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DIRECT FACTORIZATIONS OF MEASURES

THEODOR EISELE

In this paper we want to investigate the question, to what
extent can the disintegration of some measure on an arbitrary
Suslin space with respect to some measurable function f be
replaced by the image measure under some function g inverting
f, such that the “outcome” of the situation under a function
& is not changed. Such a direct factorization, as we call it,
is modulo some conditions about atoms of the measures in gen-
eral only possible, if the range of / is countable. But there
are always solutions to the problem in a weak sense. The re-
sults have applications in game theory to the problem of “elim-
ination of randomization”.

Our staring point are some results about the compactness and
convexity of the range of some measure operations. They are
closely related to Lyapunov’s theorem [10].

In §2 we recall some known results about the disintegration of
measures on Suslin spaces.

The problem of direct factorizations of measures is made precise
in §3 and solved there for the case where the “outcome”-set C is
countable. Of course, some restrictions concerning the atoms of
the measures are necessary. A counterexample shows that this
result cannot be generalized to compact metrizable C. Thus we
introduce in §4 the notion of a weak direct factorization and show
that such a weak direct factorization exists even if C is an arbitrary
Suslin space.

It is quite obvious that the solutions to the direct factorization
problem are extreme points in a certain convex space of measures
on a Suslin set. In fact, we show in §5 that if C is countable or
if we regard the weak problem, the extreme points of this set are
exactly the solutions to the corresponding factorization problem.
Under somewhat different situations such characterizations have
been found in [5].

As mentioned at the beginning, we shall apply the results to
a question in game theory in §6. The application shows, when
random strategies (=behavior strategies) can be equivalently replaced
by nonrandom ones. Such questions of “elimination of randomization”
have been treated in [3] and [4] in the finite case and are here
generalized to arbitrary Suslin spaces.

1. Convex ranges by nonatomic measures. Since in later
sections we are interested when some integral operators have com-
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pact convex range, we shall give here some descriptions of such
cases. Of course, our propositions lie in the viecinity of Lyapunov’s
theorem.

Let (A4, A) be a fixed measurable space and m, m,, m,, --- og-ad-
ditive, R’-valued measures on (4, A) with finite variation |m|, |m,|,
[, -+ -

DEFINITION. BeU is called an m-atom if it is an atom with
respect to |m/|, i.e., |m|(B")€{0, |/m|(B) # 0} for all B’ B. m is
called nonatomic if it has no atoms.

The following result is known as Lyapunov’s theorem [10]:

THEOREM 1. The range of a nonatomic, R*-valued measure of
finite variation is compact and convex.

Changing slightly the excellent proof of this theorem, due to
Lindenstrauss [8], we get what we shall need in the sequel:

THEOREM 2. If (m;) is a sequence of nonatomic measures with
Im,| £ p for some finite measure p, then the set of all points in
(RHY of the form

(my(By), my(By), -+ )

with (B),en Tanging over the U-partitions' of A, is convexr and
weakly compact.

Proof. Set & = {(g) e(L"(1)", 0 = g, and 3;cnvg; =1} & is
convex and compact in the product topology of the weak-+-topology.

The linear mapping M: ¥ — (R%)", M(g,) = <Sg,dmi)i N is continu-
ous in this topology, since |m;| € tt. Thus the proof is finished if
(1) M) = M({(15,) € &, (B;) a partition of A}),

since the first set is weakly compact and convex. But “2” is
obvious; so let (r;)e M(¥). M~*(r,)} is a weakly compact convex
subset of &° and contains an extremal point (g;) by the Krein-
Milman theorem. If (g;) were not in the right set of (1), then we
could assume, without loss of generality, that there exist ¢ > 0 and

B {e=9,9.=1~—¢} with |m(B)|>0.

Since m, and m, are nonatomic, there are disjoint B,, B, & B with

! i.e. sequences of disjoint subsets from .
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m,(B,) #0 (1=1,2) and applying Theorem 1 to m,/B;, we find
disjoint B, B, < B, as well as disjoint B,, B; < B, with

1By ) = —;—m‘xB,‘) (4,5=1,2).

Let @, g with ¢ = |a| + | 8| > 0 satisfy
a(m,(B;) — m(B,)) = B(m,(B;) — m,(By))
and
h=als — 1) — By, — 1) # 0.

Then m,(h) = my(h) =0 and thus (g9, h, g9, F h, g --+) e M{(r)}
contradicting the extremality of (g,).

Thus “Z” holds in (1) and the proof is complete.

