BASE CHANGE FOR TEMPERED IRREDUCIBLE REPRESENTATIONS OF GL (n, \boldsymbol{R})

Joe Repka

Abstract

Let π be a tempered irreducible representation of GL (n, \boldsymbol{R}). We prove the expected relation between the characters of π and its base change lifting.

0. Introduction. To each irreducible representation π of GL (n, \boldsymbol{R}) is associated its "base change lifting", an irreducible representation Π of $\operatorname{GL}(n, C)$. It is expected that the characters of these two representations are related in a certain way, at least if π is tempered, and this relation has in fact been proved for GL $(2, \boldsymbol{R})$ by Shintani [4], and for representations of GL (n, \boldsymbol{R}) induced from unramified quasicharacters of a minimal parabolic subgroup by Clozel [1]. The purpose of this paper is to prove the relation for arbitrary tempered irreducible representations of GL (n, \boldsymbol{R}).

The proof involves computations not unlike those used to calculate the character of an induced representation. The representations in question are all induced from parabolic subgroups whose Levi components are products of copies of GL (2) and GL (1), so we are able to use Shintani's results for GL (2) as a starting point. It is to be expected that a similar "inductive step" can be proved for the general quasi-split connected real reductive group, but technical problems make that more difficult.

1. Notation and preliminaries. Let $G=G L(n), n \geqq 3$. Every irreducible tempered representation π of G_{R} is induced from a cuspidal parabolic subgroup P_{R}. After conjugation, we may assume $P=M N$, where the Levi component M consists of 2×2 and/or 1×1 blocks along the diagonal and N, the unipotent radical of P, consists of upper triangular matrices with diagonal entries all equal to 1 and with zero for those entries which lie inside the blocks of M. Thus $M \cong \mathrm{GL}(2)^{k} \times \mathrm{GL}(1)^{n-2 k}$. Also let $K=U(n)$.

We recall some remarks about σ-conjugacy (see, e.g., [1], §2). Write g^{σ} for the complex conjugate of an element $g \in G_{c}$. Two elements $g, g^{\prime} \in G_{C}$ are σ-conjugate if $g=h^{\sigma} g^{\prime} h^{-1}$, for some $h \in G_{c}$. If $g \in G_{c}$, its norm is defined by $N g=g^{\sigma} g$. If g and g^{\prime} are σ-conjugate, then $N g$ and $N g^{\prime}$ are conjugate in G_{c}. As usual, we write G_{c}^{\prime} for the regular elements of G_{c}; we shall say g is σ-regular if $N g \in G_{c}^{\prime}$, and write $G_{c}^{\prime \prime}$ for the σ-regular elements of G_{c}. The complement of $G_{c}^{\prime \prime}$ is a real analytic subvariety of measure zero.

With $M \cong \mathrm{GL}(2)^{k} \times \mathrm{GL}(1)^{n-2 k}$ as above (blocks along the diagonal), we wish to find representatives for the conjugacy classes of Cartan subgroups of M_{R}. Inside each 2×2 block, we may take either the split Cartan subgroup, consisting of the diagonal matrices, or the nonsplit Cartan subgroup $Z_{R} \cdot \mathrm{SO}(2)$, where Z is the scalar matrices. Thus for each $i, 0 \leqq i \leqq k$, we have $\binom{k}{i}$ subgroups which have i nonsplit factors. We label them $T_{j}^{i}, 1 \leqq j \leqq\binom{ k}{i}$, in any order. For fixed i, all the T_{j}^{i} are conjugate in G_{R}, though not in M_{R}. Fix i, j; for each $l, 1 \leqq l \leqq\binom{ k}{i}$, let $s_{l} \in G_{R}$ be such that $s_{l} T_{j}^{i} s_{l}^{-1}=T_{l}^{i}$; let $S_{j}^{i}=\left\{s_{1}, s_{2}, \cdots\right\}$.

