satisfies (i) Cl is decreasing, (ii)
The interior of the region to the left of Co in Ω is contained in N3.
Suppose U breaks down at (lB n D3) - (Dl U 2?1). Then N3 ^ i2; if
R e dN3, tl(R) = 0 or t;(J8) = 0; dN3 Π CJ ^ 0 . Let A3

S = {Re Ω:
t3

s(R) = 0}. By (10) we can derive that t* > 0 along Cl so that 3iV3n
C0

3 = Al Π C0

3. Given any point i?0 = (r0, s0) e A3 Π C3, by (4) and the
implicit function theorem we can derive that there is a unique zero
curve Cs of t3

Sf which is of the first kind through RQ, with Ro as a
bending minimum point. Suppose r = r(s) describes C8. We also
have that t\(τf s) > 0(<0) for r < r(s) (r > r(s)) and \s — so| small.



ON THE CHARACTERIZATIONS OF THE BREAKDOWN POINTS 379

Applying methods similar to those used in proving Theorems 3.1
and 4.3 of [2] we can prove that at X*(RQ) there originates a uni-
que shock curve, which is a 2-shock. Thus the b.d.p.'s on
(1BΠDS) - (DtUDl) are of the kind I. By the method used in prov-
ing Lemma 14 we can prove that dN°° Π Co is finite. Now U may
not break down at (lBf)D*) - (D\ U Dt). Thus this segment is r. It
follows that lB is w.r.

Case 4. As in Case 3, (lB f] D3) - (Dt U Di) is r.

By Lemma 15 the i.s.d.'s of Dt and D\ are ( + , - ) and (-, +)
respectively. By a method similar to that used in showing that
ΓB Π D\ is s.r. in Case 2 we can show that lB Π Dt is s.r. By the
same method as that used in showing Theorem 2 we can show that
lBp[D4

2 is r. Thus lB is w.r.
Suppose in general lB is contained in Df U D2n+1 U Dtn(Dln+2 U

D2n+1 U D?+2), n^2. By Lemma 15 the i.s.d.'s of /){*+' and D4k+ί

are the same as those of D\ and Dx respectively, i — 1, 2; k ^ 1;
j = 0, 2; I - 1, 3; 4& + j ^ 2̂ (4fc + j ^ 2n + 2); 4& + I ^ 2tι + 1. We
can apply the arguments used in the above four cases to derive
that lB is w.r.

THEOREM 5. Under (5), (6), (7) (i = 0), and (8) £&e segment lB is
either w.r. or with countably many b.d.p.'s, βαcfe of which is of
one of the four kinds as stated in § 1.

Applying the arguments used in the proofs of Theorems 3 and
4 we can prove Theorem 5.

REMARK 1. The methods used in this paper are applicable to
the initial value problem of (1) with initial conditions u(x, 0) = g(x),
v(x, 0) = f(x), — oo < x < oo, where f(g) is an odd (even) periodic
analytic function with period 2; f'(x) + Q(g{x))g\x) and /'(a?) —
Q(flr(a?))flr'(α?) vanish on only two finite sets contained in [0, 1], The
existence of a local solution and certain recursion formulas similar
to Lemma 5 can be derived by the methods of MacCamy and Mizel
[10] (see Remark 3 of [1] about the existence of a local solution).
We observe from the proof of Theorem 4 that the i.s.d. plays the
main role in characterizing the b.d.p.'s. There are four possible
distributions ( + ,—),( — , + ) , ( — , — ) , and ( + , +), which all appeared
in the proof of Theorem 4. For the general problem using the re-
cursion formulas similar to Lemma 5 we can derive a lemma similar
to Lemma 6, which determines the i.s.d.'s similar to those in Lemma
15. Then the methods used in §§ 3 and 4 can be applied to derive
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the conclusion of Theorem 4 under (7) and that of Theorem 5 under
(7) (i = 0).

REMARK 2. Equations (1) govern the motion of an isentropic

gas, where u is the specific volume, v the velocity, and —\Q2(u)du

the pressure. For a polytropic gas Q(u) = cV~r~~1)/2, y > 1, so that
the condition (7) holds.

REMARK 3. We may replace the condition (7) by

(37) d'p/ds'ir - s) = (-lyd'p/dr^r - s) > 0 for i ^ 0 and (r, β) efl .

By applying the same methods as those used in §§ 3 and 4 we can
derive the conclusion of Theorem 4 under the further conditions
imposed on the initial functions as in Remark 1. The second order
quasilinear wave equation ytt — (1 + eyx)

ayxx = 0 (see [12]), where a
and ε are positive constants, is equivalent to (1) if we set u = yx,
v = yu and Q(u) = (1 + su)a/2. For this system the condition (37)
holds.

REMARK 4. The conditions of analyticity on Q and / assumed
in (5) and (6) were used in the proofs of Lemmas 7 and 11 to ex-
clude the possibility that Cr or Cs contains horizontal or vertical
segments. They were also used in the proofs of Lemmas 12 and 13
to initiate the Taylor's series arguments. Now we weaken these
conditions to those of C2. Assume that U breaks down in D°2.
From (21), dN Π Co = (Ar f] Co) U (A, Π Co). Suppose dN Π Co contains
a horizontal segment. Since ίj(r, s) = To along Co, t\r = 0 along this
segment. It follows from (3) that the X°2 image of this segment is
a point. Similarly the X°2 image of a vertical segment on dN Π Co

is a point. These indicate that the method used in showing the ex-
istence of shock curves originating at b.d.p.'s on lB Π D°2 may be
applied to this problem. Under the further conditions (7) (i = 0)
and (8) we can derive the conclusion of Theorem 5. The derivation
depends heavily on the use of (10) and (11), which replaces that of
the Taylor's series arguments. As for the problem considered in
Remark 1, weakening the conditions of analyticity on Q, /, and g to
those of C2 and assuming (7) (i = 0) we can also derive the conclu-
sion of Theorem 5. For brevity we do not pursue these problems
here.
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