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ON THE IRREDUCIBILITY OF AN INDUCED
REPRESENTATION

JOHN C. QUIGG

A unitary representation induced from a normal sub-
group of a second countable locally compact group with
abelian quotient is irreducible if and only if (i) the inducing
representation is irreducible with trivial stability subgroup
and (ii) the restriction of the induced representation to the
normal subgroup is type I. This is proved in the context
of twisted group algebras using a duality result for induced
representations which includes the Takesaki duality theorem
for crossed products of von Neumann algebras (having sep-
arable pre-dual). Examples are given showing that condi-
tion (ii) above is not redundant.

1* Introduction* Let K be a second countable locally compact
group with closed normal subgroup N and quotient group G, and let
π be a weakly continuous unitary representation of N. Denote the
induced representation by ind π and its restriction to N by ft. When
is ind 7Γ irreducible? It has long been known that the condition

(1.1) π is irreducible with trivial stability subgroup (in G)

is necessary (see, e.g., Mackey [35] and Blattner [2]). It has also
been known that (1.1) coupled with the condition

(1.2) π is type I

is sufficient, for in the presence of (1.1) the condition (1.2) is equiv-
alent with the measure class ^{π, G) in N (the set of unitary equiv-
alence classes of irreducible representations of N equipped with the
Mackey Borel structure) associated with the direct integral decom-
position of π over G being canonical (Mackey [33]), which is in turn
equivalent with the canonical system of imprimitivity based on G
being contained in the von Neumann algebra J ^ r generated by π.
Of course, indπ is irreducible if and only if (1.1) holds and J^ίndπ
contains the system of imprimitivity, but the precise role played by
(1.2) with regard to this containment has been unclear up to now.
^(π, G) is always canonical if G is discrete (for then the direct
integral reduces to a direct sum), or if N is type I, or, more gen-
erally, if the kernels of the translates of π by G are all distinct
(for then the system of imprimitivity can be based on the primitive
ideal space of N and the results of Effros [15] applied; see also
Blattner [2]). However, it has been conjectured (Mackey [35], Busby
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and Smith [5]) that noncanonical measure classes can in fact occur
in the form ^(TΓ, (?) and that the resulting induced representations
must be reducible (because it would then be difficult to imagine
J^n d 3 r containing the system of imprimitivity).

In this paper we verify this conjecture when the quotient group
is abelian, thus showing that in this case (1.1, 2) are necessary and
sufficient for the induced representation to be irreducible, and that
(1.2) is not redundant. Specifically, the main result of § 4 (Theorem
4.3) shows that (1.2) is a necessary condition, and in §5 we give
examples where (1.1) obtains but (1.2) does not.

We actually work in the more general context of twisted group
algebras as developed in Busby and Smith [5] (see also Leptin [26,
27, 28, 29, 30]). If N is replaced by its group algebra A = L\N)
we can form a twisted covariant system consisting of an automorphic
action of G on A which is twisted by a 2-cocycle (the action being
unique up to the choice of cocycle), and the resulting twisted group
algebra (see § 2 for the precise definition) is naturally isomorphic
with L\K). An induced representation can be defined in terms of
the twisted group algebra which is equivalent to the induced rep-
resentation of K modulo the aforementioned isomorphism.

The theory of twisted covariant systems, twisted group algebras,
and their representations only requires A to be a separable Banach
*-algebra with bounded approximate identity, and is hence much
more general than group extensions, encompassing transformation
groups and dynamical systems, covariant systems of mathematical
physics, and protective group algebras. In § 2 we list the basic
definitions and results of this theory, essentially following Busby and
Smith [5]. Related constructions of about the same generality are
given in Fell [18], Leinert [24], and Leptin [26, 27, 28, 29, 30], and
strong interrelationships between these theories have been found by
Busby [4] and Leinert [25]. Other constructions not quite so general
can be found in Dang-Ngoc [10] and Green [20], where the group
generated by the cocycle is assumed locally compact, and Zeller-Meier
[SO], where G is discrete, and analogues with no cocycle have been
defined by Doplicher, Kastler, and Robinson [14], Effros and Hahn
[17], Glimm [19], and Segal [41]. We mention that the construc-
tions of Dang-Ngoc and Green are sufficiently general to include all
the applications mentioned above.

