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REGULARITY OF CAPILLARY SURFACES
OVER DOMAINS WITH CORNERS

LEON SIMON

Using the usual mathematical model (capillary surface
equation with contact angle boundary condition) we discuss
regularity of the equilibrium free surface of a fluid in a cylin-
drical container in case the container cross-section has corners.

It is shown that good regularity holds at a corner if the
"corner angle" θ satisfies O<0<τr and θ + 2β>ττ, where 0</3<
π/2 is the contact angle between the fluid surface and the
container wall.

It is known that no regularity holds in case θ + 2β<π,
hence only the borderline case θ + 2β = π remains open.

We here want to examine the regularity of solutions of capillary
surface type equations (subject to contact angle boundary conditions)
on domain Ω c i ί 2 in a neighbourhood of a point of dΩ where there
is a corner.

To be specific let Ω (as depicted in the diagram) be a region
contained in DR = {x e R2: | x | < R) (R > 0 given) such that dΩ
consists of a circular segment of dDR together with two compact
Jordan arcs 7i, 72 such that 7i Π 72 = {0}. 7i, 72 are supposed to be
Qua fQΐ s o m e o < a < 1, and to meet at 0 with angle (measured in Ω)
θ, 0 < θ < π. We also suppose (without loss of generality, since we
can always take a smaller R) that 7* intersects dD0 in a single point
for each i = 1, 2, 0 < p < R.

Then we look at (weak) Clt"(Ω ~ {0}), solutions of the equation

(0.1) Σ A ( Ί / 1 f f n ) = H(x,u) on Ω,
*=i M/1 + \Du\2/\Du\

where H is a locally bounded measurable function on Ω x R.
It is assumed that a contact angle boundary condition holds; to

be precise, we suppose
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(0.2) y(X).jκ(X) = cos£

at each point X — (x, u(x)) with x e (Yi U 72) ~ {0}. Here and sub-
sequently v(X) denotes the upward unit normal of the graph M of
u at X (although we will assume that v is defined on all of (Ω ~

{0}) x R by v(x, t) =Ξ (-Du(x), l)/l/l + \Du\2 for (x, t) e (Ω ~ {0}) x iί;
thus v is constant on vertical lines), and μ(X) denotes the inward
pointing unit normal of the boundary cylider ((Ti U 72)~{0}) x R. Notice
that of course (0.2) can be expressed as du/dη/i/l + \Du\2 = cosβ,
where du\dr] denotes the directional derivative of u in the direction
of the outward unit normal to dΩ ~ dDR.

As is well-known, in case H(x, u) = KU + λ (Λ:, λ constants) the
equation (0.1) with boundary condition (0.2) is the usual model for
the equilibrium free surface of a fluid in a cylindrical container,
with side walls including (Yi (J 72) X R, subject to the influence of a
uniform gravitational field acting in the vertical direction. (The
case K = 0 corresponds to zero gravity, while tz > 0, tt < 0 correspond
to gravitational fields acting vertically downwards and upwards
respectively.)

The "contact angle" β of (0.2) is supposed to be a constant, with

(0.3) 0 < β < π ,

but we could, without significant changes to the proofs, allow the
case when β is a Holder continuous function satisfying (0.3) at each
point of 7i U Ύ2.

The angle θ (measured in Ω) between the arcs ru τ2 at 0 is
assumed to satisfy

(0.4) 0 < θ <π , θ>π -2β

where β = β if 0 < β ^ ττ/2 and β = π — β in case π/2 < β < π.
That some condition on the relation between θ and β is necessary
in order to deduce any regularity of u near 0 is evident from the
results of Concus and Finn [4], who show that, in case

(0.5) lim sup H(x, t) = — oo and lim inf H(x, t) = + oo f
t-+—oo x e β t-*+oo x e β

u is bounded near 0 if and only if θ ^ π — 2/5.
The main result to be proved here is given in the following

theorem. Notice that we need to assume a-prίori that u is bounded
in Ω.

