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SINGULARITIES OF SOLUTIONS TO LINEAR SECOND
ORDER ELLIPTIC PARTIAL DIFFERENTIAL

EQUATIONS WITH ANALYTIC COEFFICIENTS
BY APPROXIMATION METHODS

PETER A. MCCOY

Let the linear second-order elliptic partial differential equa-
tion be given in the normal form

Δ2υ + a(x, y)υx + b(x, y)υy + c(x, y)υ = 0 , (x, y)<=E2

with real-valued coefficients that are entire functions on ^ 2

and whose coefficient c(x, y)<0 on the disk D: x2+y2<l. Let
the initial domain of definition of the real-valued regular
solution v = v(x, y) be D. A local Chebyshev approximation
scheme is given by which global information is determined con-
cerning the location of the singularities of the principal branch
of the analytic continuation of v. This follows from an error
analysis of best approximates taken over certain families of
regular solutions whose singularities are in comp CD). The
Bergman and Gilbert Integral Operator Method is utilized in
this function-theoretic extension of the theorems of S. N.
Bernstein and E. B. Saff; these theorems classify the singular-
ities of analytic functions of one complex-variable via the
growth in the error of Chebyshev approximations taken over
rational functions of type (nf v).

1* Introduction* The singularities of the real-valued regular
(classical) solutions of the linear second-order elliptic partial
differential equation

(1) 3f(v) = ξl + | ^ + a(x, y)ψ + b(x, y)^L + e(a, y)v = 0
dx2 dy2 dx dy

are considered here. The real analytic coefficients continue analyti-
cally as entire functions on ̂ 2 when x and y continue as independent
complex variables; also, the coefficient c(x9 y) ^ 0 on x2 + y2 <; 1.

Properties of the singularities of solutions to linear elliptic
partial differential equations stir special interest in several areas of
mathematical physics [5, 7], for example, in potential scattering.
Using function theoretic methods, R. P. Gilbert and D. L. Colton
[8] determined necessary and sufficient conditions concerning the
location of singularities of regular solutions v in terms of cor-
responding information for a unique associated analytic function /
of one complex-variable. Our principle interest is in global informa-
tion concerning the singularities of v independent of the associate.
This information appears by approximation methods that determine
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global relationships between the singularities on v and the growth
of the errors in solutions that approximate v locally.

The basis for this analysis is the Bergman and Gilbert Integral
Operator Method [1, 3, 5, 6] which extends the classical theorems
of S. N. Bernstein £2, 14] and E. B. Saff [13] from analytic func-
tion theory. Those classical results analyze the polar singularities
of analytic / via approximation methods in much the same way
that the Hadamard and Mandelbrojt theorems [4] analyze the polar
singularities of / via its Taylor's coefficients.

The Hadamard and Mandelbrojt coefficient theorems have been
extended to solutions of various classes of partial differential equa-
tions [3, 5, 6] via the Integral Operator Method. The ideas of
Bernstein and Saff have been applied [9-11] along with these methods
to study the singularities of certain second-order elliptic equations
with singular coefficients, i.e., the generalized axisymmetric and
biaxisymmetric potential equations. Those results also contain
calculations of the order and type of entire function potentials
from the convergence rates of the errors in the best local harmonic
polynomial approximates. Similar calculations are not considered
here for the equation (1) with entire function coefficients due to the
lack of a suitable inverse operator. Next are introduced the

2* Preliminary results* Following standard procedure [See 1,
5, 8], the functions a(x, y), b{x, y) and c(x, y) analytically continue
as a(z, z*)f b(z, z*) and c(z, z*) by the change to the hyper-complex
coordinates z = x + iy, z* = x — iy for (as, y) e ^ 2 ; reducing eqn. (1)
to a complex-valued hyperbolic equation

(2 ) L(U) = -fϊL + A(z, z*M + B(z, z*)ψ + C(z, z*)U = 0 ,
dzdz* dz* dz

U{z9 z*) = v[(z + z*)/2, (z - z*)/2i]

A(z, z*) = [α(z, z*) + ib(z, s*)]/4

B(z, z*) = [a(z, z*) - ib(z, s*)]/4

C(z, z*) = c(z, z*)/ί .

A change of dependent variables

V(z, z*) = U(z, z*) exp {\'*A(z, ζ)dζ -

for an arbitrary entire function h gives the Bergman canonical
form of eqn. (2) [1, 8],
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F = Az + AB - C , D = h' - Γ Aζdζ + J5 .
Jo

It is known [8] that regular V has a local representation V = 62[/]
about the origin that is defined from a unique b2-associated analytic
function / = f(z) by the integral operator 62[/],

v{z, **) = 6J!/(tf)] - ( E(z, z*, t)f(σ)dμ(t) ,
is?

