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FINITE GROUPS HAVING AN INVOLUTION
CENTRALIZER WITH A 2-COMPONENT
OF TYPE PSL (3, 3)

MorTON E. HARRIS

A finite group L is said to be quasisimple if L=L'
and L/Z(L) is simple and is said to be 2-quasisimple if L=
L’ and L/O(L) is quasisimple. Let G denote a finite group.
Then E(G) is the subgroup of G generated by all subnormal
quasisimple subgroups of G and F*Q)=E(@F(G) where
F(G) is the Fitting subgroup of G. Also a subnormal
quasisimple subgroup of G is called a component of G and
a subnormal 2-quasisimple subgroup of G is called a 2-com-
ponent of G.

We can now state the main result of this paper:

THEOREM A. Let G be a finite group with F*(G) simple.
Assume that G contains an involution t such that H=C4(t) possesses
a 2-component L with LJ/O(L) = PSL (38, 3) and such that Cz(L/O(L))
has cyclic Sylow 2-subgrouns. Then |F*(G)|, < 2".

In order to state an important consequence of Theorem A, we
require two more definitions. A subgroup K of a finite group G
is said to be tightly embedded (in G) if | K| is even and |K N K’|
is odd for every geG — NgK). A quasisimple subgroup L of a
finite group G is said to be standard (in G) if [L, L°] # 1 for all
ge @G, Cyx(L) is tightly embedded in G and Ny (L) = Ng(Cx(L)).

THEOREM B. Let G be a finite group with O(G) = 1 and contain-
ing a standard subgroup L with L =PSL (3,3). Then either LG
or L = (L% = F*(G) and one of the following five conditions hold:

(a) F*(G)=PSL(3,9);

(b) F*(G) = PSL (4, 3);

(e) F*@G) = PSL (5, 3);

(d) F*G) = PSp(s,3);

(e) F*G) = H, x H, with H = H, = L and Cy(L) = {t) where
t is an involution such that Hl = H, and L = {hh}|h, € H,).

Note that Theorem B is a step toward the verification of Hypo-
thesis 6* of [13] and is therefore of import for completing a proof
of the Unbalanced Group Conjecture and the B(G)-Conjecture and
for completing an inductive characterization of all Chevalley groups
over finite fields of characteristic 3 (ef. [13, §1]). Also by applying
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[13, Lemma 2.9], [3, Theorem]|, [1, Corollary II], [8, Theorem 5.4.10
(i)}, [3, Table 1] and [6, Tables 3 and 4], it suffices, in proving
Theorem B, to assume, in addition to O(G) = 1, that L = F*(G) =
(L%, F*(@) is simple and that C,(L) has cyclic Sylow 2-subgroups.
But then Theorem A and the classification of all finite simple groups
whose Sylow 2-subgroups have order dividing 2" (cf. [4] and [7])
yield Theorem B. Consequently Theorem B is a consequence of
Theorem A.

The remainder of this paper is devoted to demonstrating that
the analysis of [12] and [14] can be applied to prove Theorem A.

All groups in this paper are finite. Our notation is standard
and tends to follow the notation of [8], [12] and [14]. In particular,
if X is a (finite) group, then S(X) denotes the solvable radical of
X, O(X) is the subgroup of X generated by all elements of X of
odd order and is consequently the intersection of all normal sub-
groups Y of X such that X/Y is a 2-group and & (X) denotes the
set of elementary abelian 2-subgroups of X. Also, if n is a positive
integer, then #,(X) denotes the set of elementary abelian 2-sub-
groups of order n of X. Finally my(X) denotes the maximal rank
of the elements of & (X), 7,(X) denotes the minimal integer % such
that every 2-subgroup of X can be generated by k elements and if
Y € X, then . #(Y) denotes the set of involutions contained in Y.

Clearly, if X is a group, then m,(X)<7,(X) and 7,(X)<»r,(Y)+
r(X/Y) for every normal subgroup Y of X.

2. A proof of Theorem A. Throughout the remainder of this
paper, we shall let G, t, H and L be as in the hypotheses of Theorem
A and we shall assume that |F*(@)[, > 2".

Then [9, Main Theorem], [15, Four Generator Theorem], [3,
Table 1], [6, Tables 3 and 4] and [2] imply that 4<r,(F*(@))=r.(G)
and that Sylow 2-subgroups of G and F'*(G) contain normal ele-
mentary abelian subgroups of order 8.

Clearly Cy(L/O(L)) has a normal 2-complement by [8, Theorem
7.6.1], every 2-component K of H with K = L lies in CuL(L/O(L))
and O(H) < C,(L/O(L)) (ef. [10, §2]). Thus L is the unique 2-com-
ponent of H, Lchar H, S(H) N L = O(L) and S(H) = Cx(L/O(L)) by
[10, Lemma 2.3].