By [1], Corollaire, p. 28, every element $g \in G_{c}^{\prime \prime}$ is σ-conjugate to an element of G_{R}, and $N g$ is conjugate to an element of G_{R}. Likewise every element $m \in M_{c}^{\prime \prime}$ is σ-conjugate to an element of M_{R}, by an element of M_{c}, and $N m$ is conjugate, in M_{c}, to an element of M_{R}.
2. Representations. The irreducible representation π of G_{n} is induced from a representation of P_{R}. Specifically, let ω be a discrete series representation of M_{R}, and extend it to the representation $\omega \otimes 1$ of $\boldsymbol{P}_{R}=M_{R} N_{R}$, trivial on N_{R}. Then $\pi=\operatorname{Ind}{ }_{P_{R}}^{G_{R}} \omega \otimes 1$, and all tempered irreducible representations of G_{R} arise in this way, for some P and ω of this type.

The representation ω is associated in the usual way to a (Weyl group orbit of) character(s) λ of $\left(T_{1}^{k}\right)_{\boldsymbol{R}}$, the compact Cartan subgroup of M_{R}. The restriction of the norm gives a homomorphism N : $\left(T_{1}^{k}\right)_{\boldsymbol{c}} \rightarrow\left(T_{1}^{k}\right)_{\boldsymbol{R}}$, so $\Lambda=\lambda_{\circ} N$ is a character of $\left(T_{1}^{k}\right)_{\boldsymbol{c}}$. The base change lifting Π of π is the representation of G_{c} induced from the extension of Λ to any minimal parabolic subgroup of G_{c} containing $\left(T_{1}^{k}\right)_{c}$. We may choose the minimal parabolic subgroup to be contained in P_{c}. The lifting Ω of ω to M_{c} is induced from the restriction of this character to the intersection of the minimal parabolic subgroup with M_{c}.

To obtain Π, we may first induce to P_{c} and then to G_{c}, so we see that $\Pi=\operatorname{Ind}{ }_{P C}^{G} C_{C} \otimes 1$.

The liftings Π and Ω are equivalent to their conjugates Π^{σ} and $\Omega^{\sigma}\left(\Pi^{\sigma}(g)=\Pi\left(g^{\sigma}\right)\right.$, etc. $)$; i.e., there are involutions A_{Π} and A_{Ω} so that $A_{\Pi} \circ \Pi(g) \circ A_{\Pi}=\Pi^{\sigma}(g), A_{\Omega} \circ \Omega(m) \circ A_{\Omega}=\Omega^{\sigma}(m)$. If $f \in C_{c}^{\infty}\left(G_{c}\right)$, then $\Pi(f)=\int f(g) \Pi(g) d g$ is an operator of trace class, and moreover $f \mapsto \operatorname{trace}\left(\Pi(f) \circ A_{\Pi}\right)$ is a distribution. We wish to show that this distribution is in fact given by a function θ_{Π}^{σ}, and that $\theta_{I}^{\sigma}(g)=\theta_{\pi}(N g)$, where on the right side θ_{π} is the character of π, extended to a conjugate-invariant function on $G_{R}^{G} c$.

Shintani [4] has proved this relation for GL (2), so it follows immediately for $M \cong \mathrm{GL}(2)^{k} \times \mathrm{GL}(1)^{n-2 k}$; in particular, $f \mapsto$ trace $\left(\Omega(f) \circ A_{\Omega}\right)$ is given by a function θ_{Ω}^{σ}, and

$$
\begin{equation*}
\theta_{\Omega}^{\sigma}(m)=\theta_{\omega}(N m) . \tag{2.1}
\end{equation*}
$$

(Actually, there is an ambiguous sign in the definition of the involution A_{Ω}, but we fix it so as to make (2.1) hold.)

Suppose Ω acts on the Hilbert space \mathscr{H}_{Ω}. Then Π acts by right translation on the space \mathscr{H}_{I} of functions $\phi: G_{c} \rightarrow \mathscr{L}_{\Omega}$ such that $\phi(p g)=\delta_{c}^{1 / 2}(p)(\Omega \otimes 1)(p) \phi(g), \quad\left(p \in P_{c}\right)$, and $\left.\phi\right|_{K} \in L^{2}\left(K, \mathscr{H}_{\Omega}\right)$-here δ_{c} is the modular function of P_{c}. Define the operator $A_{I I}$ on $\mathscr{\mathscr { L }}_{\text {II }}$ by $A_{\Pi \Pi} \dot{\phi}(g)=A_{\Omega} \dot{\phi}\left(g^{\sigma}\right)$.