THEOREM 1. Suppose u e Cha(Ω - {0}) n L°°(Ω) satisfies (0.1), (0.2),
and suppose that (0.3) and (0.4) also hold.

Then \imat-+OfXeQu(x) and \imx^OtX e^Du(x) both exist (with values in



REGULARITY OF CAPILLARY SURFACES OVER DOMAINS WITH CORNERS 365

R and R2 respectively)', thus u extends to a C\Ω) function.

In view of the result of Concus and Finn referred to above, we
are able to state the following corollary of the theorem.

COROLLARY 1. Suppose u e Cha(Ω ~ {0}) satisfies (0.1), (0.2) and
suppose (0.3), (0.4), (0.5) also hold.

Then the conclusion of Theorem 1 remains valid.

The general idea of the proof of Theorem 1 is first to show
that there is a point (0, z0) e {0} x R at which the graph M of u has
a nonvertical tangent plane z = zQ + Σ?=i aiχi (αi> α2 constants), in
the sense that | u(xu x2) — z0 — Σ?=i aiχ% I = ° 0/%l + %ϊ) a s vΌ^ + 1̂ —̂  0.
This is achieved in §§1-3, using some geometric measure theoretic
arguments (involving interior regularity and first variation theory).
A key point here is a positive lower bound for the two dimensional
density of M = graph u at any point of M Π {0} x R. (See inequality
(1.12) of §1.) In particular there are no "cusp-like" singularities.
The angle condition (0.4) is needed to prove this lower density bound;
(0.4) is not needed for any of the other results in this paper.

Having established the existence of a nonvertical tangent plane
at (0, z0) one then uses (in § 4) the interior regularity theory and the
boundary regularity results of Jean Taylor [10], away from {0} x R
(i.e., away from the singular part of the boundary cylinder), to
conclude the existence of a limit for Du{x) as x -» 0.

We should remark that while this paper is concerned only with
nonparametric capillary surfaces in cylindrical containers, it is
evident that regularity results for parametric solutions in general
polyhedral-type containers satisfying suitable edge and vertex angle
conditions can be obtained by appropriate modification of the method
described here.

1* Preliminary area bounds* In this section, and subsequently,
Ω and u are as described above, with sup^l^l <;Z/<oo (L a given
fixed constant); v and μ are also as described in the introduction,
and we use the following additional notation:

Dp = {xeIP:\x\<P} (p > 0)

BP(Y) = {XeR3: \X-Y\<p] (p > 0 and YeR*)1

μ{1) = lim μ(X) , μ{2) = lim μ{X)
X X0X-*0

Xe y±xR

1 As a rule we will represent points in R3 by upper-case letters X, Y, ••• and points

in R2 by lower-case letters x, y, .
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M = graph u = {X = (x, u(x)): x e β ~ {0}}

3M = {X = (x, u{x)): xedΩ ~ ({0} U dDR)}

& — 1-dimensional Hausdorίϊ measure in R2 or JB3

ίg2 = 2-dimensional Hausdorff measure in J?3

J will denote any constant such that

I H(x, u{x)) \ S J f o r a l l x e Ω ~ { 0 } .

Our first task in this section will be to establish upper bounds
on the area of M. In fact we will show

(1.1) §\M n (Dp x R)) ^ cp , 0 < p < R ,

where c is a constant depending only on J, L and i2.
To see this we first multiply the equation (0.1) by a function

ό 6 C\Ω — {0}) and integrate over the subdomain U Ξ= (Z>O — Dff) n β,
where 0 < σ < p <^ R. This gives

(1.2) - ί Du Dφ dχ=[ φ_Du V d x + \ H{x,u)φdx,

where f] denotes the inward unit normal of 3 U. We then take φ = u
and let σ —> 0. One readily checks that (1.2) then yields (1.1).

