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ON THE BEHAVIOR OF A CAPILLARY SURFACE
AT A RE-ENTRANT CORNER

NICHOLAS J. KOREVAAR

Changes in a domain's geometry can force striking changes
in the capillary surface lying above it. Concus and Finn [1]
first studied capillary surfaces above domains with corners, in
the presence of gravity. Above a corner with interior angle θ
satisfying θ < π — 2γ, they showed that a capillary surface
making contact angle γ with the bounding wall must approach
infinity as the vertex is approached. In contrast, they showed
that for θ ̂  π — 2γ the solution u(xy y) is bounded, uniformly
in θ as the corner is closed. Since their paper appeared, the
continuity of u at the vertex has been an open problem in the
bounded case. In this note we show by example that for any
θ > 7Γ and any γ Φ π/2 there are domains for which u does not
extend continuously to the vertex. This is in contrast to the
case π > θ > π — 2γ; here independent results of Simon [5] show
that u actually must extend to be C1 at the vertex.

We consider bounded domains Ω in R2 with piecewise smooth
boundaries dΩ, and functions u(x, y) satisfying

( i ) div Tu = 2H(u) = icu in Ω; Tu = Du/]/l + Du\ H(u) = mean
curvature of the surface z = u(x, y), K > 0.

(ii) Tu-n = COST on the smooth part of 3Ω; 0 <£ 7 ^ π, n = ex-
terior normal to dΩ.

Physically u describes the capillary surface formed when a verti-
cal cylinder with horizontal cross section Ω is placed in an infinite
reservoir of liquid having rest height z = 0. Then

σ

where
p = density of liquid
g = (downward) acceleration of gravity
σ — surface tension between liquid and air.

cos 7 = — ,
σ

where

σλ = surface attraction between liquid and cylinder.

Geometrically 7 is the contact angle between the capillary surface
and the bounding cylinder; it is the angle between the downward
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normal of the surface z = u(x9 y), and the exterior normal of the
cylinder 3Ω x JR.

If 7 = π/2, the only solution to (i) and (ii) is u = 0. If 7 Φ π/2,
by considering either u or — u, we make the usual assumption that
0 ^ 7 < π/2. This is the case in which the surface rises to meet
the cylinder, or "wets" it.

Let θ and 7 satisfy

π < θ ^ 2π , 0 < 7 < π/2 .

We will construct a domain for which a bounded solution u to
(i) and (ii) exists, but having a corner of interior angle θ at which
there is a jump discontinuity in u. (The arguments can be modified
to include the case 7 = 0.)

Determine the domain scale by fixing R > 0 (Fig. 1). Since θ > π,
we can pick θ1 and θ2, satisfying

π - 7 τ r > 0 2 > 7 , = θ .

FIGURE 1. The intersection of Ωε with the disc of radius 3R

0i > ir - γ Po = (0, 0) l0 = \y cos 0 = x sin 0}
*" > #2 > r Λ = (—ε cot 02, — ε) /i = {.y cos 02 = x sin 02}

/3 = Λ:-axis

For positive ε less than R sin θ2, let Ωε be a bounded domain, of
which the intersection with BSR(0) is shown in Fig. 1, and which has
C* boundary except at Po and P lβ (J53i2(0) is the disc of radius 3J?
centered at the origin.)

LEMMA 1. There exists a unique solution to (i) and (ii) in any
Ωε. It is bounded above and nonnegative.
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Proof. Because Ωε is C\ except for a finite number of re-entrant
corners, it satisfies a uniform internal sphere condition with contact
angle 7, for any 7. Therefore it is admissible in the sense of Finn
and Gerhardt [4]. Thus there is a bounded, nonnegative, real analytic
function uε(x, y) in Ω£, satisfying (i). Because u is energy minimizing
in the sense of Emmer [3], the regularity theory of Simon and Spruck
[6] implies that everywhere the boundary is C4, uε extends to be at
least C2, and satisfies (ii). Uniqueness follows from a maximum
principle of Concus and Finn [2].

We are interested in the behavior of uε near Po, as e approaches
0. Lemma 2 will show that uε stays uniformly bounded in one sector
near Po, and Lemma 3 show that in another sector it gets uniformly
large. It follows that uε eventually has a jump discontinuity at Po.

Let Iε be the subdomain of Ωε shown in Fig. 2. Then we have

FIGURE 2. The subdomains Iε and IIε

γ BJt(0) = {x2 + y*< R2}
h = BR(ϋ) Π {y cos θ > x sin θ}Π{y cos θ2 < x sin θz}

JIe = Brχo)n{y<O}n{y> -ε}C]{y cos θ'2>

LEMMA 2. uε is uniformly bounded in Iε, independently of ε.

Proof In this and the following lemma the basic tool is a com-
parison method of Concus and Finn [2] for surfaces of known mean
curvature and contact angle.