Lemma 2.1. (i) If $\phi \in \mathscr{C}_{I I}$, then $A_{I I} \phi \in \mathscr{H}_{\Pi}$.
(ii) For $g \in G_{c}, A_{\Pi} \circ \Pi(g)=\Pi\left(g^{\sigma}\right) \circ A_{\Pi}$.

Proof. (i) The square-integrability is easy. If $g \in G_{c}, p \in P_{c}$, then $A_{\Pi} \phi(p g)=A_{\Omega} \dot{\phi}\left(p^{\sigma} g^{\sigma}\right)=\delta_{C}^{1 / 2}\left(p^{\sigma}\right) A_{\Omega} \circ(\Omega \otimes 1)\left(p^{\sigma}\right) \dot{\phi}\left(g^{\sigma}\right)=\delta_{C}^{1 / 2}(p)(\Omega \otimes 1)(p) \circ$ $A_{\Omega} \phi\left(g^{\sigma}\right)=\delta_{C}^{1 / 2}(p)(\Omega \otimes 1)(p) A_{I I} \dot{\phi}(g)$.
(ii) $A_{\Pi} \circ \Pi(g) \dot{\phi}\left(g^{\prime}\right)=A_{\Omega}(\Pi(g) \phi)\left(g^{\prime \sigma}\right)=A_{\Omega} \phi\left(g^{\prime \sigma} g\right)=A_{\Pi} \dot{\phi}\left(g^{\prime} g^{\sigma}\right)$.
3. Jacobians. Given the parabolic subgroup $P=M N$, as above, we let \mathfrak{n} be the Lie algebra of N. If $m \in M_{R}$ (resp. M_{C}), then \mathfrak{n}_{R} (resp. \mathfrak{n}_{c}) is $\operatorname{Ad}(m)$-invariant. We denote by σ the complex conjugation on \mathfrak{n}_{c}, and by δ_{R} (resp. δ_{c}) the modular function of P_{R} (resp. $P_{\boldsymbol{C}}$; i.e., $\delta_{\boldsymbol{R}}(m)=\operatorname{det}\left(\left.A d(m)\right|_{n_{\boldsymbol{R}}}\right) ; \delta_{\boldsymbol{C}}=\operatorname{det}\left(\left.A d(m)\right|_{n_{C}}\right)$.

Definition. If $m \in M_{R}$, define $\Delta(m)=\delta_{R}(m)^{-1 / 2} \operatorname{det}(I-A d(m))_{n_{R}}$. If $m \in M_{C}$, define $\Delta^{\sigma}(m)=\delta_{C}(m)^{-1 / 2} \operatorname{det}(I-A d(m) \circ \sigma)_{r_{C}}$.

We remark that $\Delta(m)$ is invariant under conjugation by M_{R}, so we may extend it to an M_{c}-conjugate-invariant function on $M_{R}^{H / c}$, the elements of M_{C} which are conjugate to elements of M_{R}. We remark too that Δ^{σ} is σ-conjugate invariant-in fact both factors are σ-conjugate invariant.

Proposition 3.1. If $m \in M_{c}$ is σ-regular, then $\Delta^{\sigma}(m)=\Delta(N m)$.
Proof. Note that the right side makes sense, since $N m \in M_{R}^{I /}$. By the σ-conjugate invariance of Δ^{σ}, we may assume $m \in T_{R}$, where T is a Cartan subgroup of M defined over \boldsymbol{R}. Thus $N m=m^{2}$, and $\Delta(N m)=\delta_{R}\left(m^{2}\right)^{-1 / 2} \Pi\left(1-\alpha\left(m^{2}\right)\right)$, where the product is over those roots α which appear in the decomposition of the action of T_{R} on \mathfrak{n}_{R}.