We are also here going to need the classical first variation
formula for M. This says

(1.3) ί δM φdQ*=-\ φΉd&-\ φ
JM JM JdM

where the notation is as follows:
η denotes the unit normal to dM which is tangent to M and

which points into Ω x R;
H — mean curvature vector of M — H(X)v(X) at each point of

M by virtue of (0.1);

Φ = (0i, Φu Φz) is any C\U x R) vector field which vanishes in a
neighborhood of ({0} x R) U {dDR x R); δM -φ = Σ U δf Λ, where δM =
(of, δξ, δf) is the gradient operator relative to M, defined by

= Σ (δϋ -
3 = 1

whenever h e Cx(β x /?). (Thus δMh is the orthogonal projection of
the ordinary gradient Dh(X) onto the tangent space of M at X.)

Using this formula, we can bound the length of dM by the
following argument.
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Let r be the radial distance function defined by r(x,t) = \x\,
x, teR2 x R, let φ be any C1 vector field on Ω x R ~ {0} x R with
sup r\Dφ\ < co and support | φ | c D R x R, and for 0 < 4σ < p < R
let ψoeC\R%) be such that ψo{x, t) = τ(|a?|) for (α, ί ) e i ί 2 x R, where
7 6 C3(i2) satisfies the conditions:

7 = 0 on [0, σ] , 7 ΞΞ 1 on [p — σ, R]

Y = p-1 on [2σ, p - 2σ] , 0 ^ 7 ' ^ jo~1 on [0, JFί] .

(Thus 7(<0 -> min {t/p, 1} uniformly a s σ - ^ 0 for ί e [0, R].)
Then, upon substituting ψaφ in place of φ in (1.3) and letting

σ -* 0, we deduce

pΛ φ- δMrd®2 + [ min {r/p, l}φ

(1-4) ;

= - \ min {r/p, 1}(5^ - φ

Now

(1.5) V= V-(» f» = ^
| ^ ( y / £ ) | | ^

by virtue of (0.2). Thus if Ύ is the unit vector bisecting the angle
θ formed by the tangents to ylt γ2 at 0, we have

(1.6) V ^ > ί* y-\™sβ\ > i _ / g i n A _ | C 0 S / 5 | ) > o
~ I μ - cos βv I ~ 2 V 2 H V

on 3Λf Π (X>̂ 0 X-B) for sufficiently small pQ > 0. (That sin 0/2-
I cos/31 > 0 is just a restatement of (0.4).)

By (1.1) we thus deduce from (1.4) (after taking φ — scalar func-
tion x 7 and letting p j 0) that

(1.7) Q\dMn(DB x JB))< oo .

In terms of the varifold V = v(M) associated with Λf([l, 3.5]), this,
along with (0.1) and (1.1), tells us that

(1.8) \\8VM(DB~{0}) XR)< - ,

where δV denotes the first variation of V and \\δV\\ is its total
variation ([1, 4.1, 4.2]). We can therefore use [2, 3.1 (7)] to deduce

(1.9) p~Λ \δMr-Dr\2d®2 >0 as p >0 .
JMC\(.DpXR)

In view of (1.1) (1.9) and Schwartz inequality, we see from (1.4) that
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p~~ι \ ψy Drd$2 + 1 ψy

£ (1 + J) ( ( t + | δ V I W + 0(1)

as ^ -> 0, where y is the constant vector of (1.6), and suppose
ψczDPoxR.

Since y Z?r ^ cos 0/2 > 0, and since (1.6) holds, we then have

lim sup p~ι \ ψd$2 + I
PΪO jMf]{DpXR) Jd

whenever support ψ c DPQ X R, where c depends on Θ and β. In
terms of the varifold V = v(M) this says

(1.11)

by [2, 3.1(2)].
With the help of the isoperimetric inequality [1, 7.1] and a minor

variation of the iteration argument of [1, 7.5(6)] (taking f — 1
there), we then deduce

(1.12) ξ>Wn BP{Y)) ^ cp\l + ^o)-2 , 0 < p< p0 - σ ,
YeMn(Dσ x B)

for some positive constant c depending only on J and the constant
c in (1.11). We deduce particularly that the bound (1.12) holds also
for YeM Π ({0} x JB). For convenience of notation we will hence-
forth suppose 0 e M n ({0} x JB) (this can be arranged by replacing u
by u — z0 for suitable z0), and hence (1.12) holds with Y — 0.