Sinece H/S(H) is isomorphic to a subgroup of Aut (PSL (3, 3))
with (LS(H))/S(H) corresponding to “nn(PSL(3,3)) and since
| Aut (PSL (8, 3))/. “nn(PSL (8, 8))| = 2, we have | H/(S(H)L)| < 2 and
H*™ = L.

Let SeSyl,(H) and T =SNL. Then T <S8, TeSyl,(L), |T|=2,
T is semidihedral and 7= O\ ylly] =8, |y| =2 and A =\ for
suitable elements \, ¥ of T. Also &(T)=T'=\> = Z, and 2,(T")=
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Z(T) = {(z) for an involution z of T. Also D= O} y) =D, Q=
LMY = Qs and (\) = Z; are the three distinet maximal subgroups
of T. Let P=SNSH). Then PSS, P is cyclic, PN T =1 and
2(P) ={ty. Also A (L) = 2% C,,00(2) = GL(2, 3) and S(H)=0(H)P.
Since 7,(S) < 1 4+ 7,(S/P) £ 2 + 7,(T) = 4, we have S¢ Syl,(G).

LEMMA 2.1. The following four conditions hold:

(a) |H/SH)L)| =2 and H/S(H) = Aut (PSL (3, 3));

(b) there is an involution w€ S—(P X T) such that D=C,(u) e
SyL(C,(w)), L{wy/O(L) = Aut (PSL(, 3)), #(uL) =u*, Crom) =
(O(L)C(w))/O(L), O(Cr(w)) = O(L) N C(u), Cr(w)/O(C.(u)) = PGL (2, 3),
OX(Co(<t, up)/OCe(<t, wp)) = PSL (2, 8), S = (P X T)upy, \* =z and
CT(u>(<z9 Y, u>) = <z’ Y, u>;

(e) Z(S) = <&, 2>, Pluy is dihedral or semidihedral and Se
Syl(Ce(t, 2)); and

(@) @ = O, M eSyL0(Cu((t, 2)), Coun(z) = O(Ce(<t, 2p)) =
O(0*(Cu(<t, 27))) and O(Cu(<t, 2)))/O0(Cu(<t, 27)) = SL (2, 3).

Proof. Assume that H = S(H)L. Then S =P x T and Z(S)=
P x (z). Since S¢Syl(G), we have P=<{). Then <t y, 2)e
SyL(Cst, ¥, 2)) and [11, Theorem 2] implies that 7,(G) < 4. This
contradiction implies that (a) holds. For the proofs of (b) and (c)
of this lemma, it clearly suffices to assume that O(H) = 1. Then
P = O,H) = Cyx(L), HIP = Aut (PSL (8, 3)) and there is an element
veS — (P x T) such that v»*e P, C,(v) = D and C,(v) = >4 by [6,
Table 4]. Thus S = (P x T){»). Suppose that 2,(S) < P x T. Then
2.(8) = (&) X D char S, Cs(2,(S))=(P x <{z)){v) char S and {¢) char S.
Since this is impossible, there is an involution weS — (P x T).
Then L{w) = Aut (PSL(3, 3)) since (T<w))N P=1 and T<(w)e
SyL(L{w)). Then, as is well known #(wL) = w" and there is an
involution u € Tw such that Cp(u) = DeSyl,(C.(w)), C.(u) = 374, S =
(P x T)Yuy and Cry(<?, ¥, w)) =<2, 4y, up. Also ue N ({\)) and
Coy(w) = (M), Thus A* =2z and (b) holds. Hence Z(T<(u)) = {z),
(t, 2y < Z(S) = Cp(u) X <z) and (c) holds since (t) is not characteristic
in S. For (d) observe that Cu({t, 2)) = Cy(2) and set H = H/O(H).
Then Cz(Z) = Cx(2) and €O (H) = L = PSL (8, 3). But 0%Cz(z)) =
0*(Cz(7)) = SL (2, 3), Qe SyL(0(C5(z))) and 0Cz@) = OYCy(z) =
O0*(Cy(2)) = SL (2, 3). Hence O(H)Q < O(H)O¥Cy(2)),

Q = Com ()0 (Cy(z)) = O*(Cy(?)) ,

(d) holds and we are done.

LeEMMmA 2.2. P= ({t),t is not a square in G, S = (&)X (T{u)),
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|S] =2, 8" = (D, <2) D Nu(S) and t + zin G.

Proof. Assume that P = () and let we _#(S — Z(S)). Suppose
that we P x T. Then w is conjugate in P X T to an element of
yt). Since Cy(y) = Cs(yt)=(P X (z, yp){w), we have 2,(Cs(w)’) = {t).
Suppose that w¢ P X T. Then Cp(w)=<t), Cs(w)=<t) X Cpw) X {w)
and 2,(Cs(w)’) < {(z). Since Z(S) = {t, z), we have Q =I Ng(S) by
Lemma 2.1 (d), {(z) <I Ng(S) and t¥¢® = t{z). However {(z) <1 Ni(S)
implies () <1 N,(S) and we have a contradiction. Thus P= () and
the lemma is clear.