On the other hand, in the action of T_{c} on \mathfrak{n}_{c}, the roots occur in conjugate pairs β, β^{σ}, where $\beta^{o}(t)=\beta\left(t^{\sigma}\right)$, and where $\left.\beta\right|_{T_{\boldsymbol{R}}}=\left.\beta^{\sigma}\right|_{T_{\boldsymbol{R}}}$ is one of the roots α of T_{n} in \mathfrak{n}_{R}. Moreover, the conjugation σ on \mathfrak{n}_{c} interchanges the root spaces corresponding to β and β^{σ}. Thus on the span of these two root spaces, relative to a basis of root vectors, $A d(m) \circ \sigma$ is given by the matrix

$$
\left(\begin{array}{cc}
\beta(m) & 0 \\
0 & \beta^{\sigma}(m)
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \beta(m) \\
\beta^{\sigma}(m) & 0
\end{array}\right)
$$

The matrix of $A d(m) \circ \sigma$ on all of \mathfrak{n}_{C} is a sum of blocks of this type, so $\operatorname{det}(I-A d(m) \circ \sigma)_{n_{C}}=\Pi \operatorname{det}\left(\begin{array}{cc}1 & -\beta(m) \\ -\beta^{o}(m) & 1\end{array}\right)=\Pi\left(1-\beta(m) \beta^{o}(m)\right)$. And for our real $m, \beta^{\sigma}(m)=\beta(m)=\alpha(m)$, so
$\Delta^{\sigma}(m)=\delta_{c}(m)^{-1 / 2} \Pi(1-\alpha(m) \alpha(m))=\delta_{R}(m)^{-1} \Pi\left(1-\alpha\left(m^{2}\right)\right)=\Delta\left(m^{2}\right)=\Delta(N m)$, as desired.
4. Integration formulas. We need to develop integral formulas that are adapted to integration over σ-conjugacy classes, analogous to the familiar formulas for ordinary conjugacy.

Let $T=T_{j}^{i}$ and consider the mapping $G_{R} / T_{R} \times T_{R}^{\prime} \rightarrow G_{R}$ given by $(\dot{g}, t) \mapsto \dot{g} t \dot{g}^{-1}$. It has order equal to $w_{G}^{i}=\left|w\left(G_{R},\left(T_{i}^{i}\right)_{R}\right)\right|$. The restriction of this map to $M_{R} / T_{R} \times T_{R}^{\prime}$ has order $w_{M}^{i}=\left|w\left(M_{R},\left(T_{j}^{i}\right)_{R}\right)\right|$.

The σ-twisted analogues of these mappings are the map $G_{c} / T_{R} \times$ $T_{R}^{\prime \prime} \rightarrow G_{c}$ given by ($\left.\dot{g}, t\right) \mapsto \dot{g}^{\sigma} t \dot{g}^{-1}$, and its restriction $M_{c} / T_{R} \times T_{R}^{\prime \prime} \rightarrow M_{c}$.

We calculate their orders: suppose $g^{\sigma} t g^{-1}=h^{\sigma} s h^{-1}, g, h \in G_{c} ; s, t \in$ $T_{R}^{\prime \prime}$. Taking norms, we find $h^{-1} g t^{2} g^{-1} h=s^{2}$. Letting S be a set of representatives for $W\left(G_{R}, T_{R}\right)$, we see that $t^{2}=w s^{2} w^{-1}$, for some $w \in S$. Thus $w h^{-1} g \in T_{c}$, i.e., $h^{-1} g=w^{-1} t^{\prime}$, some $t^{\prime} \in T_{c}$. So $s=$ $h^{-\sigma} g^{\sigma} t g^{-1} h=w^{-\sigma} t^{\sigma} t t^{\prime-1} w=w^{-1} t^{\prime \sigma} t^{\prime-1} t w, \quad$ or $\quad t^{\prime \sigma} t^{\prime-1} t=w s w^{-1} \in T_{R}, \quad$ so $t^{\prime \sigma} t^{\prime-1} \in T_{\mathrm{R}}$. Modulo T_{R}, this allows only finitely many possibilities for t^{\prime}. It is in fact easy to see that there are 2^{n-i} possibilities for t^{\prime}, modulo T_{R}. The same analysis applies to M_{c}, with the difference that w must be in M_{R}, though the possibilities for t^{\prime} remain the same. We record the result as

Lemma 4.1. Let $T=T_{j}^{i}$, for some i, j. The maps $(\dot{g}, t) \mapsto$ $\dot{g}^{\sigma} t \dot{g}^{-1}, \quad G_{C} / T_{R} \times T_{R}^{\prime \prime} \rightarrow G_{C}$ and its restriction to $M_{C} / T_{R} \times T_{R}^{\prime \prime}$ have orders $2^{n-i} w_{G}^{i}$ and $2^{n-i} w_{M}^{i}$ respectively.