Notice that (1.12) says in particular that M cannot have a
"cusp-like" singularity at a point of {0} x R. If the condition (0.4)
is violated however, it appears intuitively evident that there exists
graphs M of bounded mean curvature which do exhibit such
singularities.

2* Monotonicity and consequences* In this section we first
want to establish a certain monotonicity property. (See (2.6) below.)
It seems likely that this can be proved by modifying the relevant
argument of Jean Taylor [10]. It will be convenient here however
to use standard varifold theory [1, §§3, 4, 5.1-5.4]; the reader will
see that only a few of the more elementary aspects of [1] are used
in this section, and as in §1 only the stationary character of M,
rather than a minimizing property, is needed.
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To begin, suppose ψ is a C1 vectorfield in J?3 with the properties

(2.1) φ is parallel to (0, 0, 1) on {0} x JB, φ is tangent to
(dΩ ~ dDB) xR on (dΩ ~ 3DB) x R.

Let F = {(&, t): xej.Dy,^ {0}, t ^ u(x)} and for 0 < σ < i? let
jPσ = F f] {(x, t): σ <, \x\ <L R — σ}. The classical divergence theorem
(e.g., [7, 5.6.9]), which we apply to Fσ and let σ —> 0, gives

(2.2)

whenever ψ is a C\(DR x Λ) function. Here PΓ denotes the two
dimensional varifold v(F) associated with F, and y denotes the unit
normal of dM which is tangent to F and which points into F.

Since cos βj φ — η φ (η as in (1.3)) whenever ^ is as in (2.1),

we can then multiply by-cos β in (2.2) and add the result to (1.3)

(which says δV(ψφ) ~ — I ψv φdίQ1 — \ ψHφ vdtQ2), thus obtaining
\ JdM JM /

(2.3) (δ V ~ cos βδ

whenever φ is as in (2.1). Similarly if we take W = v(F), F~
{(x, t): x 6 Yi U 72 ̂  {0}, £ ̂  'M'(̂ )}, we deduce

(2.3)' (δV + cos βδW)(ψφ) = -

Since ΎU T2 are Cha curves, one can readily check that there is
a C1 vector field φ as in (2.1) such that

sup I X\~1~a I X — φ(X) I <C α o ,

( 2 ' 4 ) sup |X|-«|ί)(X-^(X))[< co .
Λ" e l)R x /{

Next, let Z = F — cos /3 TΓ in case cos /3 < 0 and Z = V + cos βW
in case cos β > 0. By (2.3), (2.3)' and (2.4) we then have

(2.5) \δZ(7(\X\))X\^c\(\XM\X\)

where c depends only on J, for any Cl(( — R, R)) function 7. In view
of this, a minor modification of the argument of [1, 5.1] or [8, §3]
shows that, for a suitable constant c,

(2.6) exp (cp^H^IK^ 0)) is increasing in p, 0 < p < R .

Furthermore, by (1.12), (2.2), (2.6) and [1, 4.12] we deduce that
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there is nonzero stationary varifold C in the varifold tangent of Z
at 0. Thus, writing μr to represent the homothetic transformation
X\-^rX (r > 0), we can find a sequence r/c —> oo so that V^ —
limfc_>co/ir^F, Woo = l i m ^ μrh%W, and W^ = l i m ^ μ ^ T F all exist and
so that C = Foo — cos/SJFoo or C = F*, + cos/5ΪFoo according as cos/3
is negative or positive. Evidentally μ r#||C|| = ||C|] (by (2.6)).

