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ON THE CHARACTERIZATIONS OF THE BREAKDOWN
POINTS OF QUASILINEAR WAVE EQUATIONS
PeTER H. CHANG

We consider the mixed initial and boundary value pro-
blem of the quasilinear wave equation:

ut_vm‘:oy

(1) v — @, =0;
u(x,0) =0, v(z,0) = v,(x),0 =2 =1,
(2) 20, ) =v(l, £)=0,1 = 0.

In general the solution of the system (1), (2) eventually
breaks down in the sense that some of its first derivatives
become unbounded at a finite time. It is shown that there
are only finitely many breakdown points and that at each
of them there originates one or two shock curves.

The fact that solutions of (1), (2) eventually break down has been
derived by many authors, e.g., see [12], [9], [5], [10], [6], [7], and
[1]. It should be pointed out however, that even though a solution
break down in finite time it can be extended to large ¢ as a weak
solution. See e.g., [3], [4], and [11].

We define »r=v+ M) and s =v — M(u), where M(&) =

Y Q()dL. Then » and s are Riemann invariants of (1). Let q(y)=
0
QM™(n/2)). After transforming (1) to equations with » and s as
dependent variables we apply a hodograph transformation to invert
the resulting equations to

wr—q(r—_s)tr:o)

(3) x, +q(r —s)t,=0.

Eliminating « in (3) gives

(4) trs = 10(7' - S)(tr - ts)

where o(n) = Q'(M™(1/2))/4¢*().
We assume that

(5) Q(&) is a positive analytic function over (— o, ) ;

V(%) = flo,(®) is concave over [0, 1], where f(x) is an odd
periodic analytic function over (— oo, o) with period 2.

Let @ = maX,,.f(®) =f(0)0<b<1),2=/{r9:|r<a;|s| < al,

Q. ={r,9)e: (-1 r —5) =0t =12),a = M() and a,=
—M(— ). We assume further that

(6)

361
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(7) @p/or(r —s) = (—1)d'p/os'(r —s) <0 for ¢ =0 and (r,5) e 2;
(8) a < min(a,, a,) .

We refer the part in (7) with 4 =0 as (7) (4 = 0) and that in
(7) with ¢ >0 as (7) (+ > 0). We refer a breakdown point as a
b.d.p. We call a shock curve of the equations (1) propagating to
the left an 1-shock and that propagating to the right a 2-shock.

In this paper applying a method developed in [2] we prove that
the system (1), (2) has only finitely many b.d.p.’s. Each b.d.p. P,
can be characterized as being of one of the following two kinds:

I. There is exactly one shock curve originating at P,, which
is either an 1-shock or a 2-shock.

II. There are exactly two shock curves originating at P,; one
is an l-shock and another a 2-shock.

The methods used in this paper are applicable to some other problems
of (1) (see Remark 1). The condition (7) is satisfied by the system
which governs the motion of an isentropic polytropic gas (see Re-
mark 2). I am grateful to Professor H. Weinberger and to the re-
feree for several helpful comments.

The condition (7) (¢ = 0) is the genuine nonlinearity condition
of a hyperbolic 2-conservation law. Without imposing (7) (z > 0)
we find two other possible characterizations of a b.d.p. P,.

III. There is a (infinite) sequence of shocks originating at a
sequence of points {P,} convergent to P,. Moreover, the set {P,} is
the only set with the above property in a neighborhood of P, and
{P,} contains no subsequence convergent to a point other than P,

IV. There is a sequence of points {P,} convergent to P, such
that for each k there is a sequence of shocks originating at a
sequence of points convergent to P,.

The condition (8) is the first case of MacCamy and Mizel [10].
The second and third ecases are min(a, a,) < ¢ < max(a, @,) and
a > max(a,, a,). Under (7) a, = « and the third case does not occur.
As will be seen in Section 2 a local solution of (1), (2) can be con-
structed and extended from some solutions X(R) = (x(r, s), t(r, s)) of
(8) over 2. The second case differs from (8) in the shapes of the
images X(2) in the (x, t) plane. For this case applying the methods
used in this paper we obtain the same kinds of characterizations of
the b.d.p.’s.
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From now on in this section and §2 the results are derived
without assuming (7). The following lemmas are Lemmas 1, 2, and
3 of [1].

LEMMA 1. Suppose X(R) is a solution of (3) in an open region
W with the property that any two points im W can be connected
by one of the following: (i) a horizontal segment or a vertical seg-
ment tm W, (ii) one or two line segments in W of positive slopes,
(iii) ome or two line segments wn W of mnegative slopes, and if
t,ot, =0 in W, then X(R) is a homeomorphism on W.

LEMMA 2. Suppose X(R) is a solution of (3). If W is an open
region 1n which X(R) is one-to-one with mnonvanishing Jacobian
det V. X = 2qt,t,, then

(9) UX) = ( M- (L@c t) = s(, t>> o, t) er s(a, t))

15 a solution of (1) on X(W).

LeMmA 3. I f X satisfies the assumptions of Lemma 2 and is
continuous on W, and if t,—0 or t,—0 as R—>R,coW, then
[u(X(R))| — o or |v,(X(R))| — = as R — R,.

2. The existence of a local solution. The equation (4) can be
written

(10) (V'qt,). = ¢*(r — $)t., or
(11) (V—q_ts)az —‘q*(’/' - S)t'r

where ¢*(n)=—Q' (M~ (n/2))/4¢°" (). Integrating (10) and (11) with
the diagonal » = s of  as initial curve and applying successive ap-
proximations we have

LeMMA 4. Suppose t(r,s) 1s a solution of (4) over 2. For
i=1o0r 2, of (—LQM((r—5)/2) >0 in 2, and if (—1)t. <0
and (—1)'t, > 0 along the diagonal » = s of 2, then (—1)t, < 0 and
(—1it, >0 n Q..