Next we prove the σ-twisted analogue of a familiar result ([3], Lemma 5.2; cf. [5], Theorem 1.1.4.4).

Proposition 4.2. If $m \in M_{c}^{\prime \prime}$ is such that $\Delta^{o}(m) \neq 0$, then the
map $n \mapsto m^{-1} n^{\sigma} m n^{-1}$ is an analytic diffeomorphism $N_{c} \rightarrow N_{c}$, with Jacobian equal to $\operatorname{det}\left(A d\left(m^{-1}\right) \circ \sigma-I\right)_{\mathrm{nc}}$.

Proof. Let $\mathfrak{n}_{n-1}=\{0\}, \mathfrak{n}_{r}=\left\{X \in \mathfrak{n}_{c}:\left[X, \mathfrak{n}_{c}\right] \subseteq \mathfrak{n}_{r+1}\right\}$. Then $\mathfrak{n}_{C}=$ $\mathfrak{H}_{0} \supseteq \mathfrak{n}_{1} \supsetneq \mathfrak{n}_{2} \supsetneq \cdots \supseteq \mathfrak{n}_{n-1}=\{0\}$. Letting $A_{1}=A d\left(m^{-1}\right) \circ \sigma, A_{2}=-I$, we can apply [5], Lemma 1.1.4.2.

Fix Haar measures on $M_{R}, N_{R}, M_{c}, N_{c}, K, K \cap G_{R}$, and use them to define Haar measure on G_{R} by

$$
\int f(g) d g=\int_{K \cap \sigma_{\boldsymbol{R}}} \int_{N_{\boldsymbol{R}}} \int_{M_{\boldsymbol{R}}} f(m n k) d m d n d k
$$

and similarly for G_{c}.
We apply [5], formula II in $\S 8.1 .2$, to M_{R} and G_{R} and find that for $\phi \in C_{c}^{\infty}\left(M_{R}\right), f \in C_{c}^{\infty}\left(G_{R}\right)$,

$$
\begin{aligned}
& \int_{M_{R}} \phi(m) d m=\sum_{0 \leqq i \leq k} \sum_{1 \leqq j \leq\left(l_{i}^{k}\right)}\left(w_{M}^{i}\right)^{-1} \\
& \quad \cdot \int_{M \mid T_{j}^{i}} \int_{T_{j}^{i}} \dot{\phi}\left(\dot{m} t \dot{m}^{-1}\right)\left|\operatorname{det}\left(A d\left(t^{-1}\right)-I\right)_{m \mid t t_{j}^{i}}\right| d t d \dot{m} \\
& \int_{G_{R}} f(g) d g=\sum_{0 \leqq i \leq l}\left(w_{G}^{i}\right)^{-1} \\
& \quad \cdot \int_{G \mid T_{1}^{i}} \int_{T_{1}^{i}} f\left(\dot{g} t \dot{g}^{-1}\right)\left|\operatorname{det}\left(A d\left(t^{-1}\right)-I\right)_{\mathfrak{s} \mid t_{1}^{i}}\right| d t d \dot{g}
\end{aligned}
$$

Here $\mathfrak{m}, \mathfrak{g}, t_{j}^{i}$ are the Lie algebras of M, G, T_{j}^{i}, and we have suppressed the subscript \boldsymbol{R} on $T_{s}^{i}, M, G, t_{j}^{i}, \mathfrak{m}$, and g. For fixed i, all the T_{j}^{i} 's are conjugate in G_{R}, so T_{1}^{i} in the second formula could be replaced by any T_{j}^{i}, or better yet by their average:

$$
\begin{aligned}
& \int_{G_{R}} f(g) d g=\sum_{0 \leqq i \leq k} \sum_{1 \leqq j \leq\binom{ k}{i}}\binom{k}{i}^{-1}\left(w_{G}^{i}\right)^{-1} \\
& \quad \cdot \int_{G \mid T_{j}^{i}} \int_{T_{j}^{i}} f\left(\dot{g} t \dot{g}^{-1}\right)\left|\operatorname{det}\left(A d\left(t^{-1}\right)-I\right)_{\mathrm{g} \mid t_{j}^{i}}\right| d t d \dot{g}
\end{aligned}
$$

