PIECEWISE CATENARIAN AND GOING BETWEEN RINGS

M. Brodmann

Abstract

The main purpose of this paper is to prove the following theorem. Let R be a noetherian ring and n a nonnegative integer. Then $R\left[X_{1}, \cdots, X_{n}\right]$ is a going-between ring ($=\mathbf{G B}$) iff R is GB and is $(n+1)$-piecewise catenarian.

In [7] Ratliff proved that all polynomial rings over an unitary commutative noetherian going-between-($=$ GB)-ring R are again GB iff R is catenarian (thus universally catenarian by [6, (3.8)] and [5, (2.6)]). (Recall that R is called a GB-ring if for any integral extension R^{\prime} of R each adjacent pair of $\operatorname{Spec}\left(R^{\prime}\right)$ retracts to an adjacent pair of $\operatorname{Spec}(R)$.)

In the meantime we showed that there are noetherian GB-rings which are not catenarian, thus giving a negative answer to a corresponding question of [7] (s. [2]). So it may be interesting to know more about the relations between the GB-property of polynomial rings and the chain structure of $\operatorname{Spec}(R)$. In this note we shall investigate such a relation, thereby improving Ratliff's above result.

To formulate our statement, let us give the following
Definition 1. R is called n-piecewise catenarian ($=C_{n}$). If $(R / P)_{\mathscr{Q}}$ is catenarian for any pair P, Q of $\operatorname{Spec}(R)$ related by a saturated chain $P=P_{0} \varsubsetneqq P_{1} \varsubsetneqq \cdots \varsubsetneqq P_{i}=Q$ of length $i \leqq n$.

Our main goal is to prove

Theorem 2. Let R be a noetherian ring and n a nonnegative integer. Then $R\left[X_{1}, \cdots, X_{n}\right]$ is GB iff R is GB and satisfies the property C_{n+1}.

Noticing that R is catenarian iff it is C_{n} for all $n>1$, this gives immediately the quoted result of Ratliff.

To prove 2, let us introduce the following notations
3. (i) $c(R)=$ set of lengths of maximal chains $P_{0} \varsubsetneqq P_{1} \varsubsetneqq \cdots$ of $\operatorname{Spec}(R)$ (s. [3], where $c(R)$ was investigated).
(ii) If R is semilocal with Jacobson radical J, put $\hat{d}(R)=$ $\min \{\operatorname{dim}(\hat{R} / \hat{P})$, where \hat{P} is a minimal prime of $\hat{R}\}, \hat{R}$ denoting the J-adic completion of R (s. [1]).

We also shall use the following characterization of GB-rings, whose proof is immediate from the basic results of [6] and [7].

Proposition 4. For a noetherian ring R the following statements are equivalent:
(i) R is GB.
(ii) For all $P, Q \in \operatorname{Spec}(R)$ with $P \subseteq Q$ the $\operatorname{ring} T=(R / P)_{Q}$ is GB.
(iii) For all T as in (ii) we have $c(T)=c(\hat{T})$.
(iv) For all T as in (ii) we have minc $(\hat{T})=\hat{d}(T)=\operatorname{minc}(T)$.
(v) For all T as in (ii) which moreover are of dimension $>$ one, we have $\hat{d}(R)>1$.

To prove 2 we start with the case $n=1$.
Lemma 5. Let R be a noetherian ring. Then $R[X]$ is GB iff R is GB and satisfies C_{2}.

Proof. " \Longleftarrow " Let $R[X]$ be GB. Then so obviously is $R=R[X] /$ (X).

To show that R satisfies C_{2} let $P \varsubsetneqq Q \varsubsetneqq S$ be a saturated chain of $\operatorname{Spec}(R)$ such that $h t(S / P)>2$. We have to prove that $R[X]$ fails to be GB under this assumption. In replacing R by $(R / P)_{S}$ we may restrict ourselves to show that $R[X]$ is not GB , where (R, M) is a local domain of dimension $>2=\min \mathrm{c}(R)$, which moreover is GB.