COROLLARY. Let £t be a nmonatomic finite positive measure on
(4, %) and f:A— R* uniformly bounded measurable functions.

Then the set of all points in R of the form >cw Sf,-lpidpe with
(D))iev ranging over all A-partitions of A, is compact and converx.

2. Some reminiscences. In this section let the sets 4, B, C
be Suslin spaces, i.e., continuous images of polish spaces, and B(A4),
B(B), B(C) their Borel algebras. We remind the following, well
known results about the factorization of measurable functions (cf.
[7D.

(a) If f: A— B is a surjective Borel-measurable function, then
" there exists a universally measurable function g: B— A with fog=
id .

(b) If f: A— B is Borel-measurable and h: A — Cis f~(B(B))—
B(C)-measurable, then there exists a universally measurable funec-
tion ¢g: B— A with hogef = h and fog = idj.

The situation becomes more involved, if we regard measure
spaces.

Let R(A) denote the set of all positive finite Radon measures
on A. If peR(A) and v e R(B) we write

£ (4, 1) — (B, »)

if f is a p-measurable function and v = Rf () the image of y¢ under
f. p is called a preimage measure of v under f.

If F:(A, #)— (B,v) with f a Borel-measurable surjection and
g:B-—->A as in (a), then in general we cannot expect Rg(v) = p,
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though both measures are preimages of v.

(¢) The preimage measure of v is unique if and only if the
universally measurable set {beB; #f7'(b) = 2} has v-measure zero
(see [6] and [8]). There is however a nice and rather deep repre-
sentation theorem for all preimage measures of v, known as dis-
integration of measures (cf. [11] and [12] 2, 21).

(d) Let f: A— B be a Borel-measurable mapping between the
two Suslin spaces A, B and let peR(4), ve R(B). Then are equi-
valent

(1) Rf()=v»

(ii) there exists a family (¢,);cs S W(A) S R(A) with

(@) b+ p,(A") is Borel-measurable for all A’ e B(A4)

© = poia)

(v) for y-almost all b, |, |(A\f~b}) = 0.
Moreover, if (#) and (24) are two families with (@) — (7), then g, =
¢, for v-almost all b. The uniqueness assertion in (d) shows espe-
cially, that

(e) if p# = Rg(v) for a universally measurable function g¢g: B—A
with fog = id; (see (a)), then p, =4,, 1is the v-almost unique
disintegration of Rg(v). Conversely, if the disintegration of p =
Spbv(db) satisfying (a) — (v) is of the form g,=d,,; for some g: B—
A, then g is Borel-measurable by (a) and by (v)

Sfeog = idy v-almost surely .

But in this paper we are more interested in situations as in (b) in
the presence of measures.
We regard the situation

(4, 1~ (B, )
(+) &
(C, )
where f and h are Borel-measurable functions; #, v and = are posi-
tive finite Radon measures on A, B, C respectively and v = Rf(y),
T = Rh(te).
If we were only interested in y-measurable functions ¢g: B—C

with © = Rg(v), then the following proposition would give a complete
answer. First we need the following

DEFINITION. Let T(v) denote the countable set of all atoms of
y. We say that p is atomicly adapted to = if there exists a com-

2 W(A) denotes the space of all probability measures on A.
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plete decomposition (T,(¥)).er of T(v) into disjoint subsets:
T) = U{T.(»), ¢ e T(x)}
such that »(T,(»)) < n{c} for all ce T(n).

Trivially, a nonatomic measure is atomicly adapted to all other
measures.

ProOPOSITION. There exists a v-measurable function ¢g:B—C
with Rg(v) = & if and only if v is atomicly adapted to x.

Proof. If Rg(y) = m, then T, (v) = T() N g~Yc} (ce T(x)) shows,
that v is atomicly adapted to x.

Conversely, let (T,(¥))serw be a decomposition of T(v) as in the
definition. Since v(B) = n(C) and y/B\T(v) is nonatomic, we find a
Borel set B, € B\T(v) with v(B,) = n(T(x)) — v(T(v)) and a complete
disjoint decomposition (B,),crx 0f B, into Borel sets with

v(B,) = mle} —v(T.(») =20  (ceT(n).

On B,U T(v) define g by g() =c¢ if be B, U T.(v). Now B,=B\(B,U
T(v)) and C, = C\T(x) are Suslin spaces with nonatomic measures
v B, and « [ C, and y(B,) = 7(C,) = . But such spaces are Borel-
isomorphic to a Borel subset of [0, »] with Lebesgue measure.