In this same section we also give a construction of twisted crossed
products of von Neumann algebras which generalizes that of crossed
products as defined by Takesaki [49], and we show a close relation-
ship with induced representations, especially in the absence of a
cocycle. Choda [7, 8], Rousseau [40], and Sutherland [43, 44] have
given constructions of essentially the same generality (Rousseau has
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no separability restrictions).
In § 3 we prove a duality theorem for induced representations

in the case of G abelian which is very close to that of N. Pedersen
[38], although our proof is distinct from his. An almost immediate
corollary is the Takesaki duality .theorem for crossed products of
von Neumann algebras (Takesaki [49]) in the separable pre-dual
case. Our technique is heavily representation-theoretic and involves
a dual covariant system which is essentially that of Takai [45] (he
does not consider a cocycle); see also Green [20, 21].

In § 4 we prove the main result and give several corollaries,
among them a result concerning ergodic automorphism groups of von
Neumann algebras and maximal abelian subalgebras. The proof of
the main result is actually quite short, relying heavily upon the
duality theory of § 3 and a simple lemma (Corollary 4.2) concerning
certain twisted crossed products of the algebra of bounded operators
on a Hubert space.

Our examples (of irreducible representations having trivial sta-
bility subgroups but inducing reducible representations) are presented
in § 5. The context is that of twisted group algebras, but the ex-
amples could easily be rephrased in terms of group extensions. We
remark that our examples disprove Lemma 3.3 (i) of Takai [46].
Takai references the proof of Theorem 4.2 of Busby and Smith [5].
Unfortunately, while this theorem of Busby and Smith is correct,
their proof is not. We also present an interesting connection with
strongly ergodic group actions on von Neumann algebras, in par-
ticular giving new examples of such.

We emphasize our separability assumptions, which remain in
force throughout.

2* Twisted group algebras and twisted crossed products*

A twisted covariant system is a quadruple ((?, A; τ, a) consisting
of a separable locally compact group G, a separable Banach *-algebra
A having a bounded approximate identity, and maps τ: G -» Aut A
(the isometric *-automorphisms of A) and a: G x G —• f/(A) (the
unitary double centralizers of A) satisfying:

(2.1) τe = tA

(2.2) a(s, e) = a(e, s) = 1

(2.3) r . r , = τstAda{8>t)

(2.4) a(rs, t)τϊ\a{r, s)) = a(r, st)a(s, t)

(2.5) τ is strongly Borel
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(2.6) a is strictly Borel .

(2.1-6) in particular guarantee that the corresponding group extension
& of <&{A) by G can be made into a (Polish) topological group
(Brown [3]). When the cocycle a is absent we say the system is
split, and in this case the action τ is strongly continuous by an old
Polish group result of Banach [1],

The twisted group algebra of ((?, A; τ, a) is the space L\ia(G, A)
of Bochner integrable functions from G to A equipped with the
structure

11/11 = ( \\f(s)\\ds
JG

/*(«) - Msy'τΛfis-^rais-1, 8)*

f*g(s) = ί a(t, t-^τTM
JG

which makes it a separable Banach *-algebra with bounded approxi-
mate identity.

G and M(A) (the double centralizers of A) are embedded in
M{L\,M A)) by

(/•8)(ί) = M

and the resulting embedding of ^ is a homeomorphic monomorphism.
A representation of ((?, A; r, ά) in the separable Hubert space

Sίf will refer either to a non-degenerate ^representation 77 of
L\ta(G9 A) in < ^ or to a pair (E7, π) consisting of a weakly Borel
map U from (? to the unitary group <ZS(3ίf) of £ίf and a non-
degenerate *-homomorphism π of A into the bounded operators

of ^ satisfying

= U(st)πoa(s,t)

Adu(8)<>π = π°τ8.

Π and (U, π) are called the integrated form and the eovariant form
of the representation, respectively, and they are put into a bijective
correspondence by the relationship

Π(f) = ]G U(s)π(f(s))ds .

The eovariant form of Π is recovered by extending Π to M(L\ia(G,
and restricting to g .̂ This correspondence respects equivalence,
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quasi-equivalence, and commuting algebras, and we blur the distinc-
tion between Π and (£7, π) just as for group representations.

Note that AdΌ restricts to give an action of G on Jt/J which is
split and hence o -weakly continuous. Moreover,

the fixed-point subalgebra of S*C' under this action, so that in par-
ticular (U, π) is irreducible if and only if G acts ergodically on J ^ \

For the representation π of A in £ίf the induced representation
ind π = (Uπ, π) of (G, A; τ, a) in L\G, Sίf) is defined by

The translate of π by s is defined as s π = TΓOΓΓ1, SO that

Se
s πds .

<?

The integrated form of indπ is given by

(ind π(f)ξ)(t) =

When clarity is endangered we write indGττ.
The fundamental properties of induced representations, the proofs

of which are either straightforward or may be found in, e.g., Busby
and Smith [5], are collected in the following proposition:

PROPOSITION 2.1.

