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REGULARITY OF CAPILLARY SURFACES
OVER DOMAINS WITH CORNERS

LEON SIMON

Using the usual mathematical model (capillary surface
equation with contact angle boundary condition) we discuss
regularity of the equilibrium free surface of a fluid in a cylin-
drical container in case the container cross-section has corners.

It is shown that good regularity holds at a corner if the
“corner angle” 4 satisfies 0<8 <z and 6+28>r, where 0<8<
7/2 is the contact angle between the fluid surface and the

container wall.
It is known that no regularity holds in case 6+28<x7,
hence only the borderline case 6+23=x remains open.

We here want to examine the regularity of solutions of capillary
surface type equations (subject to contact angle boundary conditions)
on domain 2 C R® in a neighbourhood of a point of 02 where there
is a corner.

To be specific let 2 (as depicted in the diagram) be a region
contained in D, ={xeR:|z|< R} (R >0 given) such that 02
consists of a circular segment of 6D, together with two compact
Jordan ares v, v, such that v, N, = {0}. v, 7. are supposed to be
C** for some 0 < «a < 1, and to meet at 0 with angle (measured in Q)
6,0 <6< m. We also suppose (without loss of generality, since we
can always take a smaller R) that v, intersects 0D, in a single point
for each ¢+ =1,2, 0 < p < R.

Then we look at (weak) C»*(2 ~ {0}), solutions of the equation

2

D _
0.1) ngi(lTJF—T—W) — H(z,uw) on 2,

where H is a locally bounded measurable function on 2 x R.
It is assumed that a contact angle boundary condition holds; to
be precise, we suppose
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0.2) Y(X) - i(X) = cos 8

at each point X = (x, u(x)) with e (v,U7,) ~ {0}. Here and sub-
sequently v(X) denotes the upward unit normal of the graph M of
u at X (although we will assume that v is defined on all of (2 ~
{0}) x R by v(x, t) = (—Du(x), 1)/V'1 + [Du] for (x,t) e (2 ~ {0}) X R;
thus v is constant on vertical lines), and #(X) denotes the inward
pointing unit normal of the boundary cylider ((v,U~,)~{0}) X R. Notice
that of course (0.2) can be expressed as ou/om/V'1 + |[Duf® = cos g3,
where 0u/o7) denotes the directional derivative of # in the direction
of the outward unit normal to 02 ~ 0D;.

As is well-known, in case H(x, w) = ku + )\ (£, » constants) the
equation (0.1) with boundary condition (0.2) is the usual model for
the equilibrium free surface of a fluid in a ecylindrical container,
with side walls including (v, U7,) X R, subject to the influence of a
uniform gravitational field acting in the vertical direction. (The
case £ = 0 corresponds to zero gravity, while £ > 0, £ < 0 correspond
to gravitational fields acting vertically downwards and upwards
respectively.)

The “contact angle” B of (0.2) is supposed to be a constant, with

0.3) o0<p<m,

but we could, without significant changes to the proofs, allow the
case when B is a Holder continuous function satisfying (0.3) at each
point of v, U ,.

The angle ¢ (measured in £2) between the ares r, v, at 0 is
assumed to satisfy

(0.4) 0<6<zm, O>m—28

where 3= if 0<g=<n/2 and =7 — 3 in case n/2< B < 7.
That some condition on the relation between 6 and g is necessary
in order to deduce any regularity of w near 0 is evident from the
results of Concus and Finn [4], who show that, in case
(0.5) lim sup H(x,t) = — and lim inf H(x, t) = + o ,
t——co z€Q t—too zeD

u is bounded near 0 if and only if 6 > 7 — 28.

The main result to be proved here is given in the following

theorem. Notice that we need to assume a-priort that w is bounded
in 2.

THEOREM 1. Suppose u € C4%(2 ~ {0}) N L=(2) satisfies (0.1), (0.2),
and suppose that (0.3) and (0.4) also hold.
Then lim,_, ,.zu(®) and lim,_, .3 Du(x) both exist (with values in
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R and R? respectively); thus w extends to a C(2) function.

In view of the result of Concus and Finn referred to above, we
are able to state the following_' corollary of the theorem.

