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TOPOLOGICAL ALGEBRAS WITH ORTHOGONAL
SCHAUDER BASES

TAQDIR HUSAIN AND SALEEM WATSON

Topological algebras with Schauder orthogonal bases are
studied. Radicals, closed ideals and closed maximal ideals of
such algebras are described. It turns out that a locally m-
convex algebra with identity and having an orthogonal basis
is metrizable. This implies that a complete locally m-convex
algebra with an orthogonal basis and identity is algebraically
and topologically isomorphic with the Fr§chet algebra of all
complex sequences.

Introduction* Let A be a topological algebra. A (Schauder)
basis {x%} in A is called an orthogonal (Schauder) basis if xnxm =
onmXm n> m = 1, 2, where Snm denotes the Kronecker delta.
Algebras with such bases (actually a variation of this definition
which we will discuss below) were first studied by Husain. In [3]
Husain and Liang proved that every multiplicative linear functional
on a Frechet algebra (i.e., complete metrizable locally m-convex
algebra) with an unconditional orthogonal basis is continuous. This
result answers MichaeΓs question [5] (as to whether every multipli-
cative linear functional on a Frechet algebra is continuous) in the
affirmative for such Frechet algebras.

In this paper we study the structure of topological algebras
having an orthogonal Schauder basis. In § 1 we discuss some pro-
perties of bases in topological algebras which we will use later. In
§ 2 we describe the closed ideals and show that each closed ideal is
the closure of the linear span of the basis elements it contains. In
§ 3 we give a characterization of complete locally m-convex algebras
with identity having an orthogonal basis. In another paper [4] we
study topological algebras having unconditional orthogonal bases.

For definitions and results concerning bases in Banach spaces
see [1], [7]. For general notions regarding topological algebras see
Michael [5] and Zelazko [8]. A sequence {xn} in a topological vector
space E is a basis if for each x e E there is a unique sequence of
scalars {an} such that x — Σ»=i < W Each linear functional x%(x) =
an is called a coefficient functional. If each xt is continuous then
{xn} is called a Schauder basis. It is well known that each basis in
a complete metrizable vector space is a Schauder basis. We show
that each orthogonal basis in a locally m-convex algebra is a Schauder
basis (Prop. 3.1) and each unital locally m-convex algebra A with
an orthogonal basis is metrizable (Theorem 3.3) and if, in addition
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A is complete, then it is isomorphic and homeomorphic with the
Frechet algebra s of all complex sequences (Theorem 3.4). These
results generalize results in [3] proved for Frechet algebras.

The authors are very grateful to the referee for pointing out
an error and suggesting many improvements.

!• Orthogonal bases* In this section we consider the following
conditions on a topological algebra A with a Schauder basis {xn}:

( i ) %n%m = 0 for n Φ m;
(ii) xnxm = 0 for n Φ m and xl Φ 0;
(iii) xnxm — 0 for n Φ m and xl = cnxn, cn Φ 0;
(iv) xnxm = δnmxn.
In the sequel a basis satisfying the condition (iv) will be called

an orthogonal basis. We start with some elementary results.
It is obvious that (iv) ==> (iii) ==> (ii) => (i). (ii) and (iii) are trivial-

ly equivalent, (iii) implies that one can replace {xn} by another base
{yn} satisfying (iv). If A has an identity, then (i) => (ii). Thus for
a topological algebra with an identity for a base {xn} to be orthogo-
nal, it is enough to assume that {xn} satisfies (i) because we can
always replace {xn} by another basis {yn} which satisfies (iv). The
proofs of these statements as well as that of the following are easy
and therefore omitted.

LEMMA 1.1. Let A be a topological algebra satisfying (i).
(a) If x = Σ oίiXi9 y = Σ β&tt then xy = Σ ^βiXl

Hence A is commutative.
(b) // xl = xn then the corresponding coefficient functional x£

is multiplicative.