Assuming Q'(§) > 0 for £ < 0 and Q'(&) < 0 for & > 0, MacCamy
and Mizel [10] construct the local solution of (1), (2) as follows. Let
fi(x) be the portion of f(x) over [—b, b] and f,(x) that over [b, 2 — b].
Solving (8) with the initial conditions

(12) w(r, v) = f7r), tilr, 1) =0
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one obtains a solution XYR) = (x)(r, s), ti(r, 8)) over 2,i =1, 2).
Differentiating (12) with respect to » and using (8) we find

(13) (=D(r, r) = (=1 %(r, ) = (=1 f7(r)/29(0) <0 (1 =1,2).
It follows from Lemma 4 that
(14) (=%, <0 and (—1)%, >0 in 2,:=12).

By (6) and the uniqueness theorem of the initial value problem of
(38) we can derive that

(15)  Xi(R) =1 + (=1 — 2i(—s, —7), ti(—s, —1)(i =1,2).
Solving (3) with the characteristic initial conditions
(16) X'(a, s) = X%a, s), X'(r, a) = X¥r, a)

one obtains a solution X(R) = (x'(r, s), t'(r, 8)) over 2. Let {r = »y}
and {s = s,} denote the line segments » =7, and s =s, in 2. By
(16) and (14) there exists a neighborhood Z of {r =a}U{s = a} in
2 such that

(17) tt<0 and <0 in Z.

Let D= XyR,) (¢ =1,2). By (14), (17), Lemmas 1 and 2 the func-
tion defined by U(X) = U(X? for Xe D3 =1, 2) and UX) = UX"Y)
for Xe X*(Z) as in (9) is a solution in D{U X Z) U D} of (1) with
initial conditions u(x, 0) = 0, v(x, 0) = f(x) for —b=<x<2—b. By
(15) the function U(X) satisfies U(X) = (u(1 + (—1)' — z, t), —v(1 +
(—1)—2x,t)) for Xe D41 =1,2). Thus U(X) is a local solution of
1), (2). As we stated in Remark 2 of [1], without assuming any
condition on the signs of @', applying (13) and Lemma 1 we can
also construct such a local solution.

From now on in this section we impose no condition on the
signs of @'. Constructing X'(R) as previously described we can
solve a series of characteristic initial value problems as described
in §8 of [10] and construct the functions X3, X%+, and X*+' over
Q2. For later reference we list the characteristic initial conditions
for the functions X}, X% (z+ = 1, 2), and X* as follows:

Xi(—a,s) = (x(—a,s) — 1+ (1), t—a,s),

Xi(r, —a) = (@(r, —a) + 1 + (—1),, ti(r, —a)) ;
(18) i(a, 5) = Xi(a, s), Xi(r, —a) = X'(r, —a) ;

Xi—a,s) = X (—a, s), Xir, a) = Xi(r, a) ;

X (—a,s) = X¥(—a,s), X(r, —a) = X¥r, —a).

Let D¥*+ = X*+(Q), D#+' = X#+(Q), and D = X*Q) (see Fig. 1).
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FIGURE 1

By (15), (16), (18), and the uniqueness theorem of the characteristic
initial value problem of (38) we can derive that

XHHR) = (L + (=1) — 2+ (—s, —7), #+(—s, —1)) ,

X#2R) = 1 + (—1)F — a*+(—s, —7), £ —s, —7))

for k=0 and + =1, 2.

Let (R) = t'(R) + t'(—s, —7) — )(R) — t3(R). The following is
Lemma 5 of [1].

(19)

LEMMA 5. For k=0 and =12 t*'(R) = 2k¥(R) + t'(R),
Lt (R) = 2k + VY (R) + ti__yi(R), t*(R) = 2k + L)V (R) +t'(—s,—1),
t4(R) = (2% + 2 (R) + t(R).

Let Q denote the interior of 2 and V the set of four vertices
{<a7 a)y (_a’y a)y (_a, _a’>y (a’9 _a)} Of ‘Q’

LEMMA 6. For k=0 and 1 = 1, 2 the following hold.

(i) For j=0,2(=1, d)tkti(t+1) 43 fimite in (2 U {s = a}U
(s=—a)) — V and tEi(t#+Y) is finite in (QU{r =a} U {r=—a}) — V.

(ii) Along {r = a}U{r=—a}

B = = g = g = 0 = o
(dii) Along {s = a} U {s=—a}

4k 4l . p4k41__. 4k+2 . p4k42 4k43 ___
tls—_tZs bt ts + —"“tJST - t28+ '_'_ts = —o0

The parts with k =0,5 =0, and [ = 1 of Lemma 6(i) and those
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with superscripts 0,1 of Lemma 6 (ii), (iii) are Lemmas 6 and 7 of
[1]. By Lemma 8 of [1] the function ¥ has finite first-order partial
derivatives in 2. From Lemma 5 the other parts of Lemma 6
follow.

3. The zero curves of t;, and of &},. We now assume (7).

LEMMA 7. Let t(R) denote either t¥*(R) or t**(R) (k=0; i =1,
2). If C.C,) is a zero curve of t.(t,), then C,(C,) contains no hori-
zontal line segment or vertical line segment.

Proof. Since Q(£) and f(x) are analytic, the funection #R) is
analytic. For a fixed s, t,(r, s,) is analytic in ». Now a real ana-
lytic function of one variable either is a constant function or does
not take a constant value on any set with an accumulation point.
It follows from Lemma 6 (ii) that ¢.r,s,) does not vanish on a
closed interval. Hence C, contains no horizontal segment. Similarly
C, contains no vertical segment. By (10) and (11) we then derive
that C, contains no vertical segment and that C, contains no hori-
zontal segment.