( i ) ind π = ind s π(s e G).
(ii) 7Ti = (resp. ~)τr2 ==> ind 7ΓX = (resp. ~) ind π2.
(iii) G αcίs in A as a transformation group by s [π] = [s π1],

and [indπ] depends only upon the orbit G-[π],
(iv) If s -+πs is a Borel field of representations of A based on

the standard measure space (S, μ), then

πsdμ(s) = I ind π8dμ(s) .
s Js

(v) ind π ~ ind π.
(vi) JtflL* Π (L~(G) ® 1)' =

L°°(G) ® 1 is the canonical system of imprimitivity for ind π,
Proposition 2.1 (vi) shows that the von Neumann algebra generated by
ind π and its canonical system of imprimitivity is ^f(L2(G)) ® J^£.

If Jzf is a von Neumann algebra (concretely represented on a
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separable Hubert space Sίf) with separable pre-dual, a twisted W*-
covarίant system (G, J%f; θ, β) is defined in a manner exactly analogous
to twisted covariant systems, except that the topologies are taken
as is appropriate for a von Neumann algebra. Of course, M(j*f
since J*f has an identity, and instead of the strict topology on
we use the weak topology.

The twisted crossed product of G and J ^ is the von Neumann
algebra ^fθyβ(G, Jzf) on L\G, £ίf) generated by the operators {Uΰ(s),
πθ(x)\seG, xe Jzf), where

{U,(8)ξ)(t) = β(89 8

If the system is split this reduces to the usual crossed product, since
θ is then automatically continuous.

It is possible (see, e.g., Quigg [39]) to develop a representation
theory for (G, J*f\ θ, β) paralleling that for (G, A τ, a), including a
convolution algebra of J^-valued functions, and in this context
£fβ}β(G, Jzf) is the von Neumann algebra generated by the represen-
tation induced from the identity representation of jzf. In particular,
one of the fundamental properties of induced representations guar-
antees that the isomorphism class of the twisted crossed product is
independent of the choice of realization of Jzf.

Let (U, π) be a representation of the twisted covariant system
(G, A τ, a). Then it is almost obvious that (G, J*fπ; AdUt πoά) is a
twisted PΓ*-covariant system (observe that π: W(A) —> ^f{βίf) is
continuous from the strict topology to the weak topology) and that

The following proposition shows a partial converse, namely that every
(split) PΓ*-covariant system is generated by a (split) covariant system,
and therefore that every crossed product arises as the von Neumann
algebra generated by an induced representation of a covariant
system. The proof, modulo a minor modification to take care of the
separability requirements, can be found in Takesaki [49].

PROPOSITION 2.2. // (G, J^; θ) is a W*-covariant system, then
there exists a separable G-invariant σ-weakly dense C*-subalgebra
of Jϊf on which the action is strongly continuous.

3* Dual covariant systems* Throughout this section (G, A; τ, a)
will be a twisted covariant system with G abelian. For XeG (the
dual group of G) and feL\,a(G, A) define τx(f) e L\,a(G, A) by



INDUCED REPRESENTATIONS 169

PROPOSITION 3.1. f is a strongly continuous action of G on
LUG, A).

Proof. A routine computation shows that τ is a homomorphism
from G to AutLl^G, A), and the continuity follows from the
Lebesgue dominated convergence theorem. •

We call τ the dual action and (G, L\,a(G, A); τ) the dual covariant
system.

LEMMA 3.2. If Π — (U,π) is a representation of (G, A; τ, a),
then

X Π = (XU,π) .

Proof.

= \ U(s)π(fj\f)(s))ds

= \ <8, X) U(s)π(f(s))ds
JG

= (XU, π)(f) .

We use this formula to show that an induced representation of
(G, A; τ, a) can be extended to (G, L\tCC(Gy A);t). Let π be a represen-
tation of A in ̂ g^ and define the representation Uπ of G in L2(G,
by

PROPOSITION 3.3. Π — (Uπ, indπ) is α representation of (G,
i U β , A); f).

Proof. We must show

4d^(Z) o ind 7Γ = (ind TΓ) ° τχ .

Clearly C/̂ (Z) commutes with ft, and

so we have

and this last representation is (indττ)ofχ by Lemma 3.2. •
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We call Π the dual representation. Now assume that π extends
to a representation Π = (U, π) of ((?, A; τ, α). It turns out that in
this situation the dual representation is induced. Define the unitary
W: L\G, ^f) -> L\G, Sίf) by

= \ (s,X)U(s)ζ(s)ds.

PROPOSITION 3.4. W implements an equivalence between Π and
Π.

