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PADE APPROXIMANTS ON BANACH SPACE
OPERATOR EQUATIONS

HELMUT KROGER

We examine an operator equation with a linear compact
kernel in a Banach space and the Pade Approximant of its
solution under a functional. We give a sufficient condition
for convergence of a subsequence of Pad§ Approximants
to the solution.

1* Introduction. If one is handling the Pade Approximation
technique in multi-particle scattering theory one is interested in
convergence. For the two-body case the scattering problem can be
formulated as an operator equation with a compact kernel in Hubert
space. Baker [1] proved a result on the convergence of Pade Approx-
imants derived from an operator equation in Hubert space. Point wise
convergence of a series of Pade Approximants is established for
solutions of operator equations as for the two-body scattering partial
wave decomposed Lippmann Schwinger kernel and for trace class
and compact operators under assumptions on subspace projection
sequences. Going over to more particles one usually works in Banach
spaces. In the three-particle case Faddeev [4] established an operator
equation with compact kernels in a certain Banach space.

Baker's investigation is not easy to generalize onto Banach spaces
because of the use of orthogonal projections. Nevertheless we prove
a similar result which is mainly based on the properties of cyclic
subspaces generated by the inhomogeneity g appearing in the operator
equation and the kernel A, which is performed in §2.

In §3 we go over to Hubert space. Our proposition can be
formulated by means of the aperture of two subspaces, as defined
by Nagy [8], Krein [6], Krasnoselskii [7]. Finally we discuss cases
of validity.

2* Convergence theorem* Let us first present definitions. For
standard notation used here see [3], [10], [12].

B is a Banach space, i?* its continuous dual space, A a linear
compact operator mapping B into B, A* the adjoint, g is an element
of B, h* an element of B*. Let λ be a complex number and for
λ Φ 0 let λ"1 be an element of p(A), the resolvent set of A. The
operator equation is

(2.1) f = g +

A unique solution exists.

535



536 HELMUT KRϋGER

S(

g

n) is the linear span of the Alg9 i = 0, 1, , n.
Sg the closed hull of the union of all S™.
Tff the linear span of the A**h*f i = 0, 1, , n
Th* the closed hull of the union of all T$.
We assume Sg, Th* to be infinite dimensional. We use the defini-

tion and properties of the Pade Approximant given by Zinn-Justin
[13]. Let f(z) be an analytic function defined by its Taylor series

(2.2) /W = Σα/
w=0

The Pade Approximant fίn>m](z) of f(z) is the following rational
fraction

(2.3) f*-~\z) = ^ 7 = /(*)

The solution / of (2.1) can be expanded in a formal power series

/(λ) = fir + XAg + λ2A2βf + .

It is well known [12] that the Neumann series converges to /
for | λ | < l / | | A | | .

Analoguously (/&*)(/) can be formally expanded

Now (fe*)(/)[w>m] is the Pade Approximant of the above formal
power series.

Here we give our basic assumption:

(2.4) There is a positive number M, such that for every sequence
x{n)eS™, ||aj(n)|l = l there exists a sequence y*™ e Tff, \\y*{n)\\ =1
such that \(y*w)(x{n))\ ^M .

THEOREM. Let {n'}a{n} be a subsequence such that (h*)(f)L%''n'+1}

exists. If (2.4) is fulfilled

(2.5) lim(λ*)(/p' ' ^ = (λ*)(/).

The proof is cut in four parts. In (i) we give a projected equation
proposed by Tani [11], Nuttal [9], prove the uniform boundedness
of its solutions (ii) and the convergence under the functional fc* in
(iii). In (iv) is shown, that the last expression is identical to the
Pade Approximant of the original equation (2.1).

( i ) One defines a series of operators P{n): B -> B, n — 0, 1, 2,
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requiring P{n) and its dual adjoint P(w)* to be projections with

(2.6) image Pw = S™ , image P(n)* = Tff .

Such an operator P{n) exists if the matrix c\f = {A^h^){Ajg) is inver-
tible; P ( w ) is unique and can be explicitly written

(2.7) V.βΛ, P^x = Σ Aig(c™-%(A*'h*)(x) .

The projected equation is defined as

(2.8) f{n) = g + XP{n)Afn) .

One can formally expand fin) in a power series

/»(λ) = flr + λP^Atf + X\P[n)A)2g + - .