σ - z(l - f )/2 , dμ(t) = dί/(l - tψ2

where £f is the contour t = eίθ from —1 to + 1 . The Bergman E-
function follows:

E(z, z*, t) = 1 + Σ t^z* [*P{2n)(z, ζ)C ,
Λ = l JO

i2%) + D P i 2 n ) + J

n = 1,2, . The principal branch of the function element V(z, z*)
continues analytically from its initial domain of definition by contour
deformation to a (larger) domain of associated as described in the
"Envelope Method" [see 5, 6]. Using this method, Gilbert and
Colton [Theorem 1; [8]] show that the (principal branch) of V(z, z)
is singular at z = a if, and only if, the 62-associate / is singular at
z = a/2.

The 62-associates in this paper are approximated by real rational
functions of type (n, v),

rn,X*) = Pn(z)/qu(z) , n, v = 0, 1, • ,

the ratio of real-valued relatively prime polynomials of degrees n
and v. The functions rntQ(z) are simply the polynomials pn(z). Cor-
responding to these ί>2-assoeiates we find multi-valued function ele-
ments

and

Φ«(z, z*) - b2[pn(σ)]

n, v — 0, 1, whose principal branches are selected to approximate
V(z, z*). These approximates may be viewed as "rational" functions
under the quasi-multiplication

The sets &HlV and &n = &nt0 compose respectively the sets of all
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rational functions of type (n, v) and all polynomials of degree n.
The sets corresponding to the images of &n,u and 0>n under 62 are

and

n, v = 0, 1, 2, . The essential measures become the growth of the
errors in the (mini-max) best "rational" approximates defined by the
Chebyshev norms

- rn,v\\: rn,»

| | / - rΛ l, | | - sup{|/(s) -

where the disk Dp — {z e &*: \z\ <; p) with Dι = D and

EUV) = inf { | | | F - y. f V | | | : ¥

\\\V- ¥%tU\\\ = sup{|F(s, z*) - ΨU*>

^, v = 0, 1, , D2 = J9 x D and the errors in the best "polynomial"
appropriates

«.(/) - <U/) , ^ . ( F ) = ^ , 0 ( F ) , n - 0, 1, . .

This brings us to the main objective.

3* The singularities of V(z, z): ^(V) = 0. The study of the
singularities of V and U reveals equivalence because V(z, z*) is
singular at (zOf z*) e^2 if, and only if, U(z9 z*) is singular at (zQ, z$).
Furthermore, z* = z if, and only if, (x,y)eE2 so the singularities
of v may be studied by noting those of V(z, z).

The first objective recognizes those entire function elements V
whose analytic continuations from their initial domains of definition
have no singularities located at finite distances from the origin.
This is accomplished via a function-theoretic extension of the
Bernstein theorem so that we naturally select a polydisk as the
initial domain of definition in the following theorem.

THEOREM 1. Let V(z, z*) be a regular solution of &(V) = 0 on
the polydisk D2. Then the function element V(z, z) has an analytic
continuation as an entire function solution if, and only if,

(5) lim[En{V)]u* = 0 .
n—χχ>

Proof For V{z, z*) a regular solution of &(V) = 0 on the
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polydisk D2, we need to establish the necessity of condition (5) by
assuming the function element V(z, z) has analytic continuation as
an entire function. By [Theorem 1 [8]], the same holds true of the
62-associate / = f(z) so that the equation

V(z, z) = h[f(σ)]

is global as is the equation

V(z9 z) - Φn(z, z) = 62[/(σ) - pn(σ)] , n = 0, 1, . . .

for each pn e ^ n and Φn = &2[^J. Because the functions V — Φn are
regular on D2, the contour £f is homologous to ^ = {t = eίθ: θ
decreases from π to 0} and | σ \ <> 1 if (z, t) e D x <£f0. We find the
estimates

IV(z, **) - Φn(z, z*)\g\ IE(z, z*,t)\\f(σ)- Pn(σ)\d\μ\(t)

£c{E)\\f-pu\\, * = 0 f l , 2 , . . . ,

= sup

on D2. The constant c(E) is finite knowing that E(z, z*, t) is con-
tinuous on D2 x J2f09 a consequence of the entire function coefficients
in eqn. (5). The appraisals

( 6 ) \\\V-Φn\\\^c(E)\\f-pn\\

and

En(V) £ c(E)en(J) , w = 0 , l , 2 , . . . ,

follow.
We now estimate the norm en(f). Let p* be the mini-max poly-

nomial for eJJ) and Φ* = &2[ί>ί]. The entire function/— pt expands
on [ —1, +1] in a series of Chebyshev polynomials

1 [Λ/2] n I n — k\
( 7 \ / (rr\ X"1 \/Q/y\n-2k m Π 1 9
\ / ^n\r^) — o r t 7 I Isr**' > '^ — ^> •*•> ^ > * * *

— \ fϋ /

that is analytically continued to the ellipse ξ?p = {z G<g*: \z — 1\ +
z + 1\< 2ρ}, p > 4 a s

/(*) ~ Pί(β) = 2 ^ Σ + i αfcίfc(^) , αfc - ak(f) .