An immediate consequence of (1.12) is that, for each p > 0, there
is a sequence εk —> 0 such that

(2.7) Bp(0) n Mk c {Ye BP(0): dist (Γ, spt || F J | ) < εfe} .

Here Mk = μrjc{M) and spt 11F̂  11 denotes the support of the measure
IIF.IKIIF.il -weight of F . [1, 3.1]).

Indeed, if (2.7) were false, there would exist ε>0, a subsequence
{&'} c {&} and a sequence {X/c/} with Jffc, e Mh> Π -4β for &', where for
each n > 0 we let

Λ - { Γ e 5,(0): dist (Γ, spt || F.I]) ^η] .

Applying the inequality (1.12) to Mk> (notice that (1.12) holds with
the same constant c if M is replaced by Mk, because Mk — μrjc{M)),
we deduce

&(Mk Π Aβ/2) ̂  €>2(M, n Bε/2(Xk)) ^ cε2/4 ,

thus contradicting the fact that

limsup mMk Π Aε/2) £ ||F.||(A./2)( = 0)

(which holds because v(Mk) —> F J .

3. Tangent plane for M at 0. From the interior nonparametric
regularity theory [9, §3] (alternatively from the parametric theory
of [1, §8] or [3] or [6]), we deduce that there exist λ, 0 6(0, 1) and
a constant c > 0, all depending only on pJ, such that, whenever
YeM and BP(Y) Π (312 x R) = 0

(3.1) Bxp{ Y)f]M is connected, | v{X) - v{X) \ ̂  Kp-11X - X |)'5 ,

for X, XβBλp(Y)nM.
Let {rfc} be the sequence used to construct the varifold C in §2,

let Ωk = {rkx: x e Ω), Mk — μr]c(M) ( = graph uk, where uk is defined
by uk(x) = rku{rk

ιx\ xeΩk)9 and let F^, TFoo, TF̂  be as in §2. Also,
let Ω^ be the domain enclosed by the rays which are tangent to j19

72 at 0, so that the Lebesgue measure of [(42*, - Ωk) U (Ωk - i2J] D D^
converges to zero as k —> ̂ o for each ^ > 0.

In view of (3.1) and in view of the fact that (by (0.1)) Mk)) Mk

has mean curvature bounded by J/rk, we deduce that
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V^ L (̂ co x R) = v(MJ) ,

where MJi = lim Mk taken in ΩTO x R in the varifold sense) is either
empty or a smooth minimal (not necessarily connected) submanifold
of ΩTO x R with

(3.2) ΦWoo Π £,(0)) < oo for each p > 0 (by (2.6))

and with μ^MJ) = ΛC for each r > 0. This last property just says
that 1C is a cone, which is true by (2.6) and [1, 5.2(2)(a)].

One now readily checks (from the fact that M^ is a C2 cone with
zero mean curvature) that

(3.3) AC = (J TΓ,. Π (Ω^ x i?) ,
3=1

where πά are planes through the origin and πt Π π3- Γi Ω^ x /? = 0
for i ^ j . We must consider the possibility that N — co here, but
in any case by (3.2) we see immediately that at most a finite sub-
collection of {πlf τr2, } intersects a given compact subset of Ω^ x R.
Evidently, since M^ is the limit (taken in Ω^ x R in the varifold
sense) of the sequence Mk of graphs, we easily deduce from (3.3)
that either

Case 1. N — 1 and M^ — τrt Π (fl̂  x 72) for some plane πt such
that πΊ Π ({0} x B) = {0}; or

Case 2. N <<>o and M^ = (Jf=i ̂  Π (£«, x Λ), where 7ΓX, π2, -, ^ γ

are planes with the line {0} x R in common. (Notice that to get
N< co here, it is necessary to use (3.2).)

