REPRESENTATIONS NAIMARK-RELATED TO *-REPRESENTATIONS; A CORRECTION

BRUCE A. BARNES

Let A be a Banach *-algebra. A theorem is proved concerning a sufficient condition for a continuous representation of A on a Hilbert space H to be Naimark-related to a *-representation of A on H. One corollary of this result is that a continuous (topologically) irreducible representation of A on H is Naimark-related to a *-representation of A on H if and only if some coefficient of the representation is a nonzero positive functional of A.

One purpose of the paper is to correct in part a previously published result the proof of which contains a serious gap.

1. Introduction. Professor John Bunce has brought to my attention a gap in the proof of Theorem 3 in my paper [2]. Briefly, the problem is as follows: Let A be a Banach *-algebra, and let π be a continuous essential representation of A (not in general a *-representation) on a Hilbert space H. What is established at the beginning of the proof of [2, Theorem 3] is the existence of a π -invariant subspace H_0 of H and an inner-product on H_0 with the property that

$$\langle \pi(f)\xi, \eta \rangle = \langle \xi, \pi(f^*)\eta \rangle$$
 $(\xi, \eta \in H, f \in A)$.

At this point in the proof results are applied to this inner-product which may be applied only when this form is closable on H; see [4, pp. 313-315]. It is not proved in [2] that this form is closable, hence the gap in the proof. Although Theorem 3 and its corollaries have not been established in [2], we know of no counter-examples to these statements. All of the results of [2] outside of § 4 (including Theorem 1 and Theorem 7) are to our knowledge correct.

The aim of this note is to partially correct the error. Here we prove a result similar to [2, Theorem 3], and derive from it several corollaries. In particular, it is shown that a continuous, essential, (topologically) cyclic, separable representation of a C^* -algebra is Naimark-related to a *-representation of the algebra; and that a continuous (topologically) irreducible representation of a Banach *-algebra A is Naimark-related to a *-representation of A if and only if some nonzero coefficient of the representation is a positive functional on A.

2. The results. We use the same notation as in [2]. In parti-

cular, we use the terminology cyclic and irreducible as synonymous with what some authors call topologically cyclic and topologically irreducible. Given a representation (π, H) of the Banach *-algebra A, a coefficient of π is a functional on A of the form $f \to (\pi(f)\xi, \eta)$ for some $\xi, \eta \in H$.

The representation π is essential if for any $\xi \in H$ the condition $\pi(f)\xi = 0$ for all $f \in A$ implies $\xi = 0$. If α is a positive functional on A, then

$$K_{\alpha} = \{ f \in A \colon \alpha(f^*f) = 0 \}$$
.

THEOREM. Assume that π is a continuous representation of A on a Hilbert space H and that π is cyclic with cyclic vector $\xi_0 \in H$. Furthermore, assume that $\{\eta_m : m \in S\}$ is a collection of vectors in H, S being a finite or countably infinite index set, such that

- (i) $lpha_m(f)=(\pi(f)\xi_0,\,\eta_m)$ is a positive functional for all $m\in S;$ and
- (ii) span $\{\bigcup_{m \in S} (\pi(A)^* \eta_m)\}$ is dense in H. Then π is Naimark-related to a *-representation of A on H.

Proof. Choose positive numbers $\{\lambda_m: m \in S\}$ so that $\alpha = \sum_{m \in S} \lambda_m \alpha_m$ converges in the norm of the dual space of A, and

$$\eta_{\scriptscriptstyle 0} = \sum\limits_{m \in S} \lambda_m \eta_m$$
 converges in H .

Then by (i) α is a positive functional on A, and

$$\alpha(f) = (\pi(f)\xi_0, \, \eta_0) \quad (f \in A) .$$

First we verify that

$$K_{\alpha} = \{ f \in A : \pi(f) \xi_0 = 0 \}$$
.

That K_{α} is the larger of these two sets is immediate. Now assume that $f \in K_{\alpha}$. Then $\alpha(f^*f) = 0$ implies $\alpha_m(f^*f) = 0$ for all $m \in S$. Thus

$$0 = \alpha_m(gf) = (\pi(f)\xi_0, \pi(g)^*\eta_m)$$

for all $g \in A$ and all $m \in S$. Thus by (ii) we have $\pi(f)\xi_0 = 0$.