To describe the radical of a topological algebra with a basis
satisfying (i), we first have the following:

LEMMA 1.2. Let A be a topological algebra with a Schauder
basis {xn} satisfying (i) and let D be any subset of {xn}. Then, x—
Σ^i^ΐ belongs to SpD (closure of the linear span SpD of D) iff
a% = 0 whenever xn 0 D.

Proof Suppose that for some neN, an Φ 0 and x% $ D. Let
x 6 SpD, then there is a net {xλ} in SpD such that xλ -»x. Since
each coordinate functional x* is continuous, we have 0 = lim^ίcί(^) =
x*(x) = an Φ 0, a contradiction. Conversely, if x = Σ aίχί a n ( i an —
0 whenever xn g D, then clearly Sk(x) = Σ*U &&%e SpD for all k e N.

Whence we have x — lim^̂ oo Sk(x) e SpD.
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LEMMA 1.3. Let A be a topological algebra with a Schauder
basis {xn} satisfying (i). The following are equivalent:

(a) xn e Rad A.

(b) &'
(c) α*
(d) a£

Proof Let #* = Σ*U <**#*> t ^ e n 0 = ccΛα£ = akxl and so α/c = 0
whenever x\ Φ 0. Thus, by Lemma 1.2, αn = x*(x*n) = 0 iff a& e

: 4 = 0}. This proves (b) <=> (c). For (c) => (d), note that

?3

w = a^α?* = xJ Σ
\ fc = l

= 0

Since (d) => (a) is obvious, it remains to show that (a) ==> (b). Sup-
pose xl £ Sp{xk: xl = 0}, then by Lemma 1.2, there exists kQ such
that α4 o Φ 0 and α;|0 ̂  0. By the first sentence in this proof k0 = n.
Thus an Φ 0, whence the sequence {yk} where yk — xk, k Φ n, and
yn = xjan, is a basis for A, and yl=xl/al=Σιk=Λakfa

2

n)xk9 so yϊ(yl) =
1 and y*(yl) = 0 ΐoτ k Φ n. Now, for

x,yeA, y%{xy)

Thus 2/ί is a continuous multiplicative linear functional andi/i(2/J =
1^0. It follows that yn £ Rad A, hence the same is true for xn.

REMARK. From the above proof we note that in general, for
a basis element xn, either xl = 0 or xl = cnx\, aeC. By a suitable
transformation {xJ can be "normalized" to a basis {̂ /J so that y\ =
y\ and by the above proof y* is then multiplicative.

THEOREM 1.4. Rad A — Sp{xn: xn satisfies one of the equivalent
conditions in Lemma 1.3}. In particular, Rad A — {xe A: xz = 0}.

Proof Let D = {x%: a?ί = 0}. We show Rad A = SpD. To this

end let x e SpD, x = Σ OLkxk. By Lemma 1.2, ak Φ 0 iff #ί = 0, so

ίc3 = Σ?=i «*«* = °> hence a? e Rad A. Conversely, if x $ SpD, then

there exists k0 such that akQ Φ 0 and x\ύ Φ 0. By choosing a basis

as in (a) => (b) of Lemma 1.3, we show that x <£ Rad A,

COROLLARY 1.5. A topological algebra with an orthogonal
Schauder basis is semisimple.
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COROLLARY 1.6. An F-algebra with an unconditional {see [1])
orthogonal basis has unique F-algebra topology.

Proof. By Theorem 4 of [3], A is functionally continuous, com-
mutative (Lemma 1.1) and semisimple (Corollary 1.5). By a Theorem
of Michael [5, p. 62], A has unique jP-algebra topology.

PROPOSITION 1.7. If A is a topological algebra with a Schauder
basis satisfying (i), then A/RadA has an orthogonal basis.