This shows, that we can extend g to a Borel-measurable funec-
tion from B, to C, with Rg(v | B,) = & | C, and the proof is complete.

The last result is completely independent of A. But for later
applications we are interested in factorization results which regard A.

3. Direct factorizations. Let again A, B, C be Suslin spaces
with their Borel algebras B(A), B(B) and B(C). In the situation

(4, 1) ;f‘j (B, v)
(++) J»

g(?)
(C, m)

with the usual notation, we are now looking for y-measurable
functions ¢: B— A with fog =14dy v-almost everywhere and
R(hog)(v) = 7.

Let us call such a function ¢ a direct factorization of (xx).

THEOREM 3. Let (1) be the wunique disintegration of p under
f. If for v-almost all b the function h is constant ft-almost every-
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where, then a direct factorization of (x=) exists.

Proof. We may assume jf to be surjective.

We know that there exists a o-compact subset D’ of A with
7(C — D) = 0. But D’ is metrizable (cf. [11]). So we find a count-
able basis (Q.). of relatively open subsets of D’. Set D = A=%D’
and Q, = b (Q,). Furthermore we may assume (D) =1 for all
b, neglecting a v-nullset. Put

G = {(a, f(@));ae D}N N [D X {b, p1(Qn) > 0} U (D\Qn) X B].

G is a Suslin set with G|, = {a, (a, ) €G} #* ¢ and h is constant on
G|, for all b. By a theorem of Blackwell ([2], III, 26) we see that®
hopro,: G— C is (prog)~'(B(B)) — B(C)-measurable. By (2, b) we
get a v-measurable function §: B— G with hopro,o§eproz = hopro,
and prozod = idy v-almost everywhere. Now pro,o§ is a direct
factorization of (xx).

We remind that 7T(v) denotes the at most countable set of all
atoms of y. The following theorem shows that we can restrict the
hypothesis of Theorem 3 to the set T(v), if C is countable.

THEOREM 4. Let C be countable and suppose that h s constant
t-almost everywhere for all bec T(v), where () is the disintegra-
tion of ¢ under f.

Then (*x) has a direct factorization.

Proof. For ¢ eC define the Suslin sets A, = h~*{c}\f(T(»)) and
B, = f(4.).

v 1 B\T(v) being nonatomic, we see by the proof of Theorem 2
of §1, that the set

I = {(S 1;,0p,dv )c; (D,) disjoint Borel subsets of B}

contains <Schy,,(Ac)v(db)> .

Hence 7 = Rh(21] f-{T®)) + Sweo (D)0, with D, < B, and (D,)
a Borel-measurable partition of f(A\T(®).

By (2,a) we have universally measurable functions g.: D, — A,
with fog, = 1id,(ceC). Further there exist measurable functions
g': T(v) — A with ¢'(b) € £~(b) N h*{¢c;} = ¢, where t,(hc,}) =1 and
g": B\f(4)— A, b—g"(b)=acA. Then g=U.9.Ug’'Ug"” is a v-
measurable function: B— A with fog = 1; v-almost everywhere
and

8 pro,s denotes the projection to the space A.



DIRECT FACTORIZATIONS OF MEASURES 85

R(hog)v) = Bh(pe1 fH(T()) + 2 2(D)-0. = 7 .

COROLLARY. If v 4s monatomic and C countable, then there
exists a direct factorization of (x=).

The following example shows however, that the theorem cannot
be generalized to arbitrary compact C.

Counterexample. Let B = C =[0,1], A={(®, ¢) [0, 1]}, ¢=(1/2)b
or ¢ =1/2(b + 1)} and f, h the projections to the first, resp. second
coordinate. Let g be given by

ﬂ{(b,%b); a<bspl= p{(b,%(bu)); a<bs gl

%(ﬂ—a) for 0Sa<pg=sl.

Then 7 = v is the Lebesgue measure A on [0,1]. Assume, g: B— A
would be a direct factorization and let B,=g~*({(b, (1/2)b); b [0, 1]}),
a Lebesgue-measurable set. Then for all 0 = a < B8 =1 we have
MByN e, B) = (B — a)/2 = (1/2)M[a, B]). Since D—NB,ND) is a
o-additive measure on B([0, 1]) which equals (1/2)x on the intervals,
we have \NB,N D) = (1/2)MD) for all Lebesgue-measurable D.
Especially, 1/2 = An(B,) = MB, N By) = (1/2)A(B,) = 1/4, contradiction!