This Neumann series converges for |λ| < l/||P ( ί l )A||. The properties
of P{n) imply that the first n + 1 terms of the expansions on f(X)
and /(w)(λ) are identical, that / ( w ) can be written as

and that an equivalent to definition (2.8) is the set of equations

(A*V)(/(M) - g - XAf{n)) = 0, fc = 0, 1, , tt

which gives an algebraic set of equations in order to determine the
coefficients fln).

Now let {n'} be a subsequence such that P ( n / ) and /(7l/) exist.
The existance of P{n>) and f{nf) is guaranteed if the determinant of
elf and the determinant of the algebraique set for fin) do not vanish.
Baker shows in [1], [2] that either the Pade Approximant of finite
order is equal to the exact solution or there exists at least an infinite
subsequence {n'}, such that the determinants for Pln'] and f{nf) do
not vanish and thus P{nΊ and / ("' } exist. To that subsequence we
will confine our attention.

In the following we need the transformation properties of Sg

and Th* under (1 — XA)"1 and (1 — λA*)"1 respectively,

This can be seen as follows. First look upon (1 — xA)~γg. From the
Neumann series one knows (l-δii)"1flr = Σ*=o(ί-A)*flr6iSίr for |δ |<l/ | |A | | .
In the domain D = {δ\δeC, \δ\ < 1/|| A\\] is (1 - dA)"1 an analytic
operator in d. Thus (1 — δA^g/Sg is an analytic vector in the quotient
space B/Sg. But (1 - δA^g/Sg = 0 for all δ in D. Then analytic
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continuation gives (1 — dA^g/Sg = 0 for all δ e C and thus (1 — λA)"1^ 6
Sg. Analogously (1 — XA)~1AkgeSg for each k and as (1 — λA)"1 is
continuous in B and Sg is closed, the first invariance property follows.
Similarly goes the second property.

2.1 reads / = (1 -

(ii) In this section starting from (2.4) we prove the uniform
boundedness of solutions of (2.8),

q II f<TO') I! < K

If we assume {f{n']}n> solutions of (2.8) not uniformly bounded, then
we have a subsequence {n") c {nτ} such that

(2.10) u ^

With the definition e{n"' = /'""VH/'""'!! (2.8) reads

= un,,g + λ(P ( M"' - l μ e 1 " " 1 +

which can be rewritten

(2.12) β( "» = (1 - XA)-\un,,g + λ (P" "»

Next we have

(2.13) Vy,eTh,, lim (j/*)(λ(P( "' - l)Ae

(»"') = 0 ,

«,"-+oo

which can be seen as follows. From (2.11) we know that

{λ(P(B"' - 1 ) Ae'""'}

is uniformly bounded. From the definition of Tk, follows the ex-
istence of a sequence y*(κ"' e TJS"' approximating y* in the norm,

I (»*)(λ(P( " ) - VjAe"1"') I ̂  | |»* - 2/*"1"' || | | λ(P"" - ΐ)Aein"> ||

From (2.6) follows Vy,<»)e2,wP(t"*2/*(M) = Ϊ/* (M). Thus the second term
is identical 0.

We apply y* e Th, to (2.12):

- ((1 -

(2.9) guarantees (1 — XAy^'y* = z* e TΛ. and the second term
tends to 0 because of (2.13), thus leading to
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(2.14) V f . β Γ ^Jim(y )(β( "0 = 0 .

At this point enters the compactness of A. Because B is a Banach
space and | |β c*" } II = 1 there is a subsequence {n"'}(z{n"} and an element
seB with

(2.15) l i m l l i l β ^ " 0 - β|| = 0 .

As Sg is a closed subspace of B, the limit point s is contained in Sg.
Then we find that (y*)(Ae(nfff)) goes to 0 uniformly for y* e Th*, more
explicit

(2.16) Vε>0, 3.,,,, V.,,,aΓ,y.βΓA.f,,, ,,βl, \(y*)(Ae«"f))\ < ε .

This can be shown in three steps:

and lim («*)(β( '" ϊ) = 0 by 2.14 ,

V,..rA., (»*)(«) = 0: Ve>0, 3.,,,, V.»,a.,,,, Ill^e 1" '" ' - β | | < e ,

I (»*)(«)I ^ II»ΊI IIs - Aβ' -'ΊI + |(»*)(iie(»'">)| < Hi/Ίlβ + ε ,
" ' - β | | < ε ,

»'"> — g) + (y*)(β) I ̂  || y* || || Ae(*'"} || < e .