Proof. First of all we have

U = { <«, 7)U(s)(Uπ(X)ξ)(s)ds
JG

Next,

(WUπ(s)ξ)(Ύ) = ( <«, y)U(t)(Uπ(s)ξ)(t)dt
JG

= \ (st, j)U(st)π°a(s, t)ζ(t)dt
Ja

and

(WS(x)ξ)(y) = \ (s, 7}U(s)(π(x)ξ)(s)ds
JG

= ( <s, 7> U(s)s - π(x)ζ(s)ds
JG

= \ (s, y)π(x)U(s)ξ(s)ds
JG

= π(x)(Wξ)(7) .
Thus

Adw o indG π = ί I A X UdX, lLtιβ) 0 πj

= ζθίU,π)dX
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S θ
1 - ΠdX

G
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We are now in a position to prove a duality theorem for induced
representations. Call a representation of a A quasi-invariant if its
translates are all quasi-equivalent.

THEOREM 3.5. If π is a quasi-invariant representation of A,
then

Proof. Without loss of generality we may assume π extends to
a representation Π of ((?, A; τ, α), since ft does and the quasi-invariance
of π guarantees that π ~ π. Then

π ~ ind,$ fί

Π

where we have applied Proposition 3.4 twice.
Now, G is σ-weakly total in L°°(G), so Uπ generates the canonical

system of imprimitivity for ind^ π. Thus we have

D

Our first corollary is the separable case of the Takesaki duality
theorem for crossed products (Takesaki [49]).

COROLLARY 3.6. // ((?, j ^ ; θ) is a W*-covariant system with G
abelian, then there is an action θ of G on J5fβ{G, Jϊf) such that

Proof. Since the system is split, there is a σ-weakly dense
C*-subalgebra of J ^ on which the action is strongly continuous
(Proposition 2.2), and this allows us to use Theorem 3.5, keeping in
mind the connection between crossed products and induced represen-
tations (§2). •

The form in which we will use Theorem 3.5 is expressed in the

COROLLARY 3.7. If π is a representation of A, then
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Proof. This follows immediately from Theorem 3.5 since indG π ~
indGπ and π is quasi-invariant. •

4* Irreducibility of induced representations* We begin with
a straightforward generalization (to account for the cocycle) of
Lemma 2.1 of Landstad [23]. We only need the special case stated
in the corollary.

We say that the twisted W*-covariant system (G, J*f\ θ, β) is
implemented by the weakly Borel map U: G —> %{βί?) if θ = Ad^
and J7 satisfies

U{s)U{t) = U(s,t)β(s,t).

Let -Sf(G) denote the von Neumann algebra generated by the left
regular representation of G.

LEMMA 4.1. // (G, s%f\ θ, β) is a twisted W*-covariant system
which is implemented by U and U(G) c J ^ then

COROLLARY 4.2. Lei (G, A; τ, a) be a twisted covariant system
with G abelian, and let π be an irreducible representation of A.
If π extends to (G, A; τ, a), then ind π is type I.

Proof. This follows immediately from Lemma 4.1 and the con-
nection between twisted crossed products and induced representations
(§2). D

We remark that in the context of a locally compact group ex-
tension with abelian quotient this says that if an irreducible represen-
tation of the normal subgroup extends to the whole group, then the
induced representation is type I.

We are now prepared for the main result:

THEOREM 4.3. Let (G, A; τ, a) be a twisted covariant system with
G abelian, and let π be a representation of A. Then indπ is ir-
reducible if and only if π is irreducible with trivial stability sub-
group and π is type I.

Proof. As we have pointed out in the introduction, we need
only prove the necessity of the condition concerning π. By the
results of § 3, there is a dual action τ of G on L\>a{Gt A) such that
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Thus π must be type I if ind£ ind# π is. Section 3 also gives us an
extension of indG π to (G, LltCC(G, A); τ). Thus, if ind TΓ is irreducible,
Corollary 4.2 assures us that ind<* indG % is indeed type I. •

We present three corollaries, the first being a reformulation in
terms of the Davies Borel structure (Davies [11]), and the others
concerning ergodic actions on von Neumann algebras and maximal
abelian subalgebras.

COROLLARY 4.4. With the hypotheses of Theorem 4.3, if π is
irreducible with trivial stability subgroup, then the following are
equivalent:

( i ) ind π is irreducible.
(ii) The map s e G —> s [π] e A induces the relative Davies Borel

structure on a co-null Borel subset of the orbit G [π].
(iii) There is a sequence {xό} in %*(M(A)) {the center of M(A))

having the property that for all s Φ e there is a j such that

s - π(xό) Φ π(xά) .