Let \hat{P} be a minimal prime of \hat{R} whose dimension is 2 (such a \hat{P} exists by (4)). Choose $a \in M-(O)$ and let $b \in M$ be outside of all minimal prime divisors of $a R$ and of $a \hat{R}+\hat{P}$. Put $f=a X+b$. Then we first have the inclusion $f \hat{R}[X]+\hat{P} \hat{R}[X] \subseteq M \hat{R}[X]$ showing that there is a minimal prime \widetilde{Q} of $f \hat{R}[X]+\hat{P} \hat{R}[X]$ with $\widetilde{Q} \subseteq M \hat{R}[X]$. As $h t(\widetilde{Q} / \hat{P} \hat{R}[X])=1$, we have the following two possibilities for $\widehat{Q}=\widetilde{Q} \cap R:$
$\hat{Q}=\hat{P}$, or $h t(\hat{Q} / \hat{P})=1$ and a and b belong to \hat{Q}. By our choice of a and b we may exclude the second case. So, as $h t(\widetilde{Q} / \hat{P} \hat{R}[X])=$ $1, \widetilde{Q}$ is a minimal prime of $f \hat{R}[X]$. But now $h t(M \hat{R}[X] / \hat{P} \hat{R}[X])=$ $h t(M \hat{R} / \hat{P})$ implies that $h t(M \hat{R}[X] / \widetilde{Q})=1$. From this we conclude that $\left.f\left(\hat{R}[X]_{M} \hat{R}_{[} X\right]\right)$ has a minimal prime divisor of dimension one. On the other hand we have a canonical isomorphism of $R[X]$-algebras

$$
\left(\hat{R}[X]_{M \hat{R}[X]}\right)^{\wedge} \simeq\left(R[X]_{M R[X]}\right)^{\wedge}
$$

which shows that $f\left(R[X]_{M R[X]}\right)^{\wedge}$ has a minimal prime divisor of dimension one.

Let us denote this prime divisor by $S^{\prime \prime}$ and put $S=S^{\prime} \cap R[X]_{M R[X]}$.

Then, by the flatness of completion, S^{\prime} is a minimal prime divisor of $S R[X]_{M R[X]}$ and S is a minimal prime divisor of $f R[X]_{M R[X]}$. Our choice of a and b implies that $S^{\prime \prime}=R[X] \cap(R-(O))^{-1} f R[X]$ is the unique minimal prime divisor of $f R[X]$. Thus $S=S^{\prime \prime} R[X]_{M R[X]}$ is the unique minimal prime divisor of $f R[X]_{M R[X]}$. This implies that $T=R[X]_{M R[X]} / S$ is of dimension $h t(M)-1>1$ but such that $\hat{d}(T) \leqq$ $\operatorname{dim}\left(S^{\prime}\right)=1$. So, by (i) $\Rightarrow(v)$ of (4) $R[X]$ is not GB.
$" \Longrightarrow "$ By 4 we may restrict ourselves to prove
6. Let (R, M) be a noetherian local domain which is GB and C_{2} and let U be a simply generated extension domain of R. Let $N \in \operatorname{Spec}(U)$ such that $N \cap R=M$ and $h t(N)>1$. Then it holds $\hat{d}\left(U_{N}\right)>1$.

Put $U_{N}=T$. If $\hat{d}(R) \leqq 24$ shows that $\min \mathrm{c}(R) \leqq 2$. Thus the C_{2} property of R and 4 imply that $\hat{d}(R)=\operatorname{dim}(R)$, hence that R is quasiunmixed. But then T is also quasinmixed ([5], Cor. (2.6)] and therefore satisfies $\hat{d}(T)=h t(N)>1$.

If $\hat{d}(R)>2$ we use the inequality

$$
\hat{d}(T)-\hat{d}(R) \geqq \operatorname{deg} \operatorname{trans}(T: R)-\operatorname{deg} \operatorname{trans}(U / N: R / M)
$$

(s. [1, (4.4) (i)]), which gives the result as both of its right hand terms are 0 or 1.