COROLLARY 1. Suppose u e C %2 ~ {0}) satisfies (0.1), (0.2) and
suppose (0.3), (0.4), (0.5) also hold.
Then the conclusion of Theorem 1 remains valid.

The general idea of the proof of Theorem 1 is first to show
that there is a point (0, z,) € {0} X R at which the graph M of » has
a nonvertical tangent plane z =z, + >%., a;x; (a,, a, constants), in
the sense that |u(x,, #,) — 2, — S, a@;| = o (V2% + a3) as Va? + a% — 0.
This is achieved in §§1-3, using some geometric measure theoretic
arguments (involving interior regularity and first variation theory).
A key point here is a positive lower bound for the two dimensional
density of M = graph « at any point of M N {0} x R. (See inequality
(1.12) of §1.) In particular there are no “cusp-like” singularities.
The angle condition (0.4) is needed to prove this lower density bound;
(0.4) is not needed for any of the other results in this paper.

Having established the existence of a nonvertical tangent plane
at (0, z,) one then uses (in §4) the interior regularity theory and the
boundary regularity results of Jean Taylor [10], away from {0} X R
(i.e., away from the singular part of the boundary ecylinder), to
conclude the existence of a limit for Du(x) as o — 0.

We should remark that while this paper is concerned only with
nonparametric capillary surfaces in cylindrical containers, it is
evident that regularity results for parametric solutions in general
polyhedral-type containers satisfying suitable edge and vertex angle
conditions can be obtained by appropriate modification of the method
described here.

1. Preliminary area bounds. In this section, and subsequently,
2 and u are as described above, with sup, |u| < L<o (L a given
fixed constant); v and f are also as described in the introduction,
and we use the following additional notation:

D, ={xcR:|z|<p} (0>0);
B(Y)={XeR:|X—Y|<p} (0>0and YeRY);
1 = lim pu(X), p® = lim wX);

Xer xR XeyoxR

! As a rule we will represent points in R’ by upper-case letters X, Y, -+ and points
in R? by lower-case letters x, y, ««-.
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M = graphu = {X = (z, u(@): 2 €2 ~ {0}} ;
oM = {X = (x, u(x)): €02 ~ ({0} U 0Dp)} ;
9' = 1-dimensional Hausdorff measure in R® or R’ ;
$* = 2-dimensional Hausdorff measure in R°;
J will denote any constant such that
|H(x, u(x))| =< J for all xze ~ {0}.

Our first task in this section will be to establish upper bounds
on the area of M. In fact we will show

(1.1) OSMND, xR)=co, O0<p<R,

where ¢ is a constant depending only on J, L and R.

To see this we first multiply the equation (0.1) by a function
€ CY(2 ~ {0}) and integrate over the subdomain U = (D, ~ D,) N 2,
where 0 < 0 < p < R. This gives

Du - D¢ . Du-7m .
1.2)  —\ =20 gy = =t d +§ H(zx, w)gdx ,
(1.2) X/' V1 + [Dul v Sav¢1/1 + |Dul? v v (®, w)gdw

where 7 denotes the inward unit normal of 6U. We then take ¢ = u
and let ¢ — 0. One readily checks that (1.2) then yields (1.1).

We are also here going to need the classical first variation
formula for M. This says

(1.3) [, ovoa0r = = o map: | o-7d9',

where the notation is as follows:

7 denotes the unit normal to oM which is tangent to M and
which points into 2 X R;

H = mean curvature vector of M = H(X)v(X) at each point of
M by virtue of (0.1);

6 = (¢, &, &) is any C(2 X R) vector field which vanishes in a
neighborhood of ({0} X R) U (0Dy X R); 6" -¢ = >.i-,0{'¢;, Where oM =
(0), 67, 63 is the gradient operator relative to M, defined by

0/ M(X) = Z:, (@i — »( X, (XND;NX), XeM,

whenever heCY(2 x R). (Thus 6”h is the orthogonal projection of
the ordinary gradient Dh(X) onto the tangent space of M at X.)