Applying (10) and (11) we can prove

LEMMA 8. Let t(R) denote either t¥*(R) or t**(R) (k=0; i=
1,2). If t.(r,s) =t(ry,s,) =0 along {r = r}, then t,(r,s,) =0 for
some s, between s, and s,. If t,(r; s;) = (1, 8) =0 along {s = s},
then t. (7, s;) = 0 for some r, between r, and r,.

Under (7) by Theorem 4(i) of [1] the solution U of (1), (2) breaks
down. By Lemma 4, £, >0 and ¢, <0 in 2,. It follows from
Lemmas 2 and 3 that U does not break down in Dj. Now
QM ((r —s8)/2) <0 in 2,. The method of successive approximations
used in showing Lemma 4 is not applicable to show that ¢}, < 0 and
t, >0 in 2,. In this section we assume that ¢, -t5, vanishes some-
where in 2,. That is, U breaks down in DJ. By (15)

(20) t2(r, 8)=—t(—s, —r) for (r,5)€L,.

Then both ¢, and ¢, vanish somewhere in 2,.

From now on in this section let X(R) = (x(R), t(R)) denote
XY(R). By (13) t,(r,r)=—t,(r,r) < 0. Let F be the family of sub-
sets S of 2, which satisfy: (i) S is open and connected with respect
to the induced Enclidean topology on 2,, (ii) S contains the diagonal
r=s, (iil) £,<0 and ¢,>0 in S. The set N = Us.»S is the largest
member of F; N&EQ2, Let A, ={ReQ,:t(R)=0} and A, ={Re
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2, t,(R) = 0}.
LEmMMA 9. () In N,t, <0 and t, > 0. (i) oNS A4, U A,.

For a fixed number 7° we denote the curve i(r, s) = t(»°, —7°)
through the point (7, —7°) by Cyy,_,0. Let a = inf{r: —a <r < 0;
Cir—p lies in N} (ma<a<0),T,=ta, —a), and C, = Cr. Let
r = r(s8), s* < s < a, deseribe C,. From now on by an increasing
(decreasing) function we mean a strictly increasing (decreasing)
function. By a method similar to that used in showing Lemma 3.8
of [2] we can show

LeMMA 10. (i) The function ry(s) is increasing. (ii) oNNC,+#4.
(iii) The interior of the region to the right of C, in 2, is contained
in N.

We describe the X images of the region N, of a curve
Cipery(@® > ), and of the curve C, in Fig. 2. By Lemma 9 and
Lemma 10 (iii)

t=1(rg, —1q)

b 1
FIGURE 2

(21) INNGC,=(A,NCHu(4,nCy) .
LEMMA 11. The set 0N N C, is countable.

Proof. For any arc v of C, applying Lemma 7, integrating
(10) and (11) with v as initial curve, and applying successive appro-
Ximations, we can prove that A, NvS&~ and A, NvS~. Then the
closed sets {s:s* < s < a; t(rys),s) = 0} and {s:s5* < s < a; t,(r(s),
s) = 0} contain no closed interval. Thus both of them are countable.
It follows from (21) that oN N C, is countable.

We denote a zero curve s = s(r) (» = r(s)) of o™t/or™(0™t/6s™) in
2, by C.n(Cem)(m = 1) and C.(C,:) by C.(C,). We call a number z, a
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relative maximum (minimum) point of a certain function #(x) if o(x)
has a relative maximum (minimum) at 2,, We call 2, a relative ex-
treme point of ¢(x) if it is either a relative maximum point or a
relative minimum point of ¢(x).

DEFINITION 1. A point R, = (1, s,) is a bending maximum point
of C,m(Cm) if the function s = s(r) (r = r(s)) describing C,»(C,») has
exactly one relative extreme point 7,(s,) in a neighborhood of 76(80),
which is a relative maximum point. We define the bending minimum
point similarly. The point R, is a bending point of C,»(C,n) if it is
either a bending maximum point or a bending minimum point of
Cin(Cim). A C,n(C,m) is of the first kind through R, if it contains
only finitely many bending points in a neighborhood of R,.

In considering A, N C, and 4, N C, by (21), Lemma 10 (ii), and
Lemma 6(ii), (iii), we have the following five cases:

Case 1. (A4,NC,NQ,) — A, +¢.

Case 2. (A,NC,N{s=a}) — (A, UV) = ¢.

Case 3. (A,NC,ND,) — A, + ¢.

Case 4. (A,NC,N{r=—a})) — (A, UV) = g.

Case 5. A, NA,NC,NQY, =g
We consider whether there exists a C, or a C, through each point
in these intersections and whether these intersections contain only
isolated points of NN C,.

For Case 1, given R,e(4,NC,N 2, — A,, by a method similar
to that used in Case 1 of §8 of [2], we can show that there is a
unique C,, which is of the first kind through R,, with R, as a bend-
ing minimum point. We desecribe this C, in Fig. 3. By (21) the
point R, is an isolated point of 4N N C,.

(a-a)

(-a~a)

FIGURE 3
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For Case 2 we prove

LEMMA 12. Given R, = (r, a) e (A,.NC,N{s =a}) — (A, UV), the
following hold.

(1) There 1s a deleted meighborhood of R, in 2, im which
t, < 0.

(ii) There is a unique zero curve C, of t., which is of the first
kind through R, with R, as a bending maximum point. Suppose
s = s(r) describes C,. We also have that ti(r, s) < 0(>0) for s > s(r)
(s < s(r)) and |r — r,| small.

(iii) The point R, is an isolated point of oN N C,.

Proof. By Lemma 6(iii) there is a convex neighborhood W of
R, in 2, such that ¢ >0 in W. Suppose there is a zero curve C,
of t, through B,, By Lemma 8 it is the only such curve through
R,. By Lemma 10 (iii) C, lies to the left of C,, In W we choose a
point R* = (¢° s°) in 9, lying strictly between C, and C, such that
the line segment {(r,s): 7 <7r < 7(s")} lies in N. Then
t(RY) > t(rys”), s") = T,. By (10) we can show, however, that the
curve t(r, s) = t(R°) through R’ meets C,. This is a contradiction.
Thus there is no zero curve of ¢, through R, This derives (i).