The bounds \ah\ <Z Sup {|/(»)|: « e ^P}p'k9 k = 0, 1, 2, . . . establish as
in [12], leading to the estimate
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«.(/) = II / - Pί II ^ κ(p)(2/py , n = 0, 1, . . . ,

similar to that in [9]. Then eqn. (6) gives

En{V) rg HI V-Φl HI ^ c ( # ) | | / - p ί || ^ c(E)κ(p)(2/Py , Λ = 0, 1, .

Thus lim^eo [JErn( F)]1/Λ ^ 2//0 for all p > 4 establishing eqn. (5) as
Ô —> co.

For the sufficiency, let V(z, z*) be regular on D2 and assume
that the Bernstein limit eqn. (5) is satisfied. The function V
satisfies the Goursat data [1, 8],

V(z, 0) = g(z) - \ f(σ)dμ{t) , V(0, z*) = g(fl) , zeD.

Moreover, the analytic g is singular at s = 2a if, and only if, / is
singular at z = α (see [8]). Because of the result just referenced,
we then sufficiently establish that V(z, z) is an entire function by
establishing the same for g(z). To that end we observe the identities

PM = V(z, 0) - Φw(s, 0) ,

Vn € ̂ n , ^ = 0, 1, 2, and the inequalities

(8) | | g - p J | ^ | | F - . φ J |

from which the bounds

μ(h) = sup{|λ(*)|: ~1 ^ ^ ^ +1}

n = 0,1, follow. The classical Bernstein theorem proves that if
εn(g) - i n f {μ(g - pΛ): p n e &*n} a n d [εn(g)Y/n - > 0 a s ^ - > o o , ^ = g ( z ) i s
entire. This conclusion follows becauseof eqn. (8) we have an esti-
mate

whose larger member satisfies the Bernstein limit.
Prior to considering the second problem where at least one of

the singularities of V is located at a finite distance from the origin,
we observe that when n > v,

ΨnΛ*, Z) = ΦnU*, Z) + Ψα,u(Z, Z) ,

and the principal branch W»,Xz, z) zj Φ*M(Z, Z) (uniformly) on compacta
of ^ as the poles of WntV receed to infinity. In this case the
"rational" approximates interpret as reducing to "polynomial" ap-
proximates. We further note that the initial domain on which the
principal branch of the "meromorphic" function element V is regular,
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in analogy with the corresponding results in function theory, is the
polydisk D2. The principal branch of V analytically continues via
contour deformation. Moreover, this function element is said to
have a pole-like singularity of order v at z = a if the 62-associate
/ has a pole of order v counted with multiplicity at z = a/2; the
element also has a pole-like singularity of infinite-order at z = a
if / has an essential singularity at z = a/2. We now consider the
general results.

THEOREM 2. Let V(z, z*) be a regular solution of &(V) = 0 on
the polydisk D2 and let the principal branch of V(z, z) analytically
continue as a solution with atmost v pole-like singularities in the
disk D2. Then there exists a "rational" approximating sequence
ίU~=o for which

lim sup 111V - ¥„ WΓ^l/p «1) .

Proof Let V(z, z*) = &2[/(<τ)] on D2 and y,tV = 62[r.,J, n = 0,
1, 2, where the Ψn,Xz, z*) are regular on X)2. Then

, s ) -

and

( 9 ) \\\V-Ψn,v\\\

so that

lim sup HI F - ? P \ J | r ^ lim sup | | / - n , v | r , v = 0, 1, .

To establish the reverse estimate, the Goursat data is utilized to
give

(10) IIZ-rUI

and

lim sup | | / - r..,,|r 5Ϊ lim sup | | | F - y , , , | | r ,

so that

(11) lim sup HI V- Ψn,v\\\lίn = lim sup | | / - rnJΓ

(v-fixed). By the Gilbert-Colton result, the 62-associate of V(z, z), f
regular on D, has ^-singularities in Dp. Applying a result of J. L.
Walsh [15, 16] demonstrates the existence of a sequence {rnj^=o for
which
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(12) limsup | | / - *•„,,,111'" SVp « D

Combining eqn. (11) and eqn. (12) with the image of this sequence
under b2 completes the proof.