To proceed further, we need to consider the variational problem
satisfied by M. For any bounded Borel set A c 2Γ and any open
WczΩ x R we let

ΓiΩxBΓiA)

cos β$\dW Π 5i2 x iί Π A) + ( K(X)dX ,
J ΛL n *r

where K is defined on i2 x R by if(#, ί) = H(x, u(x))f (a?, ί ) e β x i?,
so that if is constant on vertical lines.

We claim that U = {(x, t)eΩ x R:t < u(x)} minimizes E in the
sense that

(3.4) E(U, BP(fl)) £ E(W, Bp(0))

whenever W satisfies
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(3.5) WaΩ x R , ®\dW[\ 5,(0)) <

aw ~ u) u (U ~ TΓ)) n 5,(0) c c 5

To see this, first note that the equation (0.1) can be written
div v = K on Ω x R, where K is as above. An alternative way of
writing this is

(3.6) d(*») = Kdx1 A dx2 A dxs on Ω x R ,

where *v denotes the 2-form vxdx2 A dx3 — u2dxx A dxz + vzdxt A dx2.
Let [W], [U] denote the 3-currents obtained by integrating 3-forms
over W and U respectively; d[W]f d[U] are rectifiable in Bp(0) by
(1.1), (3.5) and [5, 4.5.6(1)].

Next let ψσ be a nonnegative C\R3) function with fff = l or
Bp(0) — (Dσ x R), ψσ == 0 or Dσ/2 x R and supΛs | D^σ | £ 3/σ, and use
the identity

d([W] - [U])(ψΛ*»)) = ([W]~ [U])(d(ψβ.(*m •

Letting σ I 0 and using [5, 4.5.6(4)] to evaluate the left side of this
identity, we deduce

K(X)dX

^ ί o )

= ( K(X)dX +\
JWOBpiO) Jp

where fjv, fjw denote the exterior normals of U and W respectively.
(See [5, 4.5.5] for the definition of ΎJW\ notice that unless W is a
reasonably nice set, we may have ηw — 0 on a set of positive φ2

measure in 517 ΓΊ 5,(0).)
Since ηπ = v on dU Π (α> x R) and

= μ φ2-a.e. on 5T7 n (βΩ x Λ) Π {Xe 5,(0): ηw{X) Φ 0} ,

we then have (3.4), as required, by virtue of (0.2).
Now define, for any open WaΩk x R and any bounded Borel

set AdR\

Ek(W, A) = $VWΓ) (Ωk x R)Γ\A) - cos β§\dW Π (Sώ4 x R) Π A)

+ rA

(We also include A; = <χ> in this definition, in which case the last term
is to be interpreted as zero.) Since Ek{μr]eW, μr]cA) = r\E{W, A)
whenever W is as in (3.5), it is evident from (3.4) that for k =
1, 2, we have
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(3.4)' Ek(Uk, Bp(0)) ^ Ek(W, BP(0))(Uk = μrjc(U)) ,

whenever W is an open set such that

Wa Ωk x R , mdWf] Bp(0)) < oo ,

((Uk~W)Ό(W~Uk))Γι BP(0) a a BP(0) .

We can now show that M^ Φ ψ. In fact we will show that

(3.7) Foo L Oΰco x R) = 0 ,

which is a stronger statement because V^ΦO by (1.12).
To prove (3.7) first note that since FTO = lim^*, μ r Λ # F, by virtue

of (1.11) and (2.6) we can apply [1, 5.4] to deduce that Θ2(\\VJ\, (Y^ 1
for 11 Fool I — a.e. Y. If (3.7) fails we can therefore take a point
YedΩ^xR- (({0} χ β ) U (Uf=i^)) such that Θ 2 ( | |FJ | , Y) ^ 1.