By (16) ti(r,a) =t (r,a)(—a < r < a). By (4),(7), and Lemma
6(iii) ., < 0 in a neighborhood W, of R, in 2,. Then ¢i(r, s) >0
for small positive a — s. Since ti(r, a) < 0 for 7 in a deleted neigh-
borhood of #, we may choose W, sufficiently small such that ¢ < 0
along (W,N{s = a}) — {R,}. It follows from (10) that there is a uni-
que zero curve C, of t. lying in Wl U {R,} through R,.

We prove that C, is of the first kind through R,.

Sinece ti(r, a) is analytic in 7 at 7, there is an even number m
such that

(22) 0tori(R,) =00=i=m —1) and ¢ = o™t:/or™(R, < 0.
We claim that for R in some neighborbood W, of R,,
(23) 't for(R) <0 (0=k=<=m).

For, by Lemma 6(iii) ¢t < 0 in a neighborhood of R,, For m <4
or for k£ < 3, by (4), (22), and (7) we can verify directly that (23)
holds. For m =k =4, by (4), (22), (7), and by induction we can
prove that in a small neighborhood of R,, the sign of the function
*t}/or® is the same as that of the following funection:

_ak—-l a k—1t1 k_l ak—2 0 k—2 I k_.l ak—a 0 k—3 - Ztl
plor*TE + b — 2 plor™ ot + |, ]9 0[0r e, — 0%
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kE—1
+ é(k .>ak—i‘0/a,rk—i{ai—ZP/a,’.i—2
-1

i =2
1) i=+1 gy 3ei— i1 i3
+ 2 (=1 L(’L i 1)3 o/ori i+ o

i—2 [i-§ [9 — 2 imgmiy (4 — & — T,\ _ )
+ (Z (’L )aizp/a/riz ( Z (:: v >613‘0/37ﬂ3 e

19=0 \1, / i3=0

« <7;"7.‘*":2“2“"‘it~1 <’L -1 - 7:2‘_ R >ai,p/a,ri,

iy=0 U
(i~1—1—¢2—---—751
P~ G+ L= e i,

X

)aivj+1—i2—...—ilp/a,rz—j—}-l—iz—...—il

X loj—l—‘2> .. .>:| + (__1)ipi—l} ti .

It follows from (7) that (23) holds.

By (22) we can choose W, sufficiently small in which §"tt/or™ < 0.
This and (23) imply that the curves o™t!/0r™(r, s) = constant in W,
are decreasing. Then there is a unique zero curve C,. of 9™t'/or™
through R,, which is decreasing in W,. Let r = ¢(s) describe C,n.
Expanding o™t'/or™(r, a) into power series about r, gives a™t'/or™(r, a)=
o(r — 7y + o(lr — 7). By (22) omt*/or™(r,s) > 0(<0) for (r,s)e W,
such that » < é(s)(» > ¢(s)). It follows from (23) that there is a
unique zero curve C,n—: of o™ 't'/or™™* in W,, which is of the first
kind through R,, with R, as a bending maximum point. Let s = &(r)
describe C,».-.. We also find that o™ /or™(», s) < 0(>0) for
(r, 8) € W, such that s > #(r)(s < ¢(r)). Applying similar argument
repeatedly we can derive that C, is of the first kind through R,
with the other properties listed in (ii).

By (i) and (21) we have that (iii) holds.

For Case 3, given R, (4, NC, N2, — 4,, by (20) and applying
the result of Case 1 we find that there is a unique zero curve C, of
t, as shown in Fig. 3, which is of the first kind through R,, with
R, as a bending maximum point and that R, is an isolated point of
oN N C,.

For Case 4, given R, e (4, NC,N{r=—a}) — (4,UV), by (20)
and applying Lemma 12 (i), (iii) we find that there is a deleted
neighborhood of R, in £2, in which ¢, > 0 and ¢, < 0 and that R, is
an isolated pointof NN C,. By (18)¢ti,(—a, s) = t,(—a, s)(—a =s=Za)
while by 19) t.(», s)=—ti(—s, —r). Applying Lemma 12 (ii) we
find that there is a unique zero curve C, of t),, which is of the
first kind through R,, with R, as a bending minimum point. Sup-
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pose r = 7(s) describes C,. We also have that #(», s) > 0 (<0) for
r < r(8) (r > r(s)) and |s — s,| small.
For Case 5 we prove

LEMMA 13. Given R, = (1, 8)€ A, N A, N C,N 2, the following
hold.

(i) There is a convex mneighborheod W of R, in 0, such that
t, >t in W — {R,}.

(ii) There is a unique zero curve C.(C,) of t,t,), which is of
the first kind through R, with R, as a bending minimum (maxi-
mum,) point.

(iil) Suppose s = s() (r = r(s)) describes C.(C,). The function
s =s(r) (r = () is smooth everywhere except perhaps at r =17,
(s = 8,). For s <s()(s>s(r),|r —r] and |s — s,| small, t(r,s) <0
(>0). For r>r(s) (v <7, (), |r — 1] and |s — s small, t,(r, s) >0
(<0).

(iv) C, lies to the left of C, as shown in Fig. 4.

FIGURE 4

(v) The point R, is an isolated point of 0N N C,.

Proof. By Lemma 10 (i), (iii) and Lemma 9 (i)
(24) t.(r,s) <0 for »,<r =<s,and t,(r,s) >0 for r,<s<s,.