Next we give two results which deal with the C_{n} property of polynomial rings.

Lemma 7. Let (R, M) be a noetherian local domain and let $(O)=P_{0} \varsubsetneqq P_{1} \varsubsetneqq \cdots \varsubsetneqq P_{n}=M(n \geqq 2)$ be a maximal chain of $\operatorname{Spec}(R)$ such that $h t\left(M / P_{n-2}\right)=2$. Then there is a saturated chain $Q_{0} \varsubsetneqq$ $Q_{1} \varsubsetneqq \cdots \varsubsetneqq Q_{n-2} \varsubsetneqq Q_{n-1}=M R[X]$ satisfying:
$Q_{i} \cap R=P_{i}$ and $h t\left(M R[X] / Q_{i}\right)=h t\left(M / P_{i}\right)-1$ for $i=1, \cdots, n-2$.
Proof. Choose $a \in M-P_{n-2}$ and let $b \in M$ be outside of all minimal prime divisors of $a R+P_{i}$ for $i=1, \cdots, n-2$. Put $f=$ $a X+b$. Then for all indices i in question $f R[X]+P_{i} R[X]$ has exactly one minimal prime divisor, say Q_{i}. This implies that $Q_{0} \varsubsetneqq$ $Q_{1} \varsubsetneqq \cdots \varsubsetneqq Q_{n-2} \varsubsetneqq M R[X], Q_{i} \cap R=P_{i}$ and $h t\left(M R[X] / Q_{i}\right)=h t\left(M / P_{i}\right)-$ 1 for $i=1, \cdots, n-2$.

Thus it remains to prove that $h t\left(Q_{i} / Q_{i-1}\right) \leqq 1$ for $1 \leqq i \leqq n-2$. But this is immediately clear from $h t\left(Q_{i} / P_{i-1} R[X]\right) \leqq 2$, a relation due to $Q_{i} \cap R=P_{i}$ and the fact that R is noetherian.

Corollary 8. Let R be a noetherian ring. Assume that for each maximal ideal M of R the ring $R[X]_{M R[X]}$ satisfies C_{n-1}, where n is an integer >2. Then R satisfies C_{n}.

Proof. Let $P, Q \in \operatorname{Spec}(R)$ be such that $P \subset Q$ and such that $2 \leqq \min \mathrm{c}\left(T=(R / P)_{\ell}\right)=m \leqq n$. We have to show that $\operatorname{dim}(T)=m$. Obviously we may replace R by T, hence assume that (R, M) is a local domain with $\min \mathrm{c}(R)=m \leqq n$, and restrict ourselves to prove that $h t(M)=m$.

Thus let $(O)=P_{0} \varsubsetneqq \cdots \subsetneq P_{m}=M$ be a maximal chain of $\operatorname{Spec}(R)$. Then it is clear that $P_{m-2} R[X] \varsubsetneqq P_{m-1} R[X] \varsubsetneqq M R[X]$ form a saturated chain of $\operatorname{Spec}(R[X])$, hence, by the C_{2} property of $R[X]$, that $h t\left(M R[X] / P_{m-2} R[X]\right)=2$. This shows that $h t\left(M / P_{m-2}\right)=2$, and so we may choose a chain $Q_{0} \varsubsetneqq Q_{1} \varsubsetneqq \cdots Q_{m-2} \varsubsetneqq Q_{m-1}=M R[X]$ as in 7. Now $h t\left(M R[X] / Q_{0}\right)=h t(M)-1$ and $h t\left(M R[X] / Q_{0}\right)=m-1$ (this latter is implied by the C_{n-1} property of $\left.R[X]_{M R[X]}\right)$ prove the result.

Lemma 9. Let R be a noetherian GB ring which satisfies C_{n} for an integer $n \geqq 2$. Then $R[X]$ satisfies C_{n-1}.