Proof. If D is any subset of {xx) and {xiJc} is the sequence of
basis elements complementary to D, then the sequence 0?(xίfc)}, where
ΎJ\ A-± A/SpD is the canonical map, is a basis for A/SpD. (This is
proved in [7, Prop. 4.1] for Banach spaces but the theorem is true
for Schauder bases in any TVS by a slight modification of the proof
there). Now, if D is as in the proof of Theorem 1.4, then Rad A —
SpD and a simple verification shows that the basis 0?(#ίfc)} can be
modified to yield an orthogonal basis for A/Rad A.

We end this section by showing that an orthogonal basis in a
topological algebra A is "essentially unique". Precisely we have:

THEOREM 1.8. If {#J and {y^ are orthogonal bases in a topo-
logical algebra A, then

Proof. Let xne{xt}. There exists ym£{yτ) such that x%ymΦθ.
For, otherwise it follows that xn — 0, which is impossible. Now
writing xn = Σ <*<#< and multiplying it by ym, we obtain xnym=amym

which, if multiplied by xn, yields xnym = amxnym. This implies that
am = 1 and so xnym = ym. Now writing ym = Σi βiXt, by similar
arguments we get xnym = xn, whence xn — ym. This proves that

c {i/J and the result follows by symmetry.

2Φ Closed ideals* Throughout this section A will denote a
topological algebra with an orthogonal Schauder basis {xn}. Also for
each $*, let Mn = {x e A: xi(x) — 0} be its kernel.

THEOREM 2.1. If I is a closed ideal in A, then there exists ne
N such that I £ Mn. In particular, {Mn\ n 6 N} is the set of all
closed maximal ideals of A and this set with the Gelfand Topology
is homeomorphic to N.

Proof. If IξZMn, n^lf then for each neN, there exists xel
with xt(x) Φ 0. Since x%{x)~ιxnx = xn we have xnel for all n ^ 1.
Thus / is dense in A, contradicting the assumption that I is closed.
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To see that this set is discrete, consider the subbasic neigh-
borhood V of x*f

±, xnf x* ) = { xt: \xS(xn) - xS(xn)\ ^ \ } = K*} >

the last equality being true because xi(xn) — dkn.
For I a A, set Z(I) = {neNιx*(x) = 0 for all xel} and write

Z{x) for Z({x}). Also let K = {w:#wel}. With this notation Lemma
1.2 says that x eSp{xn: n eK} iff N\K Q Z(x).

THEOREM 2.2. Let I be a closed ideal in A. Then
(a) Z(I)~_N\K.

(b) 1 =

= {£ e A

Proo/. (a) If neZ(I), then a?*(a?) = 0 for all xel. Thus a ^ I
and so n&K. Conversely, if n$ Z(I), then x£(x) Φ 0 for some xel.
Now xnx = x*(x)xn, so xnel, whence neK.

(b) Since I is closed, Sp{a;Λ: w e JSΓ} c J. If x e I, then by (a),

N\KξZZ(x) and so by Lemma 1.2, cc 6 Sp{x%: n 6 iί}. The other two

equalities follow from this and Lemma 1.2.

REMARK. In view of the proof of Proposition 1.7, the first
equality of part (b) of the above proposition shows that for any
closed ideal / of Ay A/I has an orthogonal basis.

COROLLARY 2.3. Let xe A and let I = (x), the closure of the
principle ideal generated by x. Then

(a) Z(I) = {n:x:(x) = 0).

(b) I=Sp{xn:neN\Z(I)}
= f]{Mn:neZ(I)}
= {yeA:Z(x)c:Z(y)}.

Proof. The ideal (x) contains exactly those basis elements xn

for which x*(x) Φ 0. Whence (x) contains exactly those same basis
elements also. Now (a) follows from part (a) of Theorem 2.2. Part
(b) follows directly from Theorem 2.2(b).

3* Locally Λf-convex algebras* In this section we generalize
some results in [3]. In particular we give a characterization of
complete locally m-convex algebras with an orthogonal basis.
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PROPOSITION 3.1. Each orthogonal basis in a locally m-convex
algebra (cf: [5]) A is a Schauder basis.

