$|C, 1|$ SUMMABILITY OF SERIES ASSOCIATED WITH FOURIER SERIES

H. P. Dikshit and S. N. Dubey

Abstract

The purpose of this paper is to prove the following theorem. Suppose that for $u \geq n_{0}, g(u)$ and $d(u)$ are positive functions such that $u d(u)$ is nondecreasing and (i) $\sum n^{-1} g(n) d(n)<\infty$. Then the series $\sum d(n) A_{n}(x)$ is summable $|C, 1|$, if the following hold:

$$
\begin{gather*}
\Phi(t)=\int_{0}^{t}|\varphi(u)| d u=O\left(t g\left(t^{-1}\right)\right), \quad t \longrightarrow+0 \tag{1.1}\\
\sum n^{-1} d(n) I\left(n^{-1}\right)=\sum n^{-1} d(n) \int_{n^{-1}}^{\pi} t^{-1}|\varphi(t)| d t<\infty \tag{1.2}
\end{gather*}
$$

1. The main result. Let $\sum_{n=0}^{\infty} a_{n}$ be a given infinite series with $\left\{s_{n}\right\}$ as the sequence of its partial sums. The nth $(C, 1)$ mean of $\left\{s_{n}\right\}$ is given by

$$
t_{n}=\sum_{k=0}^{n} s_{k} / n+1
$$

and the series $\sum_{n=0}^{\infty} a_{n}$ is said to be $|C, 1|$ summable, if $\sum_{n=1}^{\infty}\left|t_{n}-t_{n-1}\right|<\infty$. It is known that (see [2])

$$
\begin{equation*}
n\left(t_{n}-t_{n-1}\right)=T_{n} \tag{1.3}
\end{equation*}
$$

where T_{n} is the nth $(C, 1)$ mean of the sequence $\left\{n a_{n}\right\}$.
Let $f(t)$ be a Lebesgue integrable periodic function with period 2π and $\sum_{n=0}^{\infty} A_{n}(t)$ denotes its Fourier series. Then for $k \geqq 1$,

$$
\begin{equation*}
\pi A_{k}(x)=\int_{0}^{\pi} \varphi(t) \cos k t d t \tag{1.4}
\end{equation*}
$$

where $\varphi(t)=f(x+t)+f(x-t)-2 f(x)$. For some positive integer n_{0}, we write \sum for $\sum_{n=n_{0}}^{\infty}$. We now turn to the proof of the theorem stated in the first paragraph.

Remarks. If we take $d(u)=u^{-a}$ and $g(u)=(\log u)^{b}$, for any $a, b>0$, then clearly $u d(u)$ is nondecreasing for $u \geqq 1$ and (i) holds if $a \leqq 1$. Further, assuming (1.1), we have by integration by parts

$$
\begin{equation*}
I\left(n^{-1}\right)=\left[t^{-1} \Phi(t)\right]_{1 / n}^{\pi}+\int_{1 / n}^{\pi} t^{-2} \Phi(t) d t \tag{1.5}
\end{equation*}
$$

so that $I\left(n^{-1}\right)=O\left[(\log n)^{1+b}\right]$ and (1.2) follows. Thus, we have

Corollary. Suppose that for any positive b, however, large,

$$
\Phi(t)=\int_{0}^{t}|\varphi(u)| d u=O\left[t(\log (1 / t))^{b}\right], \quad t \longrightarrow+0
$$

Then the series $\sum n^{-a} A_{n}(x)$ with $n_{0}=1$, is summable $|C, 1|$ for $0<a \leqq 1$ and is absolutely convergent for $a>1$.

In order to see the later part of the corollary we notice that

$$
\pi A_{n}(x)=O\left(\Phi\left(n^{-1}\right)+I\left(n^{-1}\right)\right)=O\left[(\log n)^{1+b}\right]
$$

and the consequence follows. Since $\Phi(t)=O(t)$ implies (1.1) (but not conversely) the result of the corollary is an improvement over that contained in [1, Theorem 1].

Taking $g(u)=\left[\prod_{r=1}^{k} \log ^{r} u\right]^{-1}$ and $d(u)=g(u)\left\{\log ^{k}(u)\right\}^{-b}$ for any $b>0$, where $\log ^{1}(u)=\log u ; \log ^{2}(u)=\log \log u ; \cdots$; we see that the hypothesis (i) holds. Now assuming (1.1) we have from (1.5), $I\left(n^{-1}\right)=O\left(\log ^{k+1} n\right)$, so that (1.2) holds and we deduce the result of Theorem 2 in [1].
2. Proof of the theorem. In view of (1.3) and (1.4), it follows that in order to prove the theorem it is sufficient to show that

$$
\begin{equation*}
J \equiv \sum\{n(n+1)\}^{-1}\left|\int_{0}^{\pi} h(n, t) \varphi(t) d t\right|<\infty \tag{2.1}
\end{equation*}
$$

where $h(n, t)=\sum_{k=n_{0}}^{n}\left(k-n_{0}\right) d(k) \cos k t$. Since $k d(k)$ is nonnegative, nondecreasing and

$$
\left(k-n_{0}\right) d(k)=k d(k)\left(1-\left(n_{0} / k\right)\right)
$$

therefore, $\left(k-n_{0}\right) d(k)$ is nonnegative, nondecreasing for $k \geqq n_{0}$. Thus, we have by Abel's lemma

$$
\begin{equation*}
h(n, t)=O\left(n d(n) \max _{n_{0}<r \leq n}\left|\sum_{k=r}^{n} \cot k t\right|\right)=O(\operatorname{snd} d(n)) \tag{2.2}
\end{equation*}
$$

where $s=n$ or t^{-1}. Thus,

$$
\begin{align*}
J_{1} & =\sum\{n(n+1)\}^{-1}\left|\int_{0}^{1 / n} h(n, t) \varphi(t) d t\right| \tag{2.3}\\
& =O\left(\sum d(n) \Phi\left(n^{-1}\right)\right)=O(1),
\end{align*}
$$

by virtue of the hypotheses (i) and (1.1). Using (2.2) with $s=t^{-1}$, we have

$$
\begin{align*}
J_{2} & =\sum\{n(n+1)\}^{-1}\left|\int_{1 / n}^{\pi} h(n, t) \varphi(t) d t\right| \tag{2.4}\\
& =O\left(\sum n^{-1} d(n) I\left(n^{-1}\right)\right)=O(1)
\end{align*}
$$

by virtue of (1.2). Combining (2.3) and (2.4) with (2.1), we complete the proof of the theorem.

References

1. F. C. Hsiang, On $|C, 1|$ summability factors of Fourier series, Pacific J. Math., 33 (1970), 139-147.
2. E. Kogbetliantz, Sur la séries absolument sommable par la méthode des moyennes arithmétiques, Bull. Sci. Math., 49 (1925), 234-256.

Received June 5, 1979 and in revised form September 18, 1979.
University of Jabalpur
Jabalpur, India 482001