Thus there does not exist a direct factorization, though v is
nonatomie.

4. Weak direct factorizations. Since our research for direct
factorizations of measures has been knocked down by the above
counterexample, we want to weaken the notion of a direct factori-
zation to treat also noncountable C.

DEFINITION. Recall the situation (x*), where A, B, C are Suslin
spaces, f: A — B and h: A — C Borel measurable functions and g, v, w
positive finite Radon measures with Rf(¢) =v and Rh(p) = n. We
say, (xx) is weakly directly factorizable, if for each bounded Borel
measurable funetion »: C — R?, there exists a v-measurable function
9: B— A with

fog = idy v-almost everywhere and

S rdr =_S rohogdy .
2] B
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THEOREM 5. The situation (xx), as described above, is weakly
directly factorizable, if h is constant -almost everywhere for all
beTW), (i) being the disintegration of pt under f.

Proof. We first define the Suslin space G’ by G’ = (f, roh)(4)
with the measure p = R(f, roh)(¢¢) which admits a unique disinte-

gration (o,) € R(R*) with R progr«(o) = S 0v(db) and G'|, contains the
B
support of p,. Let (Q,) be a countable open basis of R* and set

G =G NN, e(@a) > 0} X R*U B X (R'\Q)] .

G|, is contained in the support of p, for v-almost all b and #G|,=1
if beT(v). We regard the set ® of all v-measurable maps g: B—A
with (fog(b), rohog(b)) e{b} X G, for v-almost all b. If g, g, ---
are from ® and (B,) is a Borel partition of B, then U, (g;1 B;) €®.

Since for all g€ ® hog are identical on T(v) and v 1 B\T(v) is
nonatomic, we see by the corollary of §1 that

I = {S rohogdy, ge@}
B
is convex. Put

= gcfrdn = | prowdo = Lfr(b)v(db)
with
r(d) = |, zoida)
a Borel measurable function. We have to show pell.

Otherwise, there would be a vector ve R? and a constant v
with

w,p) £ v =, B

for all pell and at least for one p,€ Il we have (v, pyy < 7.
The sets

Gz ={®,x)eG, v,z = v, r(b)}

< <
are Suslin spaces. But for v-almost all b G, # ¢, since otherwise
v, 2y < (v, r(b)) for all xeG,

which would yield a contradiction by

@, 7 6) = |, @ Dpuda) < v, rbY
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the equality holding v-almost everywhere.
If p, = S rohog,dyvell with g,€® we have by definition of p
B
v{b; (v, rohogyb)y < (v, 7))} >0,

hence o(G.) > 0. [Recall that G|, is in the support of p, v-a.s.]
But now also o(G.) > 0 to guarantee

[, @ @0, o) = | @, r®)u(s) .
This gives us the existence of a v-measurable function ge® with
rohog(b)eGs, v-a.s.
and

v({b, 7°hog(b) eG>Ib}) >0.

With 7 = g rohogdy we get the contradiction
B

75w, B = | @ repuab)
<[, @ renogpsan) = @ = 7.
Hence P eIl and the proof is complete.

COROLLARY. If v 1s nonatomic, then (+=) always admits weak
direct factorizations.

REMARK. It is not difficult to generalize the above theorems
to arbitrary Blackwell spaces if we add the usual “consistency
assumptions on the atoms” (ef. [2]).

5. Extreme point problems. In this section we want to
reinterpret Theorems 3, 4 and 5 as theorems about the existence of
extreme points of certain convex sets. In fact, let us regard the
following subsets of R(A):

P={\ecR(A), Rf(\) = v and Rh(\) = &}
Pr) = {x e R(A), Rf(\) = v and Srohdx - Swohdy}

where #: C — R? is a bounded Borel measurable function. Then P
and P(r) are nonempty convex sets.

COROLLARY. If the condition of Theorems 3 or 4 [resp. of
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Theorem 5] is satisfied, then P [resp. P(r)] has extreme points.

Proof. Let g be the solution to the [weak] direct factorization
problem found in Theorems 3 or 4 [resp. Theorem 5]. Then \ =
Rg(v) is in P [resp. in P(7)], and since the disintegration of A w.r.t.
fis (0,4) by (2,e), A is an extreme point of P [resp. P(r)].