Proof. Let {xn} be an orthogonal basis in A and let {pa} be a
family of submultiplicative seminorms generating the topology of A.
For x e A, x = Σ %i(x)xn we have xxn = xϊ(x)x% = x%(x)xn(n ̂  1) and
so for each pa and n, \x5(x)\pa(

χ*) ^ Pa(
χ)Pa(χ*) Since A is

Hausdorff, there exists pβ such that pβ(xn) Φ 0, with this pβ from
the above inequality we get \x£(x)\ £* Pβ(x), xeA, which proves
the continuity of x* for each n ^ 1.

REMARK. Note that if / is any multiplicative linear functional
on A with f(xn) Φ 0 for some n ^ 1, then by the arguments used
in the proof of Theorem 2.1 we get that / = x*. Hence / is con-
tinuous by the above proposition. This is known for Frechet
algebras [3],

Let E be a topological vector space with a basis {xn}. We
define a map a from E into the space s of all complex sequences by
σ(x) = {

LEMMA 3.2. Lβί 4 ίie α locally m-convex algebra with an
orthogonal basis {xn} and let P be a family of submultiplicative
seminorms generating the topology of A. Consider the following
statements:

(a) σ: A —» s is surjective.
(b) A has an identity.
(c) For each peP there exists NeN such that p(xn) — 0 when-

ever n > N.
Then (1): (a) implies each of (b) and (c), and (b) implies (c);

(2): if A is complete, these statements are equivalent.

Proof. The proof of this lemma follows from the proofs of
Propositions 1 and 3 of [3] if one replaces the sequence of seminorms
by a family of seminorms.

THEOREM 3.3. Let A be a locally m-convex algebra with an
orthogonal basis {xn}. If A has an identity, then A is metrizable.

Proof. For peP, let Kp = {n: p(xn) = 0} and for p, qeP define
pRq iff Kp — Kq. Note that R is an equivalence relation and since
each set Kp is cofinite in N (Lemma 3.2) there can be at most a
countable number of iϋ-classes. Let pRq. Clearly ker p = {x e A:
p(x) — 0} is a closed ideal in A and so by Theorem 2.2(b), ker p —
Sp{xn: n e Kp} from which it follows that ker p = ker q and is of
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finite codimension in A. Thus A/keτ p — A/ker q is finite dimensional
so p and q induce equivalent norms on it. Hence p and q are
equivalent seminorms on A.

We have the following theorem which generalizes Theorem 1
of [3].

THEOREM 3.4. Let A be a complete locally m-convex algebra with
an orthogonal basis {xn} and let P be a family of seminorms gener-
ating the topology of A. The following are equivalent:

(a) A has an identity.
(b) a is onto s.
(c) for every psP, p(xn) = 0 for all sufficiently large n.
(d) A is algebraically and topologically isomorphic to s.

4* Examples* We conclude this paper by giving several ex-
amples.

EXAMPLE 1. The Banach algebras lp(N) = {{αj 6 s: Σ l « i l p < °°}
1 <: p < oo cQ, the algebra of complex sequences converging to 0,
and the Frechet algebra s of all complex sequences (all with point-
wise operations) have the sequence en — (δnm)2=0, n ^ 1 as a basis.
Clearly this basis is orthogonal in our sense.

EXAMPLE 2. The space LP(T), 1 < p < oo is a Banach algebra
with convolution multiplication (see [8]). The sequence of trigono-
metric polynomials en(t) = tn, t e T, n ^ 1, is an orthogonal basis for
LP(T), where T is the circle group.

EXAMPLE 3. The Hardy spaces HP(D), 1 < p < oo, where D is
the open unit disc in C are Banach algebras with the product

= - M f(z)g(xz-ι)z-1dz ,
2πι Jι*ι=r

where f, geHp and \x\ < r < 1 [6]. The sequence en{x) — xn, xeD,
is a basis for Hp and a simple computation shows that it is an
orthogonal basis with respect to the above product.