Using this formula, we can bound the length of 03 by the
following argument.
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Let » be the radial distance function defined by »(z,t) = ||,
x, te R* X R, let ¢ be any C' vector field on 2 X R ~ {0} x R with
sup 7| Dg| < o= and support |¢|C D, X R, and for 0 <40 < p< R
let +r, € C*(R®) be such that . (x, t) = v(|z|) for (z, t) € R* X R, where
v € C(R) satisfies the conditions:

j7=0 on [0, 0], vy=1 on [p—o0, R]
v =p on [20,p—20], 0=+ =<p* on [0,R].
(Thus ~v(t) — min {¢/p, 1} uniformly as ¢ — 0 for ¢<[0, R].)

Then, upon substituting +,¢ in place of ¢ in (1.3) and letting
0 — 0, we deduce

o SM oy O 0TTAD" + S min {7/, )¢ - 7d$"

(1.4)

- _Su min {7/, 1}(6” - ¢ + Hy - 9)d$* .
Now
(1.5) po =y | pocospy oy

[t — (- pv] |t — cos By
by virtue of (0.2). Thus if v is the unit vector bisecting the angle
9 formed by the tangents to v,, v, at 0, we have

1.6 oy v —lesgls /(g 0 0
(1.6) RS ¢t —cos gy| — 2(s1n2 |cos,8|>>

on oM N (D,, x R) for sufficiently small o, >0. (That sin@/2 —
[cos 8] > 0 is just a restatement of (0.4).)

By (1.1) we thus deduce from (1.4) (after taking ¢ = scalar funec-
tion Xv and letting p | 0) that

(L.7) Q' OMN (Dp X R)) < oo .

In terms of the varifold V = v(M) associated with M([1, 3.5]), this,
along with (0.1) and (1.1), tells us that

(1.8) OVI[(Dr ~{0}) X R) < oo,

where 6V denotes the first variation of V and |[0V]| is its total
variation ([1, 4.1, 4.2]). We can therefore use [2, 3.1 (7)] to deduce

(1.9) p“S 15" — Dr*d9*——>0 as p—0.
Mﬂ(DpXR)

In view of (1.1) (1.9) and Schwartz inequality, we see from (1.4) that
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¥y - Drd9* + Sw yy - NdYH*

_1§
MN(DyXR)

(1.10)
<@+ D, @ + 1079 )AT* + oD)
as p— 0, where v is the constant vector of (1.6), and suppose
4 C D, X R.
Since v Dr = cos /2 > 0, and since (1.6) holds, we then have

lim sup p-* d$* + SM A"

olo SMH(DPXR)

S+ )| 6+ 107y )dg

whenever support 4 c D, X R, where ¢ depends on # and 5. In
terms of the varifold V = v(M) this says

(1.11) V() = e + J) S (¥ + 18"y D[ V]|

by [2, 3.12)].

With the help of the isoperimetrie inequality [1, 7.1] and a minor
variation of the iteration argument of [1, 7.5(6)] (taking f =1
there), we then deduce

L12)  Q(MNB(Y) zecol+p)", 0<p<p@—0,
YeMn (D, X R)

for some positive constant ¢ depending only on J and the constant
¢ in (1.11). We deduce particularly that the bound (1.12) holds also
for Ye M N ({0} x R). For convenience of notation we will hence-
forth suppose 0 M N ({0} X R) (this can be arranged by replacing
by w — z, for suitable z,), and hence (1.12) holds with ¥ = 0.

Notice that (1.12) says in particular that M cannot have a
“cusp-like” singularity at a point of {0} x R. If the condition (0.4)
is violated however, it appears intuitively evident that there exists
graphs M of bounded mean curvature which do exhibit such
singularities.

2. Monotonicity and consequences. In this section we first
want to establish a certain monotonicity property. (See (2.6) below.)
It seems likely that this can be proved by modifying the relevant
argument of Jean Taylor [10]. It will be convenient here however
to use standard varifold theory [1, §§3, 4, 5.1-5.4]; the reader will
see that only a few of the more elementary aspects of [1] are used
in this section, and as in §1 only the stationary character of M,
rather than a minimizing property, is needed.
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To begin, suppose ¢ is a C* vectorfield in R*® with the properties

2.1) é 1s parallel to (0,0,1) on {0} X R, ¢ is tangent to
(02 ~ 0Dy) X R on (02 ~ o0Dy) X R.