Replacing \dot{g} by $k n \dot{m}$, with $k \in K \cap G_{R}, n \in N_{R}, \dot{m} \in M_{R} /\left(T_{j}^{i}\right)_{\mathbf{R}}$, we see the above integral equals

$$
\begin{aligned}
& \int_{K \cap G_{\boldsymbol{R}}} \int_{N_{\boldsymbol{R}}} \int_{M_{\boldsymbol{R}} \backslash\left(T_{j}^{i}\right)_{R}} \int_{\left(T_{j}^{i}\right)_{R}} f\left(k n \dot{m} t \dot{m}^{-1} n^{-1} k^{-1}\right)\left|\operatorname{det}\left(A d\left(t^{-1}\right)-I\right)_{m \mid t_{j}^{i}}\right| d t d \dot{m} \\
& \quad \cdot\left|\operatorname{det}\left(A d\left(t^{-1}\right)-I\right)_{\varepsilon / \mid t_{j}^{i}}\right| \cdot\left|\operatorname{det}\left(A d\left(t^{-1}\right)-I\right)_{m_{m} \mid t_{j}^{i}}\right|^{-1} d n d k .
\end{aligned}
$$

Now

$$
\begin{gathered}
\left.\mid \operatorname{det} A d\left(t^{-1}\right)-I\right)\left._{g^{\prime} / t_{j}^{i}}|\cdot| \operatorname{det}\left(A d\left(t^{-1}\right)-I\right)_{m / t_{j}^{i}}\right|^{-1} \\
=\left|\operatorname{det}\left(\operatorname{Ad}\left(t^{-1}\right)-I\right)_{s / m}\right|=\Delta(t)^{2} .
\end{gathered}
$$

Collecting constants, if $m \in M_{R}^{\prime}$ is conjugate to an element of T_{j}^{i}, we define $r(m)=\binom{k}{i}^{-1} w_{s}^{i} / w_{G}^{i}$. Then

$$
\begin{equation*}
\int f(g) d g=\int_{K_{\cap} G_{R}} \int_{N_{R}} \int_{M_{R}} r(m) f\left(k n m n^{-1} k^{-1}\right) \Delta(m)^{2} d m d n d k . \tag{4.1}
\end{equation*}
$$

Next we turn to the σ-conjugate situation. Let $M_{j}^{i}=\left\{m^{0} \mathrm{tm}^{-1}\right.$: $\left.m \in M_{c}, t \in\left(T_{j}^{i}\right)_{k}\right\}, M^{i}=U_{j} M_{j}^{i}, G^{i}=\left\{g^{i} m g^{-1}: g \in G_{c}, m \in M^{i}\right\}$. Using Proposition 4.2 and an argument analogous to the one used to prove the corresponding untwisted formulas ([2], Corollary 2, p. 94; [5], §8.1.2), we find that for $f \in C_{c}^{\infty}\left(G^{i}\right)$, the integral

$$
\int_{K} \int_{N_{C}} \int_{x_{j}^{i}} f\left(k^{\sigma} n^{\sigma} m n^{-1} k^{-1}\right) \Delta^{\sigma}(m)^{2} d m d n d k
$$

is a constant multiple of $\int f(g) d g$. Moreover, from Lemma 4.1 we see that the constant is $2^{n-i} w_{G}^{i} /\left(2^{n-i} w_{M t}^{i}\right)=w_{G}^{i} / w_{M}^{i}$. It works equally well for any j, so, averaging, we find

$$
\int_{G i} f(g) d g=\binom{k}{i}^{-1} w_{M}^{i} / w_{G}^{i} \int_{K} \int_{N_{C}} \int_{M i} f\left(k^{\sigma} n^{\sigma} m n^{-1} k^{-1}\right) \Delta^{a}(m)^{2} d m d n d k .
$$