Now we conclude that (y*{ntt/))(e{ntrr)) tends to 0 uniformly in

0 0 Λ

To see this use (2.11). From (2.10) and (2.16) we have

V.>to3.-,V.ί»a<,,||tt.,»i7||<ef

Remembering, that p<«'"»* is a projection on Γiΐ"0, one has

^ 111/*"1'"'!! II«.»'!/II + Ky*'*'" ' )^^'- '" ' ) ! < e( l + | λ | ) .

But it is clear that (2.17) contradicts our assumption (2.4).

(iii) Here we will ensure us of the convergence of (h*)(finl)).
We regard (2.8).

"'1 = g + λ(P< '» -
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From the uniform boundedness of {/""} we derive the uniform
boundedness of {λ(P(*'> - T)Afin>)) and one has

(2.18) yy.en,, lim (y*)(X(P^ - l)Af'«'>) = 0 .

The reason is the same as for (2.13). Investigating the difference
of (2.1), (2.8) gives

d< '> = / - /«"'» = X(Af -

= XAdinΊ

We apply h* e Th.

(h*)(d(nl)) = (

= ((1 -

= (ΐ*)(λ

lim (h*)(dinl>) = lim (i*)(λ(l - P ' 'O-A/'"'1) = 0 ,
f f

which follows from (1 — \A)"10h* = i* 6 Tfc* guaranteed by (2.9) and
application of (2.18), hence

(2.19) lim (Λ*)(/< '0 - (Λ*)(/) .
•ίl'—> oo

(iv) Finally the relation between (h*)(f{n>) (and the Pade Approxi-
mant (fc*)(/)c*/f*/+1] has to be established. Some linear algebra shows
that (fe*)(/(%/)) regarded as a function in λ is a rational fraction of
degree [n\ nr + 1].

(fe*)(/(%/))[ίl/'"/+1] is the Pade Approximant of the formal power
series (2.8) under the functional h*

(h*)(g) + X(h*)(P{nf)Ag) + \\

If we confer this power series with that of (2.1)

λ2(Λ*)(ii2flr) +

We find with help of (2.6) the first 2m/ + 2 terms to be identical.
From the definition (2.3) follows

(2.20) (Λ*)(/)[ ' /+1] = (h*)(f{nf))ίnt'n'+11 .

Baker [1] shows, that in Hubert space the coefficients fkn) in f{n) =
Έ$=ofkn)Akg constructed from matrix elements (h, Amg) are rational
functions in λ of degree [n, n + 1]. This also applies to the Banach
space case, where the coefficients are constructed from (h*)(Amg).
Then clearly (fe*)(/(w)) is a rational function in λ of degree [n,
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Zinn-Justin [13] proves that a Pade Approximant [n, m] of a
rational fraction of degree [n, m] is identical to the rational fraction.
That means

(2.21) (h*)(f*'ψ'-*'+ίl = (A*)(/(w'}) .

Thus (2.19), (2.20), (2.1) together give (2.5).

3* Hubert space formulation* Here we turn to Hubert space
H = B, we substitute the adjoint A* by the Hubert adjoint A+ of
A and every y* e H* by its isomorphic y e H. Then (2.4) reads

( 3 . 1 ) 33/>o, Vs(«>e5<*>,ll*<«>ll=l, 3yMeτ™,\\yM\\=i, W"\ X™ \ ^ M .

It can be expressed in terms of the aperture of Hubert spaces [8],
[5]. Let Hl9 H2 be closed subspaces of a Hubert space, Pl9 P2 the
related orthogonal projections, θ is defined as

(3.2)

In our case H, = Tf, H2 = S™, P, = Pτ™, P2 - Psw.

(O.Oj Un — U\l h > &g )

Krasnoselskii [5] defines

(3.4) τ n = inf \\Ps(n)tw\\ ,

and shows

(3.5) ^ + τl = 1 .

We define

(3.6) μn= inf sup |(f< », 8

(*')l
; ϊ i = l

Between τn and μn the following relation is valid

(3.7) τ; £ μn < τn ,

which is easy to check. Obviously 0 <£ θn, τn, μn S 1 holds, such that
we can formulate (3.1) as

3jf>o, Vμn, P» > M -=> inf μn > 0 —> inf τ; > 0
(3.8)

<===> sup 0; < 1 — sup θn < 1 .

To finish up we illustrate the validity of (3.1). For example
take A self adjoint, C is a linear bounded operator commuting with A.
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h = g + Cg,\\C\\<l,

= »<•> + Cx{n)

k l - I I C l l

h ϊ ϊ ί fThus (3.1) is fulfilled.
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