PIECEWISE CATENARIAN AND GOING BETWEEN RINGS

M. Brodmann

The main purpose of this paper is to prove the following theorem. Let R be a noetherian ring and n a nonnegative integer. Then $R[X_1, \dots, X_n]$ is a going-between ring (=GB) iff R is GB and is (n+1)-piecewise catenarian.

In [7] Ratliff proved that all polynomial rings over an unitary commutative noetherian going-between-(=GB)-ring R are again GB iff R is catenarian (thus universally catenarian by [6, (3.8)] and [5, (2.6)]). (Recall that R is called a GB-ring if for any integral extension R' of R each adjacent pair of Spec (R') retracts to an adjacent pair of Spec (R).)

In the meantime we showed that there are noetherian GB-rings which are not catenarian, thus giving a negative answer to a corresponding question of [7] (s. [2]). So it may be interesting to know more about the relations between the GB-property of polynomial rings and the chain structure of Spec(R). In this note we shall investigate such a relation, thereby improving Ratliff's above result.

To formulate our statement, let us give the following

DEFINITION 1. *R* is called *n*-piecewise catenarian $(=C_n)$. If $(R/P)_{\mathscr{C}}$ is catenarian for any pair *P*, *Q* of Spec (*R*) related by a saturated chain $P = P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_i = Q$ of length $i \le n$.

Our main goal is to prove

THEOREM 2. Let R be a noetherian ring and n a nonnegative integer. Then $R[X_1, \dots, X_n]$ is GB iff R is GB and satisfies the property C_{n+1} .

Noticing that R is catenarian iff it is C_n for all n > 1, this gives immediately the quoted result of Ratliff.

To prove 2, let us introduce the following notations

3. (i) $c(R) = \text{set of lengths of maximal chains } P_0 \subsetneq P_1 \subsetneq \cdots$ of Spec (R) (s. [3], where c(R) was investigated).

(ii) If R is semilocal with Jacobson radical J, put $\hat{d}(R) = \min \{ \dim(\hat{R}/\hat{P}), \text{ where } \hat{P} \text{ is a minimal prime of } \hat{R} \}, \hat{R}$ denoting the J-adic completion of R (s. [1]).

We also shall use the following characterization of GB-rings, whose proof is immediate from the basic results of [6] and [7].

PROPOSITION 4. For a noetherian ring R the following statements are equivalent:

(i) R is GB.

(ii) For all P, $Q \in \text{Spec}(R)$ with $P \subseteq Q$ the ring $T = (R/P)_Q$ is GB.

(iii) For all T as in (ii) we have $c(T) = c(\hat{T})$.

(iv) For all T as in (ii) we have min $c(\hat{T}) = \hat{d}(T) = \min c(T)$.

(v) For all T as in (ii) which moreover are of dimension > one, we have $\hat{d}(R) > 1$.

To prove 2 we start with the case n = 1.

LEMMA 5. Let R be a noetherian ring. Then R[X] is GB iff R is GB and satisfies C_2 .

Proof. " \Leftarrow " Let R[X] be GB. Then so obviously is R = R[X]/(X).

To show that R satisfies C_2 let $P \subsetneq Q \subsetneq S$ be a saturated chain of Spec (R) such that ht(S/P) > 2. We have to prove that R[X]fails to be GB under this assumption. In replacing R by $(R/P)_s$ we may restrict ourselves to show that R[X] is not GB, where (R, M)is a local domain of dimension $> 2 = \min c(R)$, which moreover is GB.

Let \hat{P} be a minimal prime of \hat{R} whose dimension is 2 (such a \hat{P} exists by (4)). Choose $a \in M - (O)$ and let $b \in M$ be outside of all minimal prime divisors of aR and of $a\hat{R} + \hat{P}$. Put f = aX + b. Then we first have the inclusion $f\hat{R}[X] + \hat{P}\hat{R}[X] \subseteq M\hat{R}[X]$ showing that there is a minimal prime \tilde{Q} of $f\hat{R}[X] + \hat{P}\hat{R}[X]$ with $\tilde{Q} \subseteq M\hat{R}[X]$. As $ht(\tilde{Q}/\hat{P}\hat{R}[X]) = 1$, we have the following two possibilities for $\hat{Q} = \tilde{Q} \cap R$:

 $\hat{Q} = \hat{P}$, or $ht(\hat{Q}/\hat{P}) = 1$ and a and b belong to \hat{Q} . By our choice of a and b we may exclude the second case. So, as $ht(\tilde{Q}/\hat{P}\hat{R}[X]) =$ 1, \tilde{Q} is a minimal prime of $f\hat{R}[X]$. But now $ht(M\hat{R}[X]/\hat{P}\hat{R}[X]) =$ $ht(M\hat{R}/\hat{P})$ implies that $ht(M\hat{R}[X]/\tilde{Q}) = 1$. From this we conclude that $f(\hat{R}[X]_{M\hat{R}[X]})$ has a minimal prime divisor of dimension one. On the other hand we have a canonical isomorphism of R[X]-algebras

$$(R[X]_{M\hat{R}[X]})^{\hat{}} \simeq (R[X]_{MR[X]})^{\hat{}}$$
,

which shows that $f(R[X]_{MR[X]})^{\uparrow}$ has a minimal prime divisor of dimension one.