Hence for each ε > 0 we can find p > 0 such that

(3.8) B2P( Y) Π (({0} X R) U ( U π)) = <4 ,

&-(BP/2(Y) Π Mk) ^ ± _
π(p/2γ

for all sufficiently large k> and (by virtue of (2.7))

(3.9) Mk Π BP(Y) c {Xe i2/c x i2: dist (X, 3i2fe x R)< σφ) ,

where σfc —> 0 as k-^> °°.

Next, let {/fc} be a sequence of C°° mappings of R3 into JB3 with
the properties:

fk(Ωk xR)(zΩkxR, fk(Bp/2( Y)) c B,/2( Γ) , fk(X) - X ,

ff- £,(Γ)) U (3i2fc x R) , fk(Bp(Y) ~ Bm(Y)) czBp(Y)~ Bpn{Y)

fk{XeBp/2(Y): dist (X, dΩk x R)< σk) c B,/ 2(Γ) ΠdΩkx R

sup | |D/ f c(X)| | ^ 1 + cσfc , c independent of & .

(It is left to the reader to check that such a sequence exists.)
For each k we now let Uk = μr]c(U), Uk = interior fk(Uk), and

we let i?* be as in (3.4)'. From construction of the fk9 we know
that for k = 1, 2, - ,

(3.10) Ek(Uk9 BP/2(Y)) = 0 ,

Ek(Uk, BP(Y) - B,/2(F)) ^ (1 + cσkγEk(Uk, BP(Y) - £

and, by virtue of (3.8),

(3.11) #*(E4, £, / 2(Γ)) - (1 - ε - |cos β\Mp/2γ + σk^
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where σk-^0 as k-^oo. Combining (3.10), (3.11), we deduce that
(for ε < 1 — I cos β | and k sufficiently large)

Ek{ Uk, BP( Y)) < Ek( Uk, Bp( Y)) ,

and hence, since fk(X) = X for all I e Λ 3 - BP(Y),

Ek(Uk, B.φ)) < Ek(Ukf 5.(0)) (σ>p

thus contradicting (3.4)' for all sufficiently large k. Thus (3.7) is

proved; hence

(3.12) M^Φφ and FTO - v(M^) .

By virtue of (3.1) and the definition of Uk it now readily follows
that there is an open U^dΩ^ x R such that dU^f] (Ω^ x R) = M^
and (U^^ Uk) Ό (Uk ~ Uπ) has measure locally converging to zero.
Furthermore by (3.1), (3.3), (3.4)', (2.7), (3.7) and the fact that
μr]ciV-^Voo9 we easily deduce

(3.13) EJU»f 5,(0)) ^ EJW, B,(0))

for every open W satisfying

((W - UJ U (C/oo - W)) ΓΊ BP(0) c c 5,(0) .

Here we use the notation that

r, A) = § 2 ( 3 T F n ( ^ x Λ) n A) - cos ^ 2 ( s τ ^ n (3βTO x JS) n A)

for any TΓ as in (3.14) and any bounded Borel set A.
Now we want to show Case 2 is impossible. To see this, note

first that in Case 2 U^ = U ϊ x Λ for some open U^czΩ^ with dU£ a
finite union of rays emanating from the origin. Define

E!?(W) - Q\dwn ώoo n A) - cos/s^oTΓ n 3 ^ n A)

for any open W satisfying

((wu^uiu^ ~w))n Ace A,

and note that it follows from (3.13) that

(3.16) ^ ( t / 2 0 ^

for any W as in (3.15).
Since Ω^ ~ Ό^ clearly satisfies a variational principle similar

to that satisfied by U^ but with π — β in place of β9 in case N > 1
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we can suppose without loss of generality that there is a component
TF* of U£ with W* n dΩM = {0}. But then

E^((ϋ^ ~ W*) U #*) < E*\W») ,

where W* is obtained by "smoothing out" the vertex of W* at 0.
Since this contradicts (3.16), we deduce N = 1.