Let FF={(,t):xev, U7, ~{0}, t = u®)} and for 0 <o < R let
F,=Fn{&,t):0=|z| <R —o0}. The classical divergence theorem
(e.g., |7, 5.6.9]), which we apply to F', and let o — 0, gives

2.2) W) = —| o e

whenever + is a CYD, X R) function. Here W denotes the two
dimensional varifold v(F') associated with F, and v denotes the unit
normal of M which is tangent to F' and which points into F.
Since cos 379 =7-¢ (¢ as in (1.3)) whenever ¢ is as in (2.1),
we can then multiply by-cos 8 in (2.2) and add the result to (1.3)

<Which says 6 Viyg) = “Sm““’ . gD — S ¢H¢-ud@2), thus obtaining

2.3) BV — cos BOW)(ypg) = — § Hy - vd$*

whenever ¢ is as in (2.1). Similarly if we take W =uv(F), F =
{(m, t):xev, U, ~ {0}, t = u(x)}, we deduce

2.3) GV + cos GOW) () = _S Hyg - vd9* .

Since v, 7, are C"* curves, one can readily check that there is
a C' vector field ¢ as in (2.1) such that

sup [ X7 X — g(X)] < oo

Xeﬂﬂxk

sup [ X|™[D(X — ¢(X))| < oo .

YeDpXR

(2.4)

Next, let Z = V — cos W in case cos 8 < 0 and Z = V + cos sW
in case cos 3 > 0. By (2.3), (2.3)" and (2.4) we then have

@.5) oz X)X =¢ X (X (X)) + 1 X' XDl ZIl

where ¢ depends only on J, for any Ci{(—R, R)) function v. In view
of this, a minor modification of the argument of [1, 5.1] or [8, §3]
shows that, for a suitable constant ¢,

| Z][(By(0))
p2

(2.6) exp (c,o"‘)I is increasing in p, 0 < p < R .

Furthermore, by (1.12), (2.2), (2.6) and [1, 4.12] we deduce that
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there is nonzero stationary varifold C in the varifold tangent of Z
at 0. Thus, writing g, to represent the homothetic transformation
X—7rX (r>0), we can find a sequence 7,— o so that V_=
lim,_.. g,..V, W, = lim,_. ¢,.W, and W, = 1imk:w p,kﬁW all exist and
so that C =V, — cos W, or C =V, + cos W, according as cos 3
is negative or positive. Evidentally ,.||C|| = ||C] (by (2.6)).

An immediate consequence of (1.12) is that, for each p > 0, there
is a sequence ¢, — 0 such that

(2.7 B,(0) N M, c{Y € B,(0): dist (Y, spt || V..||) < &} .

Here M, = g, (M) and spt || V.|| denotes the support of the measure
NVLll(I V.l = weight of V,, [1, 3.1)).

Indeed, if (2.7) were false, there would exist ¢>0, a subsequence
{k'} < {k} and a sequence {X,} with X, e M,, N A. for k', where for
each n > 0 we let

A, = {Y e B,(0): dist (Y, spt || V..[) = 7} .

Applying the inequality (1.12) to M, (notice that (1.12) holds with
the same constant ¢ if M is replaced by M,, because M, = g, (M)),
we deduce

QM N A = O(M, 0 B.(X)) = ce’/4,
thus contradicting the fact that
lim sup @%Mk N Ag/g) é H Voo H (As/g)(:())

fe—o0

(which holds because v(M,) — V).

3. Tangent plane for M at 0. From the interior nonparametric
regularity theory [9, §3] (alternatively from the parametric theory
of [1, §8] or [3] or [6]), we deduce that there exist A, 6€(0,1) and
a constant ¢ >0, all depending only on p.J, such that, whenever
YeM and B(Y)N (02 X R) =@

(8.1) By(Y)N M is connected, |v(X)—v(X) Zc X — X)),

for X, XeB,,(Y)N M.

Let {r,} be the sequence used to construct the varifold C in §2,
let @, ={ra:axecl), M, =p, (M) (=graph u,, where u, is defined
by uy(x) = ru(ry'x), e 2,), and let V., W., W. be as in §2. Also,
let Q. be the domain enclosed by the rays which are tangent to v,
v, at 0, so that the Lebesgue measure of [(2. ~ 2,) U (2, ~ 2.)]N D,
converges to zero as k — <o for each o > 0.