Let us denote this prime divisor by S' and put $S = S' \cap R[X]_{MR[X]}$.

Then, by the flatness of completion, S' is a minimal prime divisor of $SR[X]_{MR[X]}$ and S is a minimal prime divisor of $fR[X]_{MR[X]}$. Our choice of a and b implies that $S'' = R[X] \cap (R - (O))^{-1} fR[X]$ is the unique minimal prime divisor of fR[X]. Thus $S = S''R[X]_{MR[X]}$ is the unique minimal prime divisor of fR[X]. This implies that $T = R[X]_{MR[X]}/S$ is of dimension ht(M) - 1 > 1 but such that $\hat{d}(T) \leq$ dim (S') = 1. So, by (i) \Rightarrow (v) of (4) R[X] is not GB.

" \Rightarrow " By 4 we may restrict ourselves to prove

6. Let (R, M) be a noetherian local domain which is GB and C_2 and let U be a simply generated extension domain of R. Let $N \in \text{Spec}(U)$ such that $N \cap R = M$ and ht(N) > 1. Then it holds $\hat{d}(U_N) > 1$.

Put $U_N = T$. If $\hat{d}(R) \leq 2$ 4 shows that min $c(R) \leq 2$. Thus the C_2 property of R and 4 imply that $\hat{d}(R) = \dim(R)$, hence that R is quasiunmixed. But then T is also quasinmixed ([5], Cor. (2.6)] and therefore satisfies $\hat{d}(T) = ht(N) > 1$.

If $\hat{d}(R) > 2$ we use the inequality

$$\hat{d}(T) - \hat{d}(R) \ge \deg \operatorname{trans} (T; R) - \deg \operatorname{trans} (U/N; R/M)$$

(s. [1, (4.4) (i)]), which gives the result as both of its right hand terms are 0 or 1.

Next we give two results which deal with the C_n property of polynomial rings.

LEMMA 7. Let (R, M) be a noetherian local domain and let $(O) = P_0 \subsetneq P_1 \subsetneq \cdots \varsubsetneq P_n = M(n \ge 2)$ be a maximal chain of Spec (R)such that $ht(M/P_{n-2}) = 2$. Then there is a saturated chain $Q_0 \subsetneq$ $Q_1 \gneqq \cdots \varsubsetneq Q_{n-2} \varsubsetneq Q_{n-1} = MR[X]$ satisfying:

$$Q_i \cap R = P_i \text{ and } ht(MR[X]/Q_i) = ht(M/P_i) - 1 \text{ for } i = 1, \dots, n-2.$$

Proof. Choose $a \in M - P_{n-2}$ and let $b \in M$ be outside of all minimal prime divisors of $aR + P_i$ for $i = 1, \dots, n-2$. Put f = aX + b. Then for all indices i in question $fR[X] + P_iR[X]$ has exactly one minimal prime divisor, say Q_i . This implies that $Q_0 \subsetneq Q_1 \subsetneqq \dots \subsetneqq Q_{n-2} \subsetneqq MR[X], Q_i \cap R = P_i$ and $ht(MR[X]/Q_i) = ht(M/P_i) - 1$ for $i = 1, \dots, n-2$.

Thus it remains to prove that $ht(Q_i/Q_{i-1}) \leq 1$ for $1 \leq i \leq n-2$. But this is immediately clear from $ht(Q_i/P_{i-1}R[X]) \leq 2$, a relation due to $Q_i \cap R = P_i$ and the fact that R is noetherian. COROLLARY 8. Let R be a noetherian ring. Assume that for each maximal ideal M of R the ring $R[X]_{MR[X]}$ satisfies C_{n-1} , where n is an integer >2. Then R satisfies C_n .

Proof. Let $P, Q \in \text{Spec}(R)$ be such that $P \subset Q$ and such that $2 \leq \min c(T = (R/P)_q) = m \leq n$. We have to show that $\dim(T) = m$. Obviously we may replace R by T, hence assume that (R, M) is a local domain with $\min c(R) = m \leq n$, and restrict ourselves to prove that ht(M) = m.