Combining all the G^{i} s, we can write, for $f \in C_{c}^{\infty}\left(\mathbf{U}_{i} G^{i}\right)$,

$$
\begin{equation*}
\int f(g) d g=\int_{K} \int_{N_{c}} \int_{m_{c}} r(m) f\left(k^{\sigma} n^{\sigma} m n^{-1} k^{-1}\right) \Delta^{\sigma}(m)^{2} d m d n d k \tag{4.2}
\end{equation*}
$$

where for $m \in M^{i}, r(m)=r(N m)=\binom{k}{i}^{-1} w_{k k}^{i} / w_{G}^{i}$.
5. Integral operators. For $f \in C_{c}^{\infty}\left(G_{c}\right)$, we express $\Pi(f) \circ A_{\Pi}$ as an integral operator. If $\phi \in \mathscr{C}_{I}, k_{0} \in K$,

$$
\begin{aligned}
\Pi(f) \circ A_{\Pi} \phi\left(k_{0}\right) & =\int_{\sigma_{c}} f(g) A_{\Pi} \phi\left(k_{0} g\right) d g=\int f\left(k_{0}^{-1} g\right) A_{\Pi} \phi(g) d g \\
& =\int_{K} \int_{N_{c}} \int_{N_{c}} f\left(k_{0}^{-1} m n k\right) A_{\Pi} \phi(m n k) d m d n d k \\
& =\iiint f\left(k_{0}^{-1} m n k\right) \delta_{c}(m)^{1 / 2} \Omega(m) A_{\Omega} \phi\left(k^{o}\right) d m d n d k \\
& =\iiint f\left(k_{0}^{-1} n^{\sigma} m n^{-1} k^{o}\right) \Delta^{\sigma}(m) \Omega(m) A_{g} \dot{\phi}(k) d m d n d k \\
& =\int_{K} K_{f}\left(k_{0}, k\right) \phi(k) d k,
\end{aligned}
$$

where $K_{f}\left(k_{0}, k\right)$ is the operator-valued kernel

$$
\int_{N_{c}} \int_{M_{c}} f\left(k_{0}^{-1} n^{\sigma} m n^{-1} k^{\sigma}\right) \Delta^{\sigma}(m) \Omega(m) A_{\Omega} d m d n .
$$

To find the trace of this operator we use Hirai's generalization ([3], §4) of the usual procedure and integrate the kernel along the diagonal and find the trace of the resulting operator, i.e.,

$$
\begin{aligned}
\operatorname{trace} & \left(\Pi(f) \circ A_{I I}\right)=\operatorname{trace} \int_{K} K_{f}(k, k) d k \\
= & \operatorname{trace}\left[\int_{K} \int_{N_{C}} \int_{\|_{C}} f\left(k^{-1} n^{\sigma} m n^{-1} k^{\sigma}\right) \Delta^{\sigma}(m) \Omega(m) d m d n d k \circ A_{\Omega}\right] \\
= & \int_{M_{C}} \int_{N_{C}} \int_{K} f\left(k^{\sigma} n^{\sigma} m n^{-1} k^{-1}\right) \Delta^{\sigma}(m) \theta_{\Omega}^{\sigma}(m) d k d n d m \\
= & \int_{G_{C}} f(g) \theta_{\Pi}^{\sigma}(g) d g
\end{aligned}
$$

where, using (4.2) and symmetrizing $\Delta^{\sigma-1} \theta_{\Omega}^{\sigma}$, we have $\theta_{\Pi}^{\sigma}\left(h^{\sigma} g h^{-1}\right)=$ $\theta_{I l}^{o}(g)$, for $g, h \in G_{c}$, and if $t \in\left(T_{j}^{i}\right)_{R}$

$$
\begin{gather*}
\theta_{M}^{\sigma}(t)=r(t)^{-1}\binom{k}{i}^{-1} w_{M}^{i} / w_{G}^{i} \sum_{s \in S_{j}^{i}} \sum_{w} \Delta^{\sigma-1} \theta_{\Omega}^{\sigma}\left(w s t s^{-1} w^{-1}\right) \tag{5.1}\\
=\sum_{s} \sum_{w} \Delta^{\sigma-1} \theta_{\Omega}^{\sigma}\left(w s t s^{-1} w^{-1}\right)
\end{gather*}
$$