Now proceeding as in [2, (I)], define an inner-product on $\pi(A)\xi_0$ by

$$\langle \pi(f)\xi_0, \pi(g)\xi_0 \rangle = \alpha(g^*f) \quad (f, g \in A)$$
.

For ξ , $\eta \in \pi(A)\xi_0$, we use the notation $\tau(\xi, \eta) = \langle \xi, \eta \rangle$ and $\tau[\xi] = \tau(\xi, \xi)$. We prove that τ is a closable form [4, p. 315]. Assume $\{\xi_n\} \subset$

domain of $\tau = \pi(A)\xi_0$, and

$$\xi_n \longrightarrow 0 \text{ (in } H), \ \tau[\xi_n - \xi_m] \longrightarrow 0$$

as $n, m \to \infty$. We must show that $\tau[\xi_n] \to 0$ as $n \to \infty$. Now

$$\begin{aligned} |\tau[\xi_n]| &\leq |\tau(\xi_n - \xi_m, \, \xi_n)| + |\tau(\xi_m, \, \xi_n)| \\ &\leq \tau[\xi_n - \xi_m]^{1/2} \tau[\xi_n]^{1/2} + |\tau(\xi_m, \, \xi_n)| \; . \end{aligned}$$

Let $\varepsilon>0$ be arbitrary. Since $\tau[\xi_n-\xi_m]\to 0$, $\tau[\xi_n]$ is a Cauchy sequence, we may choose M>0 such that $\tau[\xi_n]\leq M$ for $n\geq 1$. Choose N a positive integer such that $\tau[\xi_n-\xi_m]<\varepsilon$ whenever $n,\,m\geq N$. For $n,\,m\geq N$,

$$\tau[\xi_n] \leq (M\varepsilon)^{1/2} + |\tau(\xi_m, \xi_n)|.$$

For each n choose $f_n \in A$ such that $\xi_n = \pi(f_n)\xi_0$. Then $\tau(\xi_m, \xi_n) = \alpha(f_n^*f_m) = (\pi(f_n^*f_m)\xi_0, \eta_0) = (\pi(f_m)\xi_0, \pi(f_n^*)^*\eta_0) \to 0$ as $m \to \infty$ for each fixed n. This fact together with (1) shows that $\tau[\xi_n] \to 0$ as $n \to \infty$.

Let $\overline{\tau}$ denote the closure of the form τ . By [4, Theorem 2.23, p. 331] there exists a self-adjoint operator U with $\mathscr{D}(U)=\mathscr{D}(\overline{\tau})$ such that

$$\overline{\tau}(\xi,\eta) = (U\xi,U\eta) \quad (\xi,\eta\in\mathscr{D}(U))$$
.

Next we prove that $\mathscr{N}(U) = \{0\}$. By [4, Corollary 2.27, p. 332] $\pi(A)\xi_0$ is a core of U (this means that the set $\{(\pi(f)\xi_0, U\pi(f)\xi_0): f \in A\}$ is dense in the graph of U [4, p. 166]). Suppose $\xi \in \mathscr{N}(U)$. Choose $\{f_n\} \subset A$ such that

$$\pi(f_n)\xi_0 \longrightarrow \xi \text{ and } U\pi(f_n)\xi_0 \longrightarrow 0.$$

Then $\alpha(f_n^*f_n)=||U\pi(f_n)\xi_0||^2\to 0$. Thus $\alpha_m(f_n^*f_n)\to 0$ for each m. Therefore for each $m\in S$ and all $g\in A$

$$|\alpha_{\mathit{m}}(gf_{\mathit{n}})| \leq \alpha_{\mathit{m}}(gg^*)^{1/2}\alpha_{\mathit{m}}(f_{\mathit{n}}^*f_{\mathit{n}})^{1/2} \longrightarrow 0$$

as $n \to \infty$. It follows that for each m

$$(\pi(f_n)\xi_0, \pi(g)^*\eta_m) = (\pi(gf_n)\xi_0, \eta_m) = \alpha_m(gf_n) \longrightarrow 0$$

as $n \to \infty$. Therefore $(\xi, \pi(g)^* \eta_m) = 0$ for all $g \in A$ and all $m \in S$, so by (ii), $\xi = 0$.