We next secure the converse of this result in

THEOREM 3. Let V(z, z*) be a regular solution of &(V) = 0 on
the polydisk D\ If {Ψn$i]n=o is a sequence (v-fixed) of regular ap-
proximates Ψn,»(z, z*) on D2 for which

limsupli|F-^,v||r ^Vp «D ,

then the principal branch of V(z, z) may be analytically continued
to D2P with atmost v pole-like singularities.

Proof. According to reasoning in the previous theorem which
leads to eqn. (10), the following appraisal is valid

for rn,u(z) = Ψn,»(z, 0) on zeD. By Saff's converse [13] to Walsh's
result, the associate / analytically continues to Dp with atmost v-
poles. Applying, once again, the Gilbert-Colton result shows that
the principal branch of V(z, z) has analytic continuation to D2P with
atmost v pole-like singularities.

Arriving at the main result, we characterize the singularities,
located at a given distance from the origin, of the analytic continua-
tions of V from its initial domain of definition. This is an extension
of Saff's mini-max characterization of the analytic continuation
properties of analytic functions.

THEOREM 4. Let V(z, 2*) be regular on the polydisk D2 and for
each v let the minimum error in the approximation of V over sets
{5r«,Jn,v=o of approximates Ψn,u(z, z*) be given by

lim sup [En,XV)Yn - (2ft,)-1 , v = 0, 1, .

Then the sequence {ft}Γ=o is nondecreasing and
( i ) DPv is the maximal disk with the property that the principal

branch of V(z, z) has analytic continuation DPv with atmost v pole-
like singularities.

(ii) if ft, > ft_i, the principal branch of V(z,z) has analytic
continuation to DPv with precisely v pole-like singularities.

(iii) p = lim̂ ôo ft is the radius of the maximal disk Dp to which
the principal branch Viz, z) has analytic continuation.

(iv) the analytic continuation of the principal branch of V(z, z)
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has infinitely many pole-like singularities in the disk Dp if, and
only if, pu > p, v = 0, 1, 2, .

Proof. Let V(z9 z*) be regular on the polydisk D2 and for each
v let {Wnti}n^o be a sequence of regular solutions on D2. It may be
established as in eqns. (10) and (11) that

11/- rn.,\\ £ \\\V~ ΨnJ\\ £ c{E)\\f- rnj\ , *, » = 0, 1, -

from which we see that

n ^ 1, v ^ 0 from which it follows that

lim sup [eUf)Y/n = lim sup [E
n—+oo it—too

and

lim sup [eUf)Y/n = (2^)-2 , P = 0,

Then by the Saff Theorem [13], {|θĵ =0 is nondecreasing and
(i-ii) D2Pv is the largest disk for which / has atmost (precisely

if pv > pv_x) v-poles. Apply Gilbert-Colton [Theorem 1, [8]] to obtain
the corresponding information for Viz, z).

(iii) D2P, p = lim^oo^ is the largest disk in which / is meromor-
phic. Thus again by [8] V(z, z) has analytic continuation to Dp and
no farther.

(iv) the 62-associate / has infinitely many poles in Dp if, and
only if, p>>p, v = 0, 1, . Reason as above to complete the analysis.

4. Remarks and generalizations• It is an easy matter to
interpret the preceeding results when the analytic continuations of
the coefficients of eqn. (1) have singularities in the domain of associa-
tion of V that are not located at infinity. In the event that the
domain of association contains singularities of either the coefficients,
or their analytic continuations, or if the singularities of the coefficients
are located in the initial domain of definition, the preceeding results
may apply to give information concerning the singularities of v.
Such an example is given by the equation with singular coefficient

= £» + £? + (2v/y)ψ- + φ&L + c(x)w = 0
ox dy oy ox

v > 0 that extends the generalized axisymmetric potential equation
(α ΞΞ c = 0) and in part eqn. (1). The coefficients a and c are entire
functions on ^ . In [5] an extension of the Vekua Method is given
which presents w = w(x, y) as the integral transform of v = v(x, y),



406 PETER A. McCOY

a regular solution of

&M = f? + f* + <x)ψ + c{x)v = 0
OX OX OX

with Goursat condition: w(x, 0) = v(xf 0) for all v > 0 and all real
x in the common simply-connected domain of regularity. Using this
information, extensions of §3 are readily suggested. The literature
[1, 3, 5-7] in the references also gives methods of reformulation of
the operators on conformally equivalent domains.
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