Since t(r, s) is analytie, there are positive integers m and n such
that

3t Jor(R) = 00 < i < m — 1), &, = o"t,/or"(R) # 0,

2
= 0°t,/0s'(Ry) = 0(0 = j = m — 1), B, = 3"¢,/0s™(R,) # 0 .
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Using (4) and (25) we can show by induction that
(26) 0 Hitlorosi(R) =0 st =m;1<j<n).
Expanding t(r, s) into power series about R, and applying (26) give

t(r, s) = To + (a/(m + DD — 7)™ + (Bo/(n + D1)(s — o)+

27
+ o(|r — 1™ + o(Js — s, ["H) .

Differentiating (4) and using (25) and (26) we obtain

a, = "t Jor"+(R,) = p(r, — s, # 0,

(28)
By = 0"'t,/05" (Ry) = —p(r, — 8.)B, # 0 .

Expanding ¢, and ¢, into power series about R, and applying (25),
(26), and (28) give

6, 8) = (@/m!)(r — 7)™ + (B/(n + 1)1)(s — 8)™* + o(|7 — 7,|™)
+ o(ls — s,[**)
t(r, 8) = (Bo/n!)(s — 8)" + (a/(m + ) (r — r)"+
+ o(ls — s[") + 0(1"' — 7" .
Recall that t(r,(s), s) = T,, where » = »,(s) deseribes C,. By the
continuity of ¢, and by Lemma 11, given any 7 > 0, there is a
point (7, s,) lying to the left of C,, 0 < (—1)(ry—»,) <7 and 0<(—1)
(so — 8;) <7, such that the line segments {(r, s,): 7, = 7 < 7,(s,)} lie
in N (t+ =1, 2). Then by Lemma 9(i)

(29)

(30) 8ri, 89 > To(t =1, 2) .

By (24), (29), (27), and (30) we can show that m and = are even
numbers. It follows from (24) and (29) that

(3L) a, <0 and S5,>0.

By (29) and (31) we can derive (i).
Differentiating (4) and using (7), (25), (26), (31) we obtain
(—1)yi*ta; = (—1)7*eim+ i orm+asi(R) >0 1 7= n),

32 : o
o Bi = 0" Tt[or'0s™ (Ry) > 01 = ¢ = m) .

Expanding o™t,/or™ into power series about R, gives

amts/a/"m("'; s) = a,(r — 1) + (Ba/n!)(s — 8)"
+o(|r — 7o) + o(ls — 8[") .
It follows from (32) that o™t,/or™(r, s) > 0 for small positive » — 7,

and |s — s,]. This and (31) imply that for small nonnegative s — s,
there is a unique zero curve C,» of o™t/or™ through R, which is
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increasing. Let » = ¢(s), s = s,, describe C,». By (31)
omt/or™(r,s) >0 for » <g(s),|r — 7] and s— s, small,

and

(33) omtjorm(»,s) <0 for »>g(s),r —#, and s —s, small.

Expanding o™ 7't,/or™™" into power series about R, and applying (32)
give that o 't,/0r™ ' >0 in a deleted neighborhood of R, This
and (33) imply that for small nonnegative s — s, there is a unique
zero curve C.m_i of 0™ 't/d»™"!, which is of the first kind through
R, with R, as a bending minimum point. Let s = ¢(») describe
Cm-. By (33) we have that o t/or~"*(»,s) <0 (>0) for
Sy =8 < d(r)s>¢(), |r — 7, and s — s, small. Applying similar
argument repeatedly we can derive that there is a unique zero
cuarve C, of ¢,, which is of the first kind through R, described by
a funection s = s(») with R, as a bending minimum point and that
t.(r,s) <0 (>0) for s, = s < s(v) (s > s(), | — 7| and s — s, small.
By (29), (81), and (32) we also have that i¢.(r,s) <0 for s <s,,
[ — 7, and s, — s small. This derives the first parts of (i) and
(iii). Similarly we can drive the remaining parts of (ii) and (iii).

The part (iv) follows from (i), (ii), and (iii), and the part (v)
follows from (ii) and (21).

LEMMA 14. The set 0N N C, is finite.

Proof. According to the discussions of Cases 1,3, and 4 and
Lemma 12 (iii) for Case 2 and Lemma 13 (v) for Case 5, we find that
both the sets 4,NC, and A, N C, contain only isolated points of
oNNC, It follows from (21) that 0NN C, contains only isolated
points. This and the Bolzano-Weierstrass theorem imply that dN NC,
is finite.

We now drop the condition (7) (7 > 0) and assume only (7)
(¢ = 0). Lemmas 7, 8,9, 10, and 11 still hold. The results of Cases
1 and 3 also hold.

Presently for Case 2 we are unable to exclude the possibility
that the zero curve C, of ¢! in Lemma (12) (ii) contains countably in-
finitely many bending maximum points in any neighborhood of R,.
Likewise for case 4 the zero curve C, of !, may contain countably
infinitely many bending minimum points in any neighborhood of R,.

Recall that » = r/(s), s* < s < a, deseribes C,., By Lemma 11
any subset of the set {s:s* < s < a; (7(s), s) €0NN Cy} is not a per-
fect set. For Case 5 there may be three cases. Case 5a. The point
R, is an isolated point of oN N C,. Case 5b. There is a (infinite)
sequence of isolated points {R,} of dN N C, convergent to R,. More-
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over, the set {R,} is the only subset of oN N C, with the above pro-
perty in a neighborhood of R, and {R,} contains no subsequence
convergent to a point other than R,. Case 5c. There is a sequence
of points {R,} of 0N N C, convergent to R, such that for each %k the
point R, is of Case 5b. Suppose {R, } is the sequence of isolated
points of 0N N C, convergent to R,.

For Case 5a, Lemma 13(i), (iii), (iv), (v) still hold. The proof of
Lemma 13(i) is exactly the same as before. Lemma 13(ii) is modi-
fied to:

There is a unique zero curve C,(C,) of t,(t,) through R, which
lies above {s = s,} (to the left of {r = 7,}).

To verify this statement and Lemma 13(iii), (iv) we use the re-
sults obtained in proving Lemma 13(i). By (28), (7) ( = 0), and (31)

(34) a, >0 and B3, >0.