Thus let $(O) = P_0 \subseteq \cdots \subseteq P_m = M$ be a maximal chain of Spec(R). Then it is clear that $P_{m-2}R[X] \subseteq P_{m-1}R[X] \subseteq MR[X]$ form a saturated chain of Spec (R[X]), hence, by the C_2 property of R[X], that $ht(MR[X]/P_{m-2}R[X]) = 2$. This shows that $ht(M/P_{m-2}) = 2$, and so we may choose a chain $Q_0 \subseteq Q_1 \subseteq \cdots Q_{m-2} \subseteq Q_{m-1} = MR[X]$ as in 7. Now $ht(MR[X]/Q_0) = ht(M) - 1$ and $ht(MR[X]/Q_0) = m - 1$ (this latter is implied by the C_{n-1} property of $R[X]_{MR[X]}$) prove the result.

LEMMA 9. Let R be a noetherian GB ring which satisfies C_n for an integer $n \ge 2$. Then R[X] satisfies C_{n-1} .

Proof. As each ring is C_1 , we may assume that n > 2. Thus let $\tilde{P}, \tilde{Q} \subseteq \text{Spec}(R[X])$ such that $\tilde{P} \subset \tilde{Q}, 2 \leq m = \min c((R[X]/\tilde{P})_{\tilde{Q}}) \leq n-1$. Then we have, with $P = \tilde{P} \cap R, Q = \tilde{Q} \cap R$:

$$\min c \left((R[X]/(P))_{\widetilde{q}} \right) \leq m+1, \text{ if } Q \neq QR[X],$$

and

$$\min \operatorname{\mathsf{c}}\left((R[X]/(P))_{(Q,X)}
ight) \leqq m+2, ext{ if } \widetilde{Q}=QR[X] \;.$$

Applying [3, (3.7)] we get $\hat{d}((R/P)_Q) \leq m+1$. As R is GB, (i) \Rightarrow (iv) of 4 shows that min c $((R/P)_Q) \leq m+1 \leq n$, and the fact that R is C_n implies that $T = (R/P)_Q$ is catenarian. As T is GB it therefore is even universally catenarian, and so finally $(R[X]/\tilde{P})_{\tilde{q}}$ is catenarian.

REMARK 10. Noetherian C_n rings appearently never have been studied for their own sake. C_n seems to be related to GB in general, as the GB property of R is easily proved to be a necessary hypothesis in (9) if n > 2. Note also that in general the properties C_n and C_{n+1} are independent (s. [2]) even for quasiexcellent GB domains.

Now we may prove our final result, from which 2 follows cleraly.

PROPOSITION 11. Let R be a noetherian ring and let $n \in N$. Then the following statements are equivalent:

(i) R is GB and satisfies C_n .

(ii) $R[X_1, \dots, X_m]$ is GB and C_{n-m} for all m < n.

(iii) $R[X_1, \dots, X_{n-1}]$ is GB.

Proof. "(i) \Rightarrow (ii)" is immediately proved by induction on m, in making use of 5 and 9.

"(ii) \Rightarrow (iii)" is clear.

"(iii) \Rightarrow (i)" Use 5 and 8 to make induction on n.

To conclude this paper, let us note that the arguments in 5 give rise to an easy proof of the following result of Ratliff [7].

COROLLARY 12. Let R be a noetherian ring. Then R[X] is GB iff $R[X]_{MR[X]}$ is GB for all maximal ideals M of R.

Proof. If $R[X]_{MR[X]}$ is GB for all M in question, so is R_M , hence R. But to prove " \leftarrow " of 5 we obviously only made use of the GB property of the rings $R[X]_{MR[X]}$. So we see that R is C_2 and 5 gives the result.

References

M. Brodmann, On some results of L. J, Ratliff, Comp. Math., 36, 1 (1973), 83-99.
 —, A particular class of regular domains, to appear in J. of Algebra.

3. S. McAdam, Saturated chains in noetherian rings, Indiana Univ. Math. J., 23 (1973/74), 719-728.

4. L. J. Ratliff Jr., On quasiunmixed semilocal rings and the altitude formula, Amer. J. Math., 87, 2(1965), 278-284.

5. _____, On quasiunmixed domains, the altitude formula and the chain condition for prime ideals (II), Amer. J. Math., **92** (1970), 99-144.

6. _____, Going between rings and contractions of saturated chains of prime ideals, Rocky Mountain J. Math., 7, 4 (1977), 777-787.

7. ----, A(X) and GB-noetherian rings, to appear.

Received October 3, 1978. Author supported by Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung.

DER UNIVERSITÄT Roxeler Strasse 64 BRD-44 Muenster W. Germany