In view of (8.1) and in view of the fact that (by (0.1)) M,)) M,
has mean curvature bounded by J/r, we deduce that
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where M_(=lim M, taken in Q. X R in the varifold sense) is either
empty or a smooth minimal (not necessarily connected) submanifold
of Q. X R with

(3.2) (M., N B,(0)) < = for each o >0 (by (2.6))

and with g.(M,) = M, for each » > 0. This last property just says
that M, is a cone, which is true by (2.6) and [1, 5.2(2)(a)].

One now readily checks (from the fact that M, is a C* cone with
zero mean curvature) that

(3.3) M.=Um0 Q. xR),

where 7; are planes through the origin and z;, N7, N Q. X R =
for ¢ %= 5. We must consider the possibility that N = o here, but
in any case by (3.2) we see immediately that at most a finite sub-
collection of {z, 7, ---} intersects a given compact subset of Q. x R.
Evidently, since M., is the limit (taken in 2, X R in the varifold
sense) of the sequence M, of graphs, we easily deduce from (3.3)
that either

Case 1. N=1and M, ==xN (L2, X R) for some plane w;, such
that 7, N ({0} X R) = {0}; or

Case 2. N < oo and M, = U~ 7;N (2., X R), where 7, @, -+, Ty
are planes with the line {0} X R in common. (Notice that to get
N < oo here, it is necessary to use (3.2).)

To proceed further, we need to consider the variational problem
satisfied by M. For any bounded Borel set 4 © R* and any open
WcQ X R we let

E(W, A) = 9 6GWnNn2 xRN A
— cos BOGW N 02 x RN A) + S K(X)dX,
w

AN

where K is defined on 2 X R by K(x, t) = H(x, u(x)), (x, t)e2 X R,
so that K is constant on vertical lines.

We claim that U = {(z, t)e 2 X R:t < u(x)} minimizes F in the
sense that

(3.4) E(U, B,(0)) = E(W, B,(0))

whenever W satisfies
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(3.5) WC2 xR, £@WNBWO)< e,
(W~ U)UU~ W) N B,0) =< B,0) .

- To see this, first note that the equation (0.1) can be written
divy = K on £ X R, where K is as above. An alternative way of
writing this is

(3.6) d(*v) = Kdx, ANdx, Ndx;, on 2 X R,

where *v denotes the 2-form v dx, A da, — v dx, A d, + vdx, A de,.
Let [W], [U] denote the 3-currents obtained by integrating 3-forms
over W and U respectively; o[W], o[U] are rectifiable in B,(0) by
(1.1), (3.5) and [5, 4.5.6(1)].

Next let 4, be a nonnegative C'(R’) function with +, =1 or
B,0) ~ (D, X R), 4,=0 or D,, X R and supg: | Dy,| < 8/0, and use
the identity

o([W] = [UDW.(*p)) = AW] — [UDA(y..("»))) -

Letting ¢ | 0 and using [5, 4.5.6(4)] to evaluate the left side of this
identity, we deduce

K(X)dX + S Y- 7,49

SUHB‘,(O) BbfﬂBp(O)

K(X)dX + S v A,

SWﬂBP(O) aWNB,0)

where 7, 7, denote the exterior normals of U and W respectively.
(See [5, 4.5.5] for the definition of 7,; notice that unless W is a
reasonably nice set, we may have 7, =0 on a set of positive $*
measure in W N B,(0).)

Since 7y = v on AU N (@ X R) and

Nw = P-a.e. on W N (G2 X R) N {X e B,(0): 9y(X) + 0},

we then have (3.4), as required, by virtue of (0.2).
Now define, for any open WC 2, Xx R and any bounded Borel
set A C R?,

E (W, A) = 9*@0W N (L, X R)N A) — cos BO*OW N (02, X R) N A)
+ q~,:1§ Ko X)dX .
WnNA
(We also include & = <o in this definition, in which case the last term
is to be interpreted as zero.) Since E, (g, W, ¢, A) = riE(W, A)

whenever W is as in (8.5), it is evident from (3.4) that for %k =
1,2, .-+ we have
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(3.4 E(U, B,(0)) = E((W, B,(0))(U, = p,,(U)),
whenever W is an open set such that

WcQ. xR, ©0OWNB0) < o,

(3.5
(U ~W)U (W ~Uy) N B,(0) © < B,(0) .