Since $\mathcal{N}(U) = \{0\}$, U has dense range. Then again using the fact that $\pi(A)\xi_0$ is a core of U, we have that $U\pi(A)\xi_0$ is dense in H.

Now we complete the proof that π is Naimark-related to a *-representation of A. By [2, (I)] we have

$$\tau(\pi(f)\xi, \eta) = \tau(\xi, \pi(f^*)\eta) \quad (\xi, \eta \in \pi(A)g_0, f \in A)$$
.

For $f \in A$ define $\varphi_0(f)$ on $U\pi(A)\xi_0$ by

$$\varphi_0(f)U\xi = U\pi(f)\xi \quad (\xi \in \pi(A)\xi_0)$$
.

A routine calculation using the observation above shows that for all $f \in A$ and all ξ , $\eta \in U\pi(A)\xi_0$

$$(\varphi_{\scriptscriptstyle 0}(f)\xi_{\scriptscriptstyle 1},\eta)=(\xi_{\scriptscriptstyle 1},\varphi_{\scriptscriptstyle 0}(f^*)\eta)$$
 .

By [5, Prop. 5] there exists a unique extension of φ_0 to a *-representation φ of A on H (=the closure of $U\pi(A)\xi_0$). Let $\xi \in \mathscr{D}(U)$. Again using that $\pi(A)\xi_0$ is a core of U, choose $\{f_n\} \subset A$ such that

$$\pi(f_n)\xi_0 \longrightarrow \xi$$
 and $U\pi(f_n)\xi_0 \longrightarrow U\xi$.

Then for any $f \in A$

$$\pi(f)\pi(f_n)\xi_0 \longrightarrow \pi(f)\xi$$
,

and

$$U\pi(f)\pi(f_n)\xi_0 = \varphi_0(f)U\pi(f_n)\xi_0 \longrightarrow \varphi(f)U\xi$$
.

Since U is closed, $\pi(f)\xi\in \mathscr{D}(U)$, and $U\pi(f)\xi=\varphi(f)U\xi$. Thus π is Naimark-related to φ .

COROLLARY 1. Let (π, H) be a continuous irreducible representation of A. Then π is Naimark-related to a *-representation of A on H if and only if some coefficient of π is a nonzero positive functional on A.

Proof. Assume that ξ_0 , $\eta_0 \in H$ with $f \to (\pi(f)\xi_0, \eta_0)$ a nonzero positive functional on A. Since π is irreducible, ξ_0 is a cyclic vector for π . Now $\pi(A)^*\eta_0$ is a nonzero subspace of H with $(\pi(A)^*\eta_0)^{\perp}$ a closed π — invariant subspace. Then since π is irreducible, $\pi(A)^*\eta_0$ is dense in H. By the theorem, π is Naimark-related to a *-representation of A.

Conversely, assume that U is a closed densely defined operator on H, φ is a *-representation of A on H, and

$$U\pi(f)\xi = \varphi(f)U\xi \quad (\xi \in \mathscr{D}(U), f \in A)$$
.

Then U^*U is densely defined [4, Theorem 3.24, p. 275]. Choose a vector $\xi_0 \in \mathscr{D}(U)$, $\xi_0 \neq 0$, such that $U\xi_0 \in \mathscr{D}(U^*)$. Set $\eta_0 = U^*U\xi_0$. Then for $f \in A$,

$$egin{aligned} (\pi(f)\xi_{\scriptscriptstyle 0},\,\eta_{\scriptscriptstyle 0}) &= (\pi(f)\xi_{\scriptscriptstyle 0},\,\,U^*U\xi_{\scriptscriptstyle 0}) \ &= (U\pi(f)\xi_{\scriptscriptstyle 0},\,\,U\xi_{\scriptscriptstyle 0}) \ &= (arphi(f)U\xi_{\scriptscriptstyle 0},\,\,U\xi_{\scriptscriptstyle 0}) \;. \end{aligned}$$

Thus $f \to (\pi(f)\xi_0, \eta_0)$ is a nonzero positive functional on A.