Let β b e a Banach space with an unconditional basis {ccj. For
x, y eE, x = Σ « A V = Σ β A , define x*y = Σ <*$&• This defini-
tion makes sense because, without loss of generality, assume that
the basis {ccj is normalized (i.e., \\Xi\\ — 1, £ ̂  1). Then lim^ooαί =
0 [6]. Thus the sequence {at} is bounded and therefore, since ΣtβiVi
converges unconditionally (hence is bounded multiplier convergent
[1]), it follows that ^atfitxt converges in E. Thus x*y is a well
defined element of E for x, y eE. Moreover, it is clear that A is
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an algebra with this product. More is true:

PROPOSITION 4.1. If E is a Banach space with an unconditional
basis, then E is a Banach algebra (in an equivalent norm) with
^product and the basis is orthogonal.

Proof. Without loss of generality assume that the basis is
normalized and let || ||0 be the norm on E given by | | # | | 0 =
sup^ejv |a5Ϊ(flc)|. Then with the map σ:E-*m (the Banach space of
bounded sequence with the sup norm || |l«) defined by σ(x) =
{xϊ(x)}%=it we have for each fk, the fcth coefficient functional on m,

(fkoσ)(χ) = fk(σ(χ)) = fk({x*(x)}~=1) = xtix) .

Since E is a Banach space, the functionals xt are continuous [7].
Hence each fkoσ is continuous on E for each k ^ 1. Since the family
{/J is a separating family of continuous linear functionals on m, it
follows by the closed graph theorem [2] that σ is continuous.
Therefore, there exists cx > 0 such that 11 σ(x) | U ^ cγ \ \ x \ \, x e Έ.
Since | | # | | 0 = ||σ(sc)||oo, we have ||&||0 ^ Ci||»| |. Now define

11| α? | | | = sup

where Ef is the topological dual of E. I t is easy to show [7, p.
463] that Hl |ll ί s a norm on E equivalent to the original norm of
E. Hence, there is a constant c2 > 0 such that ||α;|| <£ c2|||α?|||, χ e

E. Now

\\\x*y\\\ = / β ™PM^[|;j»i(^i(y)l !/(»•)! ]

| a; II. s u p

^ CχC2 III a;

This shows that S is a Banach algebra in a norm equivalent to

•III # III [8] Finally, it is clear that the basis {a?J has the property:

REMARK. We note here that an infinite dimensional normed
algebra A with an orthogonal basis {xn} cannot have an identity β.
For, if eeA, e = Σ ? = i ^ converges, hence \\xn\\ < 1 for sufficiently
large n. Thus, ||α?H|| = ||a?*|| ^ ||a?n||* for all k ^ 1. So, ||a?,|| = 0
which is impossible since xn Φ 0.

We now give an example of a topological algebra with an
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orthogonal basis which is not a Banach algebra.

EXAMPLE 4. Let H(D) be the F-space (with the compact-open
topology) of all functions holomorphic in the open unit disc D. H(D)
is a topological algebra with identity 1 with the product

(f*9)(x) -

where xeD, and \x\ < r < 1 [6], The sequence of functions ξn(z) =
zn, zeD, n Ξ> 0 is a basis for H(D). A simple computation shows
that this basis is an orthogonal basis. Note that H(D) cannot be
locally m-convex in view of Theorem 3.4, since it is not s.

Finally, we note that if A and B are topological algebras with
orthogonal bases then the product basis [7, p. 28] in A x B is an
orthogonal basis as can easily be checked (note that the construction
of product bases for Banach spaces given in [7] has a natural
extension to topological vector spaces and the proofs are similar to
the Banach space case). Also, if A and B are Banach algebras with
orthogonal bases then it is easy to check that the tensor product
of these bases [7, p. 173] in A ®PB, the protective tensor product
of A and B, is an orthogonal basis for the Banach algebra A ® p B.
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