By (29), (31), and (34) we can choose the convex neighborhood W
of R, in Lemma 13(i) sufficiently small such that

t,(r,s) <0 for (r,s)e{(r,s)e W:s < s} — {R,},
t.(ry, 8) > 0 for (r, s)e{(r,s)e W:s > s},
t,(r,s) >0 for (r,s)e{(r,s)e W:r = r} — {Ry},
t,(r, s,) < 0 for (r,s)e{(r,s)e Wir <r}.

(35)

Now R, is assumed to be an isolated point of oNNC, By
Lemma 10(iii) there exists an arc v on C, containing R, such that
v — {RJc N. We choose W such that WN C,c~. By Lemma 9(i)
t, <0 and ¢, > 0 along (WNC,) — {R,}. Let

W, ={(r,s)e W:r > 7y s> s, (7, s) lies to the left of C;},
W,=A{(r,s) e W:r <r,s>s},
Wy ={(r,s)e W:r < ry;s < sy (r,s) lies to the left of Cj} .

According to (35) ¢, vanishes somewhere in W, and in W,; ¢, vanishes
somewhere in W, and in W,. By (4), (7) (+ = 0), and Lemma 13(i),

(36) t, >0 in W—{Rj}.

It follows from the implicit function theorem that there is a unique
C.,=C»UC?®, which is described by a function s = s(») smooth
everywhere except perhaps at » = 7, through R, such that C¥—
{RJc W, and C® — {R}C W,. There is also a unique C, = C¥U C?,
which is described by a funection » = 7(s) smooth everywhere except
perhaps at s = s,, through R, such that C® — {R}cC W, and C® —
{R}C W,. This derives the above modified version of Lemma 18 (ii)
and the first part of Lemma 13(iii). From (36) the second part of
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Lemma 13 (iii) follows. This and Lemma 13(1) imply Lemma 13(iv).

There are two subcases of Case 5a. (i) Both C, and C, are of
the first kind through R, (ii) C, (or C,) contains countably infinitely
many bending minimum (or maximum) points in any neighbourhood
of R,.

For Case 5b (Case 5e¢), for each k (for each k and for each n)
the point R,(R,,) is of one of the following three cases: (i) R.(R,,)¢<
A, — A,. This is Case 1. (ii) Ry (R, )e A, — A,. This is Case 3.
(iii) R.(R,,)e A, N A,. This is Case 5a.

4. The characterizations of the breakdown points.

THEOREM 1. Suppose X(R) is a solution of (3) over 2. Given
a point By, = (1, 8) in 2, —a <r,<aand —a < s, < a, assume that
there is a zero curve C, of t,, which i3 of the first kind through
R,, described by a function s = s(r) with R, as a bending minimum
point. Assume further that s(r) is smooth everywhere in a neigh-
borhood of 7, except perhaps at r,. Suppose W is a convex meigh-
borhood of R, in 2. Let W, ={(r,s)e W:s=s(r)} and W, = {(r,s) e
W:s = s,}. Suppose the following hold.

(i) &, <0 inW,— W,

(il) t, >0 in W, — {R},

(i) ¢, >¢t, (or, by 3), —x, > x,) in W, — {R,}.
Then there is a unique l-shock originating at P, = X(R,). More-
over, if t(R,) > 0, then this shock is the only shock curve originat-
wng at P,

By a method similar to that used in proving Theorem 4.3 of
[2] we can prove Theorem 1.

DEFINITION 2. Let I, = {(x, T): 0= 2 <1}, T, > 0, be the line
segment at which the solution U breaks down. Suppose v is a
segment of I3. Then v is strongly regular (s.r.) if it contains no
b.d.p.; v is weakly regular (w.r.) if it contains only finitely many
b.d.p.’s, each of which is of one of the kinds I and II as stated in
§1;«v is regular (r.) if it is either s.r. or w.r.

THEOREM 2. Under (5), (6), (1), and (8) the segment I;N DY is .

Proof. It suffices to assume that the solution of U breaks
down in DJ and to prove that [; N DJ is w.r.

From Lemma 14, 1; N D) contains only finitely many b.d.p.’s.
To show that each of them is of one of the kinds I and II we con-
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sider the five possible cases in §3. Let P, = X}(R,).

For Case 1 by Theorem 1 there is a unique shock curve origi-
nating at P,, which is an 1-shock. Then P, is of the kind I. For
Case 8 by (20) and using the result of Case 1 we find that there is
a unique shock curve originating at P,, which is a 2-shock. Thus
P, is of the kind I.

For Case 2, by Lemma 12 (ii) and Lemma 6 (iii) and applying
the same methods as those used in proving Theorems 3.1 and 4.3 of
[2], we can prove that there is a unique shock curve originating at
P,, which is an 1-shock. Then P, is of the kind I.

For Case 4, by (19) and applying the above arguments for Case
2 we find that there is a unique shock curve originating at P,
which is a 2-shock. Thus P, is of the kind I.

For Case 5, by Lemma 13(ii), (iii), (i) the conditions (i) and (iii)
of Theorem 1 hold. We can weaken the condition (ii) of Theorem 1
to: £, >0 in {(r,s) e Wyur =7, or r > 6(s) for r < r,} — {R,}, where
0(s) is a decreasing function describing a C, in W, through R,, and
derive the first conclusion of Theorem 1. For Case 5 by Lemma 13
(ii), (iii), (iv) this modified condition holds. Thus there is a unique
1-shock originating at P,, By Lemma 13 (ii), (iii) and (20), and ap-
plying the above modified version of Theorem 1 we can also prove
that there is a unique 2-shock originating at P,. Thus P, is of the
kind II.

THEOREM 3. Under (5), (6), (7) (1 = 0), and (8) the segment [;N D}
18 either r. or with countably many b.d.p.’s, each of which is of one
of the four kinds as stated in § 1.