REMARK. The counterexample of §3 shows however, that in
some situations there are extreme points of P, which all are not of
the form Rg(v). That this can not happen in the situation of
Theorems 4 or 5, show the following results:

THEOREM 6. Let us assume in (xx) that h s constant on
FHb) for all be T(v) and that C is countable. Then )\ is extremal
in P if land only if N = Rg(v)e P for some direct factorization g

of (xx).
Proof. We have only to show the necessity.

So let \» be extremal in P with the disintegration (\,) w.r.t. f.
By (2.e) it suffices to show that v-almost all A, are 0-l-measures.
But if 0 < \(Q) < 1 for some be T, and Q@ € B(A) then with

M) = 2{BPw(- N @)/M(Q) + M-\f (D)

and

N(+) = 2OIN(\@/N(A\Q) + M-\ f (D))
we have

0 = V(@) < MQ) < N(Q), A and N eP
and

N = M@+ M (AN,

which contradicts the extremality of A. Hence, for be T(¥) A, is a
0-1-measure.

If \, for b¢ T(v) are not v-almost everywhere 0-l-measures, we
find (not necessarily different) ¢, ¢,€C, @ € B(A4) and ¢ > 0 such that
with E, = h(c,) N Q, E, = h~'(¢,)\Q the Borel set D = {b € B\T(v); e<
M(E), e £ ()} has a positive v-measure. Set 0 < v Z¢/(1 — ¢)
and

d},i =1 + ’ka(El)/Xb(Ez) Z 0 for beD.

Since v is nonatomic on D we find a Borel set D, & D such that
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[, ME@s) = | w(Byw(an) .
Define
V) = [ @I NE) + PG NE) + MC\E, U B

+ SD/D A F (- N B + din(- 0 By + M(-\(B, U Ep)w(db)
1
+ A(\fHD)) .
It is easy to check that A*, x~€ P and » = (\* + A7)/2, in contradic-
tion to the extremality of ». The proof is complete.

Similarly in the weak situation:

THEOREM 7. Assume again in (xx) that h is constant on f~'(b)
for all beT(), and let »:C— R* be a bounded Borel measurable
Junction. Then N\ is extremal in P(r) if and only if v = Rg(y) €
P(r) for some with respect to » weak direct factorization g of (xx).

Proof. Since again only the necessity has to been shown, we
start with an extremal N in P(r) and its disintegration (A,) with
respect to f. That for beT(v) A, must be 0-l-measures, is shown
as in the preceding proof. Assuming that A has not the required
representation, i.e., that for b¢ T(v) )\, are not v-almost everywhere
0-1-measures, we find Q@ e B(A) and ¢ > 0 such that

D = {beB\T(»), ¢ = M@Q), ¢ = \(A\Q)} € B(B)
has a positive v-measure. Define
+Q@ = f"D)NA, —Q = f(D\Q
and for beD
pE(b) = LQwhdM/M(iQ) .
The set

11 = {{(Lsp" + Lousp )y, EeB(B), F < D}

is compact and convex by the corollary of §1, since v is nonatomic
on D. We claim, that I/ contains

= | . rendrn = | Bow@n)

N
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where p(b) = Srohd)\.b. Otherwise, we find v € R* and a constant «
such that for all pell

W, =7 <L, P .

Let E, be the set of all beD with (v, (b)) < (v, p*(b)). Since
@, b)) = M(+Q)<w, pH(1)) + M(—Q){v, p~(b)) we have (v, p(d)) <
(v, p=(b)y for be D\E,. With

D, = S(1E0p+ + lp\Eop—_)dl) ell
we get the contradiction
@, 50 =7 < @ B = |<@, BEY»(ab)

= S(lﬂo(b)@, p*(®)) + 1pg(b)<(v, p~(b)))v(db)
= {v, Do) -

This shows 7 = S(lEp + 1pgp )dy = § <§ 7o hdX, )v(db) with X, =

1000 N+ @/N(+Q) + 1oz(dN(- N —Q)/\(—Q) for some E eB(B),
EC D.
Let 0 < v =<¢/(1 —¢) and

() = SD(I = () + (FNX()2(Ab) + M-\fAD)) .

A* are positive measures, since
T+ () = (- N @)/ A(Q) = M(- N EQ)A + ¥(1 — 1/e)) =0 .

Now it is easy to check that A* %=\, A*e P(r) and A = (A + \7)/2.
This contradiction to the extremality of )\ completes the proof.

REMARK. Similar characterizations of extremal measures have
been given for different situations in [5]. The results of [13] apply
here, such that there are integral representations for P and P(r)
with respect to their sets of extreme points (see also [14]).