For group representations the result analogous to Corollary 1 is the following.

COROLLARY 2. Assume that G is a locally compact group. Let (π, H) be a bounded weakly continuous irreducible representation of G on a Hilbert space H. Then π is Naimark-related to a weakly continuous unitary representation of G (on H) if and only if some coefficient of π is a (nonzero) positive definite function.

If A is a C^* -algebra, we use the notation \overline{A} to denote the von-Neumann enveloping algebra of A [3, 12.1.5].

COROLLARY 3. Let A be a C^* -algebra. Let π be an essential continuous cyclic representation of A on a separable Hilbert space H. Then π is Naimark-related to a *-representation of A on H.

Proof. By [1, Theorem 1] π extends to an ultraweakly continuous representation $\overline{\pi}$ of \overline{A} on H. Let ξ_0 be a cyclic vector for π . Assume $\xi \in H$ and $\xi \perp (\pi(A)^*H)$. Then $(\pi(A)\xi) \perp H$, so that $\xi = 0$. Therefore $\pi(A)^*H$ is dense in H. Choose a sequence $\{\zeta_m\} \subset H$ such that

$$\operatorname{span}\left(\bigcup_{{\scriptscriptstyle{m=1}}}^{\infty}\left(\pi(A)^*\zeta_{\scriptscriptstyle{m}}\right)\right) \text{ is dense in } H\;.$$

For each m, set

$$eta_{\it m}(f) = (\overline{\pi}(f)\xi_{\it 0},\,\zeta_{\it m}) \quad (f\in \overline{A})$$
 .

Since β_m is a normal functional on \bar{A} , by the Polar Decomposition Theorem [3, p. 240] there exists a partial isometry $u_m \in \bar{A}$ and a positive functional α_m on \bar{A} such that

$$\beta_{m}(f) = \alpha_{m}(u_{m}f) \text{ and } \alpha_{m}(f) = \beta_{m}(u_{m}^{*}f) \quad (f \in \overline{A}).$$

Let $\eta_m = (\overline{\pi}(u_m^*))^*\zeta_m$ for each m. Then for each m and all $f \in \overline{A}$

$$\alpha_m(f) = (\overline{\pi}(u_m^* f) \xi_0, \zeta_m)$$

$$= (\overline{\pi}(f) \xi_0, (\overline{\pi}(u_m^*))^* \zeta_m)$$

$$= (\overline{\pi}(f) \xi_0, \eta_m).$$

Also, $(\overline{\pi}(f)\xi_0, \zeta_m) = \beta_m(f) = \alpha_m(u_m f) = (\overline{\pi}(f)\xi_0, (\overline{\pi}(u_m))^*\eta_m)$ for all $f \in \overline{A}$. Therefore $(\overline{\pi}(u_m))^*\eta_m = \zeta_m$. It follows that

$$\operatorname{span}\left(igcup_{{\mathbf m}=1}^{+\infty}\left(\overline{\pi}(\overline{A})^*\eta_{{\mathbf m}}\right)\right)$$
 is dense in H .

By the theorem $\bar{\pi}$ is Naimark-related to a *-representation of \bar{A} on H. This completes the proof.

REFERENCES

- 1. B. A. Barnes, The similarity problem for representations of a B*-algebra, Michigan Math. J., 22 (1975), 25-32.
- 2. ——, When is a representation of a Banach *-algebra Naimark-related to a *-representation?, Pacific J. Math., 72 (1977), 5-25.
- 3. J. Dixmier, Les C*-Algèbres et Leurs Représentations, Cahiers Scientifique, Fasc. 29, Gautier-Villars, Paris, 1964.
- 4. T. Kato, Pertubation Theory for Linear Operators, Springer-Verlag, New York, 1966
- 5. T. W. Palmer, *-Representations of U*-algebras, Indiana Univ. Math. J., 20 (1971), 929-933.

Received February 27, 1979 and in revised form July 17, 1979.

University of Oregon Eugene, OR 97403