Proof. As each ring is C_{1}, we may assume that $n>2$. Thus let $\widetilde{P}, \widetilde{Q} \cong \operatorname{Spec}(R[X])$ such that $\widetilde{P} \subset \widetilde{Q}, 2 \leqq m=\min \mathbf{c}\left((R[X] / \widetilde{P})_{\widetilde{Q}}\right) \leqq$ $n-1$. Then we have, with $P=\widetilde{P} \cap R, Q=\widetilde{Q} \cap R$:

$$
\operatorname{minc}((R[X] /(P)) \widetilde{a}) \leqq m+1, \text { if } \widetilde{Q} \neq Q R[X],
$$

and

$$
\min \mathbf{c}\left((R[X] /(P))_{(Q, X)}\right) \leqq m+2, \text { if } \widetilde{Q}=Q R[X] .
$$

Applying $[3,(3.7)]$ we get $\hat{d}\left((R / P)_{e}\right) \leqq m+1 . \quad$ As R is GB, (i) \Rightarrow (iv) of 4 shows that $\min \mathrm{c}\left((R / P)_{Q}\right) \leqq m+1 \leqq n$, and the fact that R is C_{n} implies that $T=(R / P)_{e}$ is catenarian. As T is GB it therefore is even universally catenarian, and so finally $(R[X] / \widetilde{P})_{\widetilde{Q}}$ is catenarian.

Remark 10. Noetherian C_{n} rings appearently never have been studied for their own sake. C_{n} seems to be related to GB in general, as the GB property of R is easily proved to be a necessary hypothesis in (9) if $n>2$. Note also that in general the properties C_{n} and C_{n+1} are independent (s. [2]) even for quasiexcellent GB domains.

Now we may prove our final result, from which 2 follows cleraly.

Proposition 11. Let R be a noetherian ring and let $n \in N$. Then the following statements are equivalent:
(i) R is GB and satisfies C_{n}.
(ii) $R\left[X_{1}, \cdots, X_{m}\right]$ is GB and C_{n-m} for all $m<n$.
(iii) $R\left[X_{1}, \cdots, X_{n-1}\right]$ is GB.

Proof. " i$) \Rightarrow$ (ii)" is immediately proved by induction on m, in making use of 5 and 9.
"(ii) \Rightarrow (iii)" is clear.
"(iii) \Rightarrow (i)" Use 5 and 8 to make induction on n.
To conclude this paper, let us note that the arguments in 5 give rise to an easy proof of the following result of Ratliff [7].

Corollary 12. Let R be a noetherian ring. Then $R[X]$ is GB iff $R[X]_{M R[X]}$ is GB for all maximal ideals M of R.

Proof. If $R[X]_{M R[X]}$ is GB for all M in question, so is R_{M}, hence R. But to prove " \Longleftarrow " of 5 we obviously only made use of the GB property of the rings $R[X]_{M R[X]}$. So we see that R is C_{2} and 5 gives the result.

References

1. M. Brodmann, On some results of L. J, Ratliff, Comp. Math., 36, 1 (1973), 83-99.
2. ——, A particular class of regular domains, to appear in J. of Algebra.
3. S. McAdam, Saturated chains in noetherian rings, Indiana Univ. Math. J., 23 (1973/74), 719-728.
4. L. J. Ratliff Jr., On quasiunmixed semilocal rings and the altitude formula, Amer. J. Math., 87, 2(1965), 278-284.
5. -, On quasiunmixed domains, the altitude formula and the chain condition for prime ideals (II), Amer. J. Math., 92 (1970), 99-144.
6. - Going between rings and contractions of saturated chains of prime ideals, Rocky Mountain J. Math., 7, 4 (1977), 777-787.
7. ——, $A(X)$ and $G B$-noetherian rings, to appear.

Received October 3, 1978. Author supported by Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung.

Der Universität
Roxeler Strasse 64
BRD-44 Muenster
W. Germany