Consider circles of radius R which either lie entirely in Ωε or
contact 3Ωε only at a point of tangency. (In particular, do not allow
them to have contact at Po or P1#) If θ1 < π, also allow circles which
intersect dΩε at two points on l0 — Po, making an angle of no more
than π — θ1 with lQ at these intersections. Every point in 7e lies
interior to at least one of these circles (see Fig. 3).
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FIGURE 3. Equatorial circles near Iε

The region //' above which υ is defined.

In R3 consider a closed lower hemisphere L with equatorial circle
E, so that the projection π(E) of E onto R2 is one of the above circles
(see Fig. 4). If L contacts l0 x R, then along the arc of intersection
A the contact angle yL equals the angle between π(E) and ϊ0. Thus
yL <: π — θx < 7. Because Po and P1 are the only two boundary points
at which uε may not be C\ uε is C2 on π(L) (Ί i3ε.

FIGURE 4. A lower hemisphere L contacting dΩε x J? along Ay with contact
angle less than γ. The "undeside" Tδ of a torus, contacting 3f2ε x R
with contact angle greater than γ.
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Raise L until it lies above the bounded surface {z = uε(x, y)}.
Lower L until the two surfaces first contact each other. Let Qo —
(x0, y0, uε(x0, yQ)) be a point of first contact.

Qo is not on E. This is because L is vertical along E whereas
uε is C2.

Qo is not on A: The end points of A are on E and are already
excluded. If Qo was not an end point, the traces of the two surfaces
on l0 x R would be tangent there. Since L contacts l0 x R at a steeper
angle than the capillary surface, it would follow that L was actually
below the surface in the interior normal direction from Qo. Thus Qo

would not be a point of first contact.
Thus (x0, y0) lies in the interior of π{L) Π Ωε. Since Qo is an

interior point of first contact, the two surfaces are tangent there,
and since L is nowhere below {z = ut(x, y)}, it follows that

H(uε)(x0, y0) ^ — (since — is the mean curvature of L) .
R V R '

Using (i) gives:

2

tea

Since L varies in height by R,

ut(x, y) ^ 4 τ + R for all (x, y) e π(L) n Ωε .

By our previous comments this estimate holds in all of Iε.

Fix #2 with 7 < θ[ < θ2 and let IIε be the subregion of Ωε as
described in Fig. 2. Then we have

LEMMA 3. uε(x, y) approaches °o uniformly in IIβ, as e a^-
proaches 0.

Proof. Consider the unique circle C1? containing Po, making an
angle θ'2 with Z3 and going through Px if (92 <̂  π/2, or through (0, — ε)
if θ2 > π/2. Let C2 be a circle of the same radius translated 2R units
to the left.

There is a unique torus in JB3 containing C1 and C2. It is generated
by rotating Cx about an axis parallel to the #-axis and going through
Q19 the point midway between CΊ and C2. Let /// be the part of Ωε

on or to the left of Clf and on or to the right of C2 (see Fig. 3).
Then in ///, the "underside" T of the torus is given by

v(χ, y) = [(R - τ/r2 - (y - Vιγγ - (x - Xι)ψ>,



384 NICHOLAS J. KOREVAAR

where (xl9 yt) = Qλ (see Fig. 4). T contacts ls x R with contact angle
θ[ > 7, and contacts l2 x R with contact angle of at least θ[. It is
vertical at Cx and C2.

Let any δ > 0 be given. In order to avoid Po and Px translate
T δ units to the left and call it Tδ9 as in Fig. 4. Lower Tδ beneath
[z = uε{x9 y)}9 and raise it until the first contact is made. By reason-
ing as in Lemma 2 it follows that if (xOf y09 uε(x0, y0)) is a point of
first contact, then it does not occur on the boundary of Tδ. Thus it
is a point of tangency and since Tδ is nowhere above {z = uε(x9 y)}9 the
mean curvature of Tδ is no bigger than that of uε at (x09 y09 uε(xOf y0)).
But by looking at the normal curvatures for a torus, one can calcu-
late the following inequality:

H(v)(x, y) ^ -|-(i- - — 3 ^ ) {x> y) β I i :

so that

div Tuε(x0, yQ) ^ (— -
r R — r

or

fc\r R —

Since Tδ varies in height by at most R, and since δ can be chosen
arbitrarily small,

uε(x9 y) ^ — ( — ™ — ) ~ R for (x, y) in /// .
ιc\r R — r /

Since I/£ c /// for ε small enough, the last inequality eventually holds
in //ε. Noticing that r is proportional to ε and ϋ? is fixed, the result
follows.

Combining the three lemmas yields the desired result:

THEOREM. For ε sufficiently small, the solution uε{x9 y) to the
capillary problem (i) and (ii) in Ωε cannot be extended continuously
to the vertex of the re-entrant corner of angle θ.

Although this theorem shows that uε need not extend nicely to
the vertex, simple experiments with glass slides placed vertically in
water indicate that the capillary surface itself still extends in a
regular fashion to its boundary.
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