We can now show that M, +# ¢. In fact we will show that
3.7 Vol (02, X R)=0,

which is a stronger statement because V.0 by (1.12).

To prove (8.7) first note that since V, = lim,_., g, .V, by virtue
of (1.11) and (2.6) we can apply [1, 5.4] to deduce that 6*(||V ||, (Y =1
for ||V.|]| —a.e. Y. If (3.7) fails we can therefore take a point
Yeo2,x R~ ({0} x R) U (Uj-. x;)) such that ©%(||V,]|, ¥) = 1.

Hence for each ¢ > 0 we can find p > 0 such that

(3.8) B0 (@ xBU(U)) =5,

OB N M) - |
z(o2)

for all sufficiently large k, and (by virtue of (2.7))

15

(3.9) M, N B(Y)C{Xe®, x R:dist (X, 02, X R) < 0,0},

where 0, — 0 as k— co.
Next, let {f,.} be a sequence of C° mappings of R® into R*® with

the properties:

@2, x RcQ, xR, [iBop(Y) T B, (Y) (X)) =X,
Xe(R ~BY)U @2, X R), fu(B(Y)~ B,(Y))CTB)(Y)~ B,,(Y)
flXeB,, (Y): dist (X, 02, X R) < 0.} CTB,,(Y)N 02, X R
ilelkps NDf(X)]] £ 1+ co,, c¢ independent of % .

(It is left to the reader to check that such a sequence exists.)

For each & we now let U, =, (U), U, = interior fi(U,), and
we let E, be as in (3.4). From construction of the f,, we know
that for k1 =1,2, ---,

(8.10) E (U, B,,(Y)) =0,

E(U,, B(Y) ~ B,y(Y)) £ (1 + ¢0,.)E(Uy, B(Y) ~ Boo(Y)),
and, by virtue of (3.8),
(8.11)  EJ(U, B,(Y)) — (1 — & — |cos B))m(0/2)* + &, = 0,
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where &, — 0 as k— . Combining (3.10), (3.11), we deduce that
(for ¢ < 1 — |cos B| and k sufficiently large)

Ey(U, B(Y)) < E(U,, B(Y)),
and hence, since f(X) = X for all Xe R* ~ B,(Y),
Ek( fjk, Bo(O)) < Ek(Uky Bo(O)) (0 > P + |Yl) ’

thus contradicting (8.4)’ for all sufficiently large k. Thus (3.7) is
proved; hence

(3.12) M,+¢ and V,=v(M,).

By virtue of (8.1) and the definition of U, it now readily follows
that there is an open U, cC 2. X R such that U, N (2. X R) = M,
and (U,~ U, U (U, ~U,) has measure locally converging to zero.
Furthermore by (3.1), (3.3), (8.4), (2.7), (38.7) and the fact that
2.V — V., we easily deduce

(3.13) Em( Uoo, BF(O)) é Eco(W’ BP(O))
for every open W satisfying

WcQ. +R, $GWNBO)< o,

(3.14)
(W~U.,)UU.~W)) N B,(0) C < B,0) .

Here we use the notation that

E (W, A) = 9'0Wn (L. x R)N A) — cos B@z(éW N@R. x R)N A)

for any W as in (3.14) and any bounded Borel set A.

Now we want to show Case 2 is impossible. To see this, note
first that in Case 2 U, =UY® x R for some open UYL, with oU? a
finite union of rays emanating from the origin. Define

EX(W) =9'0WnNRL.ND,) — cos BH0W N oL, N D,
for any open W satisfying

wca.,, QOWND)< e,
(W~UHuU2~W)NnDccD,,

and note that it follows from (3.13) that
(3.16) E2(UY) = BEX(W)

for any W as in_(3.15).
Since 2, ~ UP clearly satisfies a variational principle similar
to that satisfied by UYL but with # — 8 in place of 8, incase N > 1

(3.15)
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we can suppose without loss of generality that there is a component
W* of UL with W* N o2, = {0}. But then

E2(UL ~ W* U W*) < ES(UY),

where W* is obtained by “smoothing out” the vertex of W* at 0.
Since this contradicts (3.16), we deduce N = 1.