Proof. We assume that the solution U breaks down in DS and
consider the five possible cases in §3. Let P, = X}(R,).

As we observed at the end of §3 the results of Cases 1 and 3
still hold. For each of these two cases, from the proof of Theorem
2 we can verify that P, is of the kind I.

For Case 2 since the zero curve C, of t. either is of the first
kind through R, or contains countably infinitely many bending max-
imum points in any neighborhood of R,, from the proof of Theorem
2 we can verify that P, is of one of the kinds I and III. Similarly
for Case 4, P, is of one of the kinds I and III.

For Case 5a(i), by the proof of Theorem 2, P, is of the kind II.
For Case 5a(ii), by the proof of Theorem 2 we can show that P, is
of the kind III. For Case 5b (5¢) from the above discussions of
Cases 1, 3, and 5a we can see that P, is of one of the kinds III and
IV (of the kind IV).
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DEFINITION 3. For k¥ = 0 and 7 = 1, 2, the initial signs (i.s.) of
t2% and t¥*(t®*+' and ¢*t') are their own signs if D*(D%*+') lies strictly
below I, or their original signs before the occurence of the changes
of signs if [ intersects D*(D%*+t'); the initial signs distribution
(i.s.d.) of a region D*(D*+') is (+, —) if the i.s.’s of t* and t%
(t#+! and t*+') are + and — respectively. We define thei.s.d.’s (—, +),
(—, =), and (+, +) similarly.

By Lemma 6(ii), (iii) we have

LEMMA 15. For k=0 if the region Di¥(Di, D+ Dik+2 D2
D*+% pegpectively) either lies strictly below Iy or imtersects Iz, then

its i.s.d. is (+7 _) ((_y +>y (__7 _>7 (__y +), (+7 —>y (+7 +) T@Spect-
wvely).

THEOREM 4. Under (5), (6), (7), and (8) the segment Iz is W.r.

Proof. We consider first the following four cases: Case 1.
[;,cD!UD*'UD;, Case 2. [;CcD?UD'UD? Case 3. [,C D:U D*U D3,
Case 4. [, DiUD*U D:.

Case 1. We have observed in §3 that [N D! is s.r.. By
Theorem 2, Iz N Dj is r.

By Lemma 15 the i.s.d. of D' is (—, —). As we construct the
set N in §3 we construct the set N' which is the largest subset
of Q satisfying (i) N' is open and connected, (ii) N*' contains the
vertex (a, @), (iii) ¢t < 0 and # < 0 in N*. Also as we construct the
curve C, in §3 we construct the curve C} in Q such that X*(C}) =
Iz DY) — (D{U DY). The curve C} satisfies: (i) C! is decreasing.
(ii) The interior of the region to the right of C!in Q is contained in
N*. Suppose the solution U breaks down at (I;N DY) —(D!UD}). Then
N'& Q; if ReoNY, t:(R)=0 or t{(R)=0;0N'NC,+ @. Let Al={Re
Q2;ti(R) = 0}. The condition (7) (¢ = 0) implies that ¢*(» —s) >0
for (r,s)efQ. By (11) we can derive that ¢! < 0 along C, and so
that oN'NC; = A: N C;. Given any point R, A: N C:, by (4) and
the implicit function theorem we derive the same conclusion of
Lemma 12(ii). Applying the same methods as those used in proving
Theorems 3.1 and 4.3 of [2] we can prove that at X'(R,) there
originates a unique shock curve, which is an 1l-shock. Thus the
b.d.p.’s on (Iz N DY) — (DU DY) are of the kind I. By the method
used in proving Lemma 14 we can prove that oN' N C} is finite.
That is, the segment (I; N D?!) — (D!U DY contains only finitely
many b.d.p.’s. We recall that we assumed that U breaks down at
(I N DY) — (DU D%. It may not break down there. Thus ({[zND")—
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(DU DY) is r. It follows that I is w.r.

Case 2. By the same argument used in Case 1 we can show
that (I N DY) — (D?U DY) is r.

By Lemma 15 the i.s.d. of D? is (+, —). We construct the set
N? which is the largest subset of 2 satisfying (i) N? is open and
connected, (ii) N? contains the vertex (—a, a), (iii) ¢, > 0 and ¢, <0
in N2. We also construct the curve C2, in £ such that {(z,?)e
XXC:):x <1} =N D: The curve C:, satisfies: (i) C%, is increas-
ing. (ii) The interior of the region to the left of Ci, in £ is con-
tained in N2Z. By (19) the curve C:, is symmetric with respect to
the diagonal »r=—s. Let R, = (v, @) and R, = (—a, —171,), —a<7,<a,
be the points of intersection of C:, with {s = a} and {r=—a}. Now
R, is one of the end points of the curve C: constructed in Case 1
over which ¢! < 0. It follows from (18) that (R, = ti(R, < 0. By
(19) #.(R)=—t(R,) > 0. Combining this with the fact that the
interior of the region to the left of CZ, in 2 is contained in N; we
find that ¢,.(r,a)>0 for —a<7r=<7 and ti(—a,s)<0 for
—7r, < s <a. Let Q be the square with vertices (—a, @), R,, (0, —70)
and R,. Integrating (10) and (11) with the sides {(r, a): —a < r < 7}
and {(—a, s): —7, < s < a} as initial curves and applying successive
approximations we can prove that ¢, >0 and ¢, <0 in 0. Now
the curve CZ, is contained in Q. It follows from Lemmas 2 and 3
that [, N D? is s.r.

By Lemma 15 the i.s.d. of D? is (—, +) which is the same as
that of D By a method similar to that used in proving Theorem
2 we can prove that [; N D? is r. It follows that I; is w.r.

Case 3. As in Case 2, [ N D? is s.r. and [ N D} is r.