The inner sum is over $w \in W\left(M_{R}, T_{j}^{i}\right) \backslash W\left(G_{R}, T_{j}^{i}\right)^{s}$, and the outer sum over $s \in S_{j}^{i}$ averages over the various T_{l}^{i} 's. Also $\theta_{I I}^{o}(g)=0$ unless $g \in \bigcup_{i=0}^{k} G^{i}$.
6. The character relation. We are now able to state:

Theorem. Let π be an irreducible tempered representation of $\mathrm{GL}(n, \boldsymbol{R}), \Pi$ its base change lifting. Let A_{Π} be an involution with $A_{\Pi} \circ \Pi(g)=\Pi^{\sigma}(g) \circ A_{\Pi}$. The distribution

$$
f \longmapsto \operatorname{trace}\left(\Pi(f) \circ A_{\Pi}\right) \quad\left(f \in C_{c}^{\infty}(\operatorname{GL}(n, \boldsymbol{C}))\right)
$$

is given by a function θ_{I}^{σ} on $\mathrm{GL}(n, C)$, and the sign of A_{Π} may be chosen so that $\theta_{I}^{\sigma}(g)=\theta_{\pi}(N g)$.

Proof. The result is trivial for GL (1), and for GL (2) has been done by Shintani [4]. For $n \geqq 3$, all that remains to be shown is the last identity, and, ignoring a null set, it suffices to consider $g \in G_{c}^{\prime \prime}$. We fix A_{Π} as in $\S 2$.

By the familiar untwisted analogue of the computation in §5, we can use (4.1) to calculate θ_{π} (cf. [3]). For $t \in\left(T_{j}^{i}\right)_{R}$, we find $\theta_{\pi}(t)=\sum_{s \in S_{j}^{i}} \sum_{w} \Delta^{-1} \theta_{\omega}\left(w s t s^{-1} w^{-1}\right)$. The inner sum is over $w \in$ $W\left(M_{R},\left(T_{j}^{i}\right)^{s}\right) \backslash W\left(G_{R}, T_{j}^{i}\right)^{s}$. Also $\theta_{\pi}(g)=0$ unless $g \in M_{R}^{G_{R}}$.

We know from §5 that $\theta_{I}^{\circ}(g)=0$ unless $g \in \cup G^{i}$. Thus the desired relation holds for $g \notin \cup G^{i}$, so we may suppose $g \in G^{i}$. By
the invariance of θ_{π} and the σ-conjugate invariance of θ_{I}^{σ}, we can assume $g=t \in\left(T_{j}^{i}\right)_{R}$, so $N g=t^{2}$.

The result follows by comparing the above formula for $\theta_{\pi}(N t)=$ $\theta_{\pi}\left(t^{2}\right)$ with formula (5.1) for $\theta_{. i}^{\sigma}(t)$, and applying Proposition 3.1 and formula (2.1).

References

1. L. Clozel, "Base change" géométrique: Relèvement de la série principale de $\mathrm{GL}(n, \boldsymbol{C} / \boldsymbol{R})$, Actes du Colloque d'Analyse Harmonique Non-Commutative, Marseille-Luminy, Lect. Notes Math., Vol. 728.
2. Harish-Chandra, Two theorems on semi-simple Lie groups, Ann. of Math., 83 (1966), 74-128.
3. T. Hirai, The characters of some induced representations of semisimple Lie groups, J. Math. Kyoto Univ., 8 (1968), 313-363.
4. T. Shintani, On irreducible unitary characters of a certain group extension of GL($2, \boldsymbol{C}$), J. Math. Soc. Japan, 29 (1977), 165-188.
5. G. Warner, Harmonic Analysis on Semi-Simple Lie Groups, Vols. I, II, SpringerVerlag (New York, Heidelberg, Berlin), 1972.

Received June 7, 1980.
University of Toronto
Toronto, Canada