To show that we also get a contradiction in Case 2 if N=1,
we note that if g, is the angle formed by UY at 0, and if 5, < 3,
then we have

(3.17) EQ(W*) < EX(UD)

if W* is constructed as follows:

Let peoD,, N QUY ~ 08.,) and let ¢ be the point on dUY N 02,
at distance ¢ from 0. We then let W* = U® ~ H, where H is the
closed 1/2-plane with 0 ¢ H ~ 0H and {p, ¢} C6H. For ¢ small enough
one then easily checks that (3.17) holds. Thus we deduce

(3.18) Bo =B -

However, again using the fact that 2.~ U? satisfies a similar
variational problem with 7 — 8 in place of 3, we can deduce by
the same argument that

(3.18) 0—B=r—4p.
Adding (3.18) and (3.18)" we have 6 = &, thus contradicting (0.4).

Thus Case 2 is impossible, and we are left with Case 1. Notice
that the plane =z, in Case 1 is uniquely determined by B and £..
In fact a standard (nonparametric) argument (based on the fact that
(8.13) holds) shows that #; must make an angle (measured in U,) of
B with each component of (32, X R) ~ ({0} x R). Thus =, is
characterized by saying that z, has a unit normal »* with the
properties

(3.19) 2.(0,0,1) >0, V-pu® =cosg =1 pu?(u? = ;l(“on wXx) .
Xer;

(This characterizes =z, completely because p¢'' and (® are linearly

independent.)

Thus we have shown that M, =7, N (2., X B) with 7, having
unit normal »° as in (3.19), independent of the particular sequence
{ri} chosen to comstruct M.. It follows that {g,.V} converges to
the same limit o(z, N (2. X R)) for every sequence 7,— co. In
particular we may take 7, = 2*. One easily checks that (2.7) then
implies
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u(x) — 22 (vifvi)z,
(8.20) lim =t =0,

) ||

where i, v3, v} are the components of the vector »° normal to x,.
In particular, we deduce lim,., ..o u(x) exists, thus completing the
proof of the first assertion of Theorem 1.

4. Conclusion of proof. Here let M, = ¢, M, u,(x) = 2*u(2 "),
re, where 2, =p,92). (Thus M, £, are as in the previous
section, with », = 2%.)

We know from (3.20) that

(4.1) up() — ;1 (»3/»g)xi] —0 as k— oo

uniformly for 1 < |z| < 2.
On the other hand (3.1), applied to M,, gives us A, 6€(0, 1) and
¢ > 0 so that

(4.2) o) v = o Y

whenever X = (%, u,(x)), Y = (y, u,(y)) are such that | X — Y| < o
and =z, y €{z¢€ Q,: dist (z, 02..) > o}. Here »* denotes the upward
unit normal of graph u,, and o > 0 is arbitrary.

By combining (4.1), (4.2) we then easily deduce that Du,(x) —
)Y, v5) as k— o, the convergence being uniform for xe{y e R*
1< |yl £2, dist (y, 02,,) > o} (6 > 0 arbitrary).

Writing this last conclusion in terms of u, we have

(4.3) lim Du(x) = (5704, »5) ,

ze S,

where S, = {x € 2: dist (x/| x|, 02.) > o}.

On the other hand, if we use the boundary regularity theory
of J. Taylor [10], we deduce by (4.1) that (4.2) actually holds for
any X = (x, ui(x)), ¥ = (y, () with | X — Y| < o and =z, ye{zec 2
1< |z| £2, dist(z, 2.) < g}, provided ¢ is sufficiently small (in-
dependent of k). Combining this fact with (4.1) and reasoning as
before, we deduce

(4.4) lim Du(e) = (45)7'(}, v%)
zel,

where T, = {x € 2: dist (x/|2], 02..) < d}.
Theorem 1 is now established by combining (4.3) and (4.4).
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