By Lemma 15 the i.s.d. of D?® is (+, +). We construct the set
N?® which is the largest subset of 2 satisfying (i) N*® is open and
connected, (ii) N*® contains the vertex (—a, —a), (iii) ¢ > 0 and t:>0
in N°. We also construct the curve C; in 2 such that X*C{)=
(Izn D% — (D?U D?. The curve C} satisfies (i) C! is decreasing. (ii)
The interior of the region to the left of C?! in 2 is contained in N°.
Suppose U breaks down at (I N D% — (DU D?. Then N*& Q; if
ReoN, t3(R)=0 or t(R)=0;0N*°NC;+@. Let Ai={Ref:
tiR) = 0}. By (10) we can derive that ¢2 > 0 along C} so that dN°*N
C: = A:nC: Given any point R, = (r,, s,) € A: N C3, by (4) and the
implicit function theorem we can derive that there is a unique zero
curve C, of !, which is of the first kind through R,, with R, as a
bending minimum point. Suppose » = r(s) describes C,. We also
have that ¢i(r, s) > 0(<0) for » < »(s) (r > r(s)) and |s — s,| small.
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Applying methods similar to those used in proving Theorems 3.1
and 4.3 of [2] we can prove that at X?3(R,) there originates a uni-
que shock curve, which is a 2-shock. Thus the b.d.p.’s on
(zND?* — (D!UD? are of the kind I. By the method used in prov-
ing Lemma 14 we can prove that oN®( C} is finite. Now U may
not break down at (I;ND?® — (D?U D2. Thus this segment is r. It
follows that I; is w.r.

Case 4. As in Case 3, (I N D% — (DtU D}) is r.

By Lemma 15 the i.s.d.’s of D{ and D} are (+, —) and (—, +)
respectively. By a method similar to that used in showing that
Iz N D3 is s.r. in Case 2 we can show that ;N D! is s.r. By the
same method as that used in showing Theorem 2 we can show that
I;NnD; is r. Thus [, is w.r.

Suppose in general I is contained in D> U D*+' U D¥*(D*»+* U
D>y D) n =2. By Lemma 15 the i.s.d.’s of Dt/ and D*+'
are the same as those of D{ and D! respectively, 1 =1 2;k = 1;
1=0,21=1 84k +j<2ndk+j<2n+2);4k+1=2n+ 1. We
can apply the arguments used in the above four cases to derive
that [; is w.r.

THEOREM 5. Under (5), (6), (7T) (2 = 0), and (8) the segment I is
etther w.r. or with countably many b.d.p.’s, each of which 1is of
one of the four kinds as stated in § 1.

Applying the arguments used in the proofs of Theorems 3 and
4 we can prove Theorem 5.

REMARK 1. The methods used in this paper are applicable to
the initial value problem of (1) with initial conditions u(z, 0) = g(x),
v(zx, 0) = f(x), —o < x < -, where f(g) is an odd (even) periodic
analytic function with period 2; f'(x) + Q(g(x))g’'(x) and f'(x)—
Q(g(x))g’'(x) vanish on only two finite sets contained in [0, 1]. The
existence of a local solution and certain recursion formulas similar
to Lemma 5 can be derived by the methods of MacCamy and Mizel
[10] (see Remark 3 of [1] about the existence of a local solution).
We observe from the proof of Theorem 4 that the i.s.d. plays the
main role in characterizing the b.d.p.’s. There are four possible
distributions (+, —), (—, +), (—, —), and (+, +), which all appeared
in the proof of Theorem 4. For the general problem using the re-
cursion formulas similar to Lemma 5 we can derive a lemma similar
to Lemma 6, which determines the i.s.d.’s similar to those in Lemma
15. Then the methods used in §§3 and 4 can be applied to derive
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the conclusion of Theorem 4 under (7) and that of Theorem 5 under
() (+ =0).

REMARK 2. Equations (1) govern the motion of an isentropic
gas, where u is the specific volume, v the velocity, and —SQz(u)du

the pressure. For a polytropic gas Qu) = c*u"7V% v > 1, so that
the condition (7) holds.

REMARK 3. We may replace the condition (7) by
(87) d'plos’(r — s) = (—1)'d°p/or*(r —s) >0 for ¢ =0 and (r,s)c 2.

By applying the same methods as those used in §§8 and 4 we can
derive the conclusion of Theorem 4 under the further conditions
imposed on the initial functions as in Remark 1. The second order
quasilinear wave equation v,, — (1 + €¥,)*¥.. = 0 (see [12]), where «
and ¢ are positive constants, is equivalent to (1) if we set u = y,,
v=1, and Q(u) = (1 + eu)*®. For this system the condition (37)
holds.

REMARK 4. The conditions of analyticity on @ and f assumed
in (5) and (6) were used in the proofs of Lemmas 7 and 11 to ex-
clude the possibility that C, or C, contains horizontal or vertical
segments. They were also used in the proofs of Lemmas 12 and 13
to initiate the Taylor’s series arguments. Now we weaken these
conditions to those of C2?. Assume that U breaks down in DS
From (21),oNNC, = (A,NC)U (4, N C,). Suppose oN N C, contains
a horizontal segment. Since &(r, s) = T, along C,, ¢}, = 0 along this
segment. It follows from (8) that the X9 image of this segment is
a point. Similarly the X? image of a vertical segment on oN N C,
is a point. These indicate that the method used in showing the ex-
istence of shock curves originating at b.d.p.’s on I; N D} may be
applied to this problem. TUnder the further conditions (7) (¢ = 0)
and (8) we can derive the conclusion of Theorem 5. The derivation
depends heavily on the use of (10) and (11), which replaces that of
the Taylor’s series arguments. As for the problem considered in
Remark 1, weakening the conditions of analyticity on @, f, and g to
those of C? and assuming (7) (¢ = 0) we can also derive the conclu-
sion of Theorem 5. For brevity we do not pursue these problems
here.
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