Since _#(wL) = u*, we immediately conclude:

COROLLARY 2.3. {t,z,tz,u, tu} is a complete set of representatives
for the H-conjugacy classes of imvolutions in H. Also u_” (D)< u”.

Note that T<u) = N, yu, w | |yu| = |u| = 2, [yu, u] =1, |7 = 2},
A* = A"t and A* = Az where z = A\*) and hence [12, Lemma 2.1] lists
various facts about T'(u).

Let z = Ny. Then A (T)=_2(D)={z} U y{z) Ux{z) and y{z)U
a2y = y". Also Cs(y) = (&, uy X<z, y), Cs(x) = <t, uy X {2, xp, my({t) X
T)=38 and & X T) ={{, 2, v, {&, 2, ©)}). Hence m,(S) =4 and
Zu(S) = {Kt, u, 2, vy, {t, u, 2, x)}. Note also that »° = u” = u{z) and
exp (S)=8.

Set A =<t u, 2 y) and B =<t u, #z, x). Then &,(S)= {4, B},
A~ BviaT, (A, BY = {t, w) X Dchar S, Ng(A) = Ng(B) = {t, u) X D,
Cs(A) = O(C4(A)) x A, Co(B) = O(Cs(B)) x B and Ng(S) = S(Ne(S)N
Ng(A) N Ng(B)).

Let X = (¢, u, z). Clearly Cy(X) = <t, uy X D.

LEMMA 2.4. X s the unique element Y of & (S) such that
Y<S and | Y1 > 4.

Proof. Let Ye&(S) satisfy Y<IS and | Y| > 4. Then we may
assume that Z(S)=<{, 2) < Y and | Y|=2°. Then E,= Y N (T<{u))=
{z, T) where 7 € #(T<u)) and [{\), 7] =<z). This forces Y N (T<w))=
{z, wy and we are done.

Set M = Ny A) and M = M/O(M). Clearly Cy(4) =O0M) x A
and, interchanging % and uz if necessary, there is a 3-element pe
Cyx(u) N N.(A) such that =z inverts p, C,(0) = {¢, w), [4, p] = {7, ¥)
and 0°cOM). Also Ci(f) = Cu(®) = AP, &) = <&, @) X {F, %, P, &)
with (7, %, §, T =34, Cx(4A) = A and M/A = Aut (A)=GL (4, 2) = A,.
Moreover, it is clear that O*Cy({t, u)))=0(Cs({t, u)))}<¥, 2, 0y, {y, 2) €
Syl(0*(Cs(<t, up))) and OXCy(t, u»))/O(Ce((E, w)) = PSL (2, 3).



FINITE GROUPS HAVING AN INVOLUTION 73

LEMMA 2.5. M = N4(A) controls the G-fusion of elements in
N A.

Proof. Assume that e A for geG. Let A < S, e Syl,(Cs(t%)).
Since S° € Syl,(C4(t°)), we may assume that S* = S,. If A7 = A, then
ge M. Suppose that A== A. Then £,(S) = {4, A’} and there is
an element h €S, such that A°* = A. Then ghe M, t* = t** and the
lemma holds.

Let S < & eSyL(G). Then S #.%7, |.&7]| > 2% and S < N.(S).
Since Z(S) <1 Ng(S) and <{z) < Ng(S), we have | N.(S)/S|=2, t"+® =
t{z) and Z(N.(S)) = () = Z(S*).

Clearly O(Cy(S)) = O(Ng(S)) X {t, z) and if = is an element of
odd order of Ng(S), then me Cy<t, 2)), e Co(X), e Cylt, uy X D)
and hence 7w e O(Ny(S)). Thus Ng(S) = O(NS))N.(S).

As in [12, §4], we have SCN,(.%”) = ¢ and there is an element
Ee £() such that E<1.9”. Clearly zeFE, |Cy(t)] =4 and ze€
Cp(t) I S=C,(t). Suppose that tet°NE. Then | |=|t7||Cs (D)=
28 |S| =2, Thus t°NE = ¢ teCyt), |Cet)| = 4, & Cst)) = X =
&y, 2, [S, E]<S ENS = Cyt), No(S) = SE and t* = t{z). Inter-
changing % and tw if necessary, it follows that we may assume that
Cx(t) = <u, 2).

Set FF=<(y,z). Then A=FUtFUuFUtuF,tF<t‘NnA, tn
(FUuF)=¢ and tF S t*NA S tFUtuF. Consequently:

COROLLARY 2.6. Either t* =tNA =1tF and |M/A| =24 or
t =t°NA=tFUtuF and |M/A| = 48.

Now the analyses of [12, §5-11], with the obvious slight
changes, shows that |0%G)|, < 2. Since F*(G) < 0%G), our proof
of Theorem A is complete.
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