6. An application to game theory. There are several appli-
cations of the above theorems in game theory and statistics. Most
of them can be subsumed under the notion of “elimination of
randomization”. So long, these applications were restricted to cases,
where the parameter set or the set of strategies were finite (see
[3], [4]). Here, we shall however confine us to the following.
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Application. Elimination of behavior strategies in random
games. Let

G = <{1y "',’Yl/}, Xu "'erEu "',Em Yv Yy Yn’
Wiy * 00y Way Uy "'un>

be a m-person-game with in advance randomly chosen personal events,
i.e., X, # ¢ is the set of (a-posteriori) strategies of player <, E, +# ¢
is the set of possible personal events of player 4, Y, S K, x X,
where Y, # ¢ is the subset of X; of all strategies, which are still
available for player 4, after e, has happened, w,c W(X,) is the pro-
bability, with which the personal events will occur, and

w;: [T Xy X Il B;—— R is a bounded function, the utility

function of player 7 (1 =1, ---, n).

The game is played in such a manner, that first a personal event
e;, which can also consist of some information, will occur for player
1 with probability distribution w,. Then each player ¢ has to choose
a strategy x;€Y,;,. The outcome for player ¢, if all this has
happened, will be

ui(xly Crty Xy €y vy, en) .

We assume that all X, E;, and Y, are Suslin spaces and that the wu,
are Borel measurable. B(X,) is the o-algebra of Borel subsets of X,.
To get a more unified representation, it is convenient to introduce
the w;-measurable functions 7;: B; — X; with Z(e;) € Y,,, as a-priori
strategies, which can be chosen before the random event e, takes
place, and to regard then the expected outcome for player 7:

Ni(:fl; ) %n> = S o 'S ui(%l(el)y Ty _w—n(en)y el) T e’ﬂ) ’
Iy E,

w,(de)- - -w,(de,) .

Let X, be the set of all a-priori strategies.

In some cases even a wider class of strategies is of interest,
namely the behavior strategies k;,. These are Markov kernels from
B, to X,;; ie.,

ki By X B(X;) — [0, 1] with ke, -)e W(Y;,,) and k(-, B,) is
Borel-measurable for all B,e®B(X;). For these behavior strategies
the expected outcome of player 7 is

Nfley ooy k) = | oo | el e, e
By  EnJx;
k.\(el) dxl) c 'kn(em dmn)wl(del) ot 'w%(den) .
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THEOREM 8. Suppose that for any ws-atom ¢,c T(w,) the func-
tions wui(®, -, Xy c v, Lpy €y *c, €4 ***, €,) are independent of x;€
Y.:. Then to any tupel (k, ---, k,) of behavior sitrategies there
exist a-priori strategies T, € X, (i =1, ---, n) such that

(1) Nk, -+, k,) = Ni&,, -+, %,) forall j=1,---,n.
Movreover, if there exist Borel sets D, = Y, such that
(2) kfe,, Dy,,) =1 for all e;c E;

then the a-priori strategies X, can be chosen to satisfy Z,(s;) € D;.,
(t=1,---, m).

Uy
Proof. Set w = ( .

). Since any a-priori strategy Z, can be

WUp
identified with the behavior strategy k(e;, B,) = 0z,.,(B:), it suffices
to show that we can replace any %k, by some % without changing
the value of (1). Assume moreover, that ¢ = 1 and D C Y, satisfies
(2). For ¢e T(w,) let T(e)e D,, + ¢ and set

A =Dn{e, x), ec T(w,) =— x = Z(e)} .
We apply Theorem 5 to A, B=F, C= A, f =prog, h = 1id,

wF) =l Fowde + 3 sia(Fiowe)

E\T(w;

y=w, and 7 = p¢. Let 7: A— R" be

’)'(8, w) = SE v SE Sw- o 'Sa: u(ey €2ty €ny Xy Lyy xn)k2(ei, dmﬁ)' ot
kn(em dxn)w2<dez)' : 'wn(deln) .

Theorem 5 gives the required a-priori strategy z,, satisfying
7,(e;) € Dy, and

NJ(&:‘U ]";2’ ) kn) = Nj(ku ) kn) (.7 = 1, Tty n) .

REMARK. Under the assuptions, that all X, are finite and the
w, on K, are nonatomic (¢ =1, ---, n), a result of the above kind
has been shown in [4] and has also been used by W. Armbruster,
Heidelberg, to obtain the existence of equilibrium points in a-priori
strategies.
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