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|C, 1| SUMMABILITY OF SERIES ASSOCIATED
WITH FOURIER SERIES

H. P. DlKSHIT AND S. N. DUBEY

The purpose of this paper is to prove the following theo-
rem. Suppose that for u > n0, g(u) and d(u) are positive func-
tions such that ud{u) is nondecreasing and (i) Σ n'1g(n)d(n) < oo.
Then the series Σ d(n)An(x) is summable | C, 11, if the follow-
ing hold:

(1.1) Φ(t)=[\φ(u)\du = O(tg(Γ1)), t > + 0 ;
Jo

(1.2) Σ rrιd(n)I{fΓι) = Σ n~ld(n) [ Γ11 φ{t)\ dt < <χ> .
Jn-l

l The main result* Let Σϊ= 0 an be a given infinite series with
{sn} as the sequence of its partial sums. The nth (C, 1) mean of {sn}
is given by

<• = Σ sk/n + 1

and the series Σ»=o αn is said to be |C, 1| summable, if Σ»=i 1̂  — *»-il < °°
It is known that (see [2])

(1.3) n(tn - tn^) - Tn

where Tn is the nth (C, 1) mean of the sequence {nan}.
Let f{t) be a Lebesgue integrable periodic function with period

2π and Σ^=o AΛ(ί) denotes its Fourier series. Then for k ^ 1,

(1.4) 7ΓΛO*O - \*φ(t)
Jo

cos

where φ{t) = f{x + ί) + f(x — t) — 2f(x). For some positive integer
nQt we write Σ for Σϊ=no We n o w ^ u r n °̂ ^ e Proo;f °f the theorem
stated in the first paragraph.

REMARKS. If we take d(u) = u~a and g(u) = (log u)\ for any
α, 6 > 0, then clearly u d(u) is nondecreasing for u ^ 1 and (i) holds
if α ^ 1. Further, assuming (1.1), we have by integration by parts

(1.5) I(n~ι) = [r'Φφlί/n + ί" t~2Φ(t)dt

so that /(w-1) = O[(log n)1+b] and (1.2) follows. Thus, we have
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COROLLARY. Suppose that for any positive b, however, large,

(1.10 Φ(ί) = Γ \φ(u) I du = O[t(log (lit))*] , t > + 0 .
Jo

Then the series Σ n~aAn(x) with n0 = 1, is summable | C, 11 for 0 < α ^
is absolutely convergent for a > 1.

In order to see the later part of the corollary we notice that

πAn{x) = OiΦin-1) + /(w"1)) = O[(log w)1+&]

and the consequence follows. Since Φ(t) = O(t) implies (1.1') (but not
conversely) the result of the corollary is an improvement over that
contained in [1, Theorem 1].

Taking g(u) = [ Π t i logr u]'1 and d(u) = g(u){logk (u)}~h for any
6 > 0, where log1^) — log u; \og\u) = log log u; we see that the
hypothesis (i) holds. Now assuming (1.1) we have from (1.5),
I(n~*) = O(logk+1 n), so that (1.2) holds and we deduce the result of
Theorem 2 in [1].

2. Proof of the theorem* In view of (1.3) and (1.4), it fol-
lows that in order to prove the theorem it is sufficient to show that

(2.1) J=ΣA M^ + ϊ )}"11 Γ Kn, t)φ(t) dt

where h(n, t) = Σϊ=%0 (* ~~ n») ^(^) c o s ^ Since k d(k) is nonnegative,
nondecreasing and

(k - n0) d(k) = k d(k)(l - (nQ/k))

therefore, (k — n0) d(k) is nonnegative, nondecreasing for k ^ n0. Thus,
we have by Abel's lemma

(2.2) h(n9 t) = θ(nd(n) max Σ cot^ί ) = O(snd(n))
\ nQ<r^n k—r /

where s = n or t~~ι. Thus,

(2.3) Jx = Σ {n(n + I)}"11 £* h(n, t)φ(t) dt

= O(Σ d(n)Φ{n~')) = 0(1) ,

by virtue of the hypotheses (i) and (1.1). Using (2.2) with s = t~\
we have

(2.4) J2 - Σ {n(n + I)}"1

l/Λ
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by virtue of (1.2). Combining (2.3) and (2.4) with (2.1), we complete
the proof of the theorem.
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