To show that we also get a contradiction in Case 2 if N = 1,
we note that if β0 is the angle formed by U™ at 0, and if β0 < β,
then we have

(3.17) E2?(W*) < E^iUS?)

if W* is constructed as follows:
Let pedD1/2 Π (dU™ ~ 3&J and let q be the point on dU™ Π 3.0^

at distance ε from 0. We then let W* = ?7t̂

) — if, where if is the
closed 1/2-plane with 0 6 H ~ dH and {p, q} c dH. For ε small enough
one then easily checks that (3.17) holds. Thus we deduce

(3.18) βo^β.

However, again using the fact that Ωw — U^] satisfies a similar
variational problem with π — β in place of β, we can deduce by
the same argument that

(3.18)' θ - A ^ π - β .

Adding (3.18) and (3.18)' we have θ^π, thus contradicting (0.4).

Thus Case 2 is impossible, and we are left with Case 1. Notice
that the plane πλ in Case 1 is uniquely determined by β and Ω^.
In fact a standard (nonparametric) argument (based on the fact that
(3.13) holds) shows that π1 must make an angle (measured in U«) of
β with each component of (dΩ^ x R) ~ ({0} x JB). Thus πx is
characterized by saying that πx has a unit normal v° with the
properties

(3.19) v° (0, 0, 1) > 0 , v0' μ{ι) = cos β - v" - μ[2\μ{ί) = lim μ(X)) .

(This characterizes πλ completely because μ{1) and μ(2) are linearly
independent.)

Thus we have shown that M^ = πL n (̂ oo X -B) with πx having
unit normal v° as in (3.19), independent of the particular sequence
{rk} chosen to construct M^. It follows that {μrk$V} converges to
the same limit vfa Π (ΰM x B)) for every sequence rk—> oo. In
particular we may take rk = 2\ One easily checks that (2.7) then
implies
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(3.20) lim
\χ\

xeΩ ' '

- o ,

where v\, v\9 v\ are the components of the vector v° normal to πx.
In particular, we deduce l im^^e^^x) exists, thus completing the
proof of the first assertion of Theorem 1.

4* Conclusion of proof • Here let Mk = μikM, uk(x) = 2ku(2~kx),
xeΩk, where Ωk = μ2k(Ω). (Thus Mk, Ωk are as in the previous
section, with rk — 2k.)

We know from (3.20) that

(4.1)
2

Σ • 0 as k •

uniformly for 1 ^ \x\ ^ 2.
On the other hand (3.1), applied to Mk, gives us λ, δ e (0, 1) and

c > 0 so that

(4.2) Iv{k){X) ~v

whenever X = (x, ufc(a?)), 3Γ = (y, uk(y)) are such that \X — Y\ < Xσ
and x, y e{ze Ωk: dist (2, dΩJ) > σ). Here v(fc) denotes the upward
unit normal of graph uk, and σ > 0 is arbitrary.

By combining (4.1), (4.2) we then easily deduce that Duk(x)->
(vl)~\vo

u vl) as k—> oo? the convergence being uniform for xe{yeR2:
1 <; \y\ <̂  2, dist (#, δί?^) > σ) (σ > 0 arbitrary).

Writing this last conclusion in terms of u, we have

(4.3) lim Du(x) = (vj)-1^?, v°) ,

where Sσ = {x e Ω: dist (x/|x|, dΩJ) > σ}.
On the other hand, if we use the boundary regularity theory

of J. Taylor [10], we deduce by (4.1) that (4.2) actually holds for
any X = (x, uk(x)), Y = (y, k{y)) with | X - Y\ < a and x9 y e {z e Ωk:
1 ^ I z I S 2, dist (z, Ω^) < σ}, provided σ is sufficiently small (in-
dependent of k). Combining this fact with (4.1) and reasoning as
before, we deduce

(4.4) lim Du{x) = (vl)-\v°u v°2)
xeTσ

where Tσ = {x e -Ω: dist (»/|a|, 3i3J < α}.
Theorem 1 is now established by combining (4.3) and (4.4).
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