Proof. Effros [16] has shown that a measure class in A is
canonical if and only if there is a co-null Borel set on which the
Davies and Mackey Borel structures agree and are standard, and
furthermore if and only if there is a co-null set S in A and countably
many elements of %'(M(A)) which separate the points of S (recall
that for x e %*(M(A)) and π a factor representation of A the operator
π(x) is a multiple of the identity, this multiple only depending upon
the quasi-equivalence class of π). Since G acts as a transformation
group in A the set {x5} will separate G [π] if and only if it separates
(G - {*}) [π] from [π]. •

COROLLARY 4.5. Let the abelian group G act (without cocycle)
on the von Neumann algebra J ^ restricting to a free and transitive
action on an abelian von Neumann subalgebra ^€. Then the action
is ergodic on J^f if and only if Jzf is type I and ^ is maximal
abelian and simple (in the sense of Takesaki [47]).

Proof. Assume without loss of generality that the action is
implemented by the representation U of G (e.g., in the crossed
product representation). Then G also acts by AdΠ on j ^ ' , and there
exists a separable σ-weakly dense C*-subalgebra A of j ^ ' on which
this action is strongly continuous (Proposition 2.2). Then (Z7, cA) is
a representation of the covariant system ((?, A; Adjj) with a free and
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transitive system of imprimitivity ^€, so there is a representation
π of A such that

(U, cA) = (Uπ, π) = indπ

(Takesaki [48]). Thus, G acts ergodically on j$? if and only if indπ
is irreducible. By Theorem 4.3 this happens if and only if π is type
I and 7Γ is irreducible with trivial stability subgroup, i.e., if and
only if j y is type I and ^J? is maximal abelian and simple in Ĵ C •

COROLLARY 4.6. // a discrete abelian group acts (without cocycle)
on the von Neumann algebra J ^ restricting to a free and transitive
action on a simple maximal abelian subalgebra ^f then s*f is type
I and the action is ergodίc on *s>/.

Proof. In the notation of the above proof, we have π irreducible
with trivial stability subgroup. G being discrete, we must have π
type I and ind π irreducible. •

5* Examples* Let K be a separable locally compact group
which is a semi-direct product of a closed normal subgroup N and
its abelian quotient group H, and denote by σ the corresponding
action of H on N. Then we can form a covariant system (H, L\N); ic)
such that Ll(H, L\N)) is naturally isomorphic with L\K). Let A —
L\H, L\N)), G = H, and τ = £, so that (G, A) τ) is the dual co variant
system to (H, L\N); it). Let λ^ be the left regular representation
of N, and define the representation Vo of H in L\N) by

where Δσ is the modular function of the action σ. Then π = (Vσ, XN)
is a representation of A; indeed, blurring the distinction between
A and L\K),

π ^

where 1H is the identity character of H and the induction is in the
Mackey sense. Moreover, for XeG

X π ~ mάH]κl ,

and we have

π 9^XK .

Thus, in order that π be irreducible with trivial stability subgroup,
we need {mάH^κX\XeG} to be irreducible and pair-wise inequivalent.
If H and N are discrete, this latter condition holds if the tf-orbit
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of every nonidentity element of N is infinite (Mackey [31, § 3]; he
also makes, but does not use, the assumption that N is abelian).
Observe that if σ is free, i.e., σh(n) Φ n for h and n not the identity,
which is a stronger condition (assume H is infinite), then K is ICC
(infinite conjugacy class), so that ft is a IIX factor representation.
Also, if N is amenable, then so is K, so that ft and ind π are ap-
proximately finite-dimensional (see, e.g., Connes [9, introduction]).

The duality theory of § 3 guarantees that ind π is equivalent to
the dual representation of \N, so that

the right regular von Neumann algebra of N.
Thus, in this situation, if σ is free, then π is irreducible with

trivial stability subgroup but ind π is reducible and ft is a IIX factor
representation.

EXAMPLE 5.1. Let H = Q* (the positive rationale under multi-
plication) and N = Q (the rationale under addition), and define the
action σ by

σh(ri) = hn .

Then K is the rational ax + b group, σ is clearly free, and N is
abelian, so ind π is reducible and multiplicity-free and π generates
the hyperfinite Πx factor.

Note that if H = Z (the integers) then σ is free if and only if
σ± is not periodic on any nonidentity element, in which case we say
0Ί is aperiodic.

EXAMPLE 5.2. Let H = Z and N — E™ (the group of finite per-
mutations of Z)9 and define the automorphism σ1 of N by

σx(T) = STS-1 ,

where S is the shift permutation of Z:

S(n) = n + 1 .

Then, denoting the fixed point set of TeΠo* by Fτ (which is co-finite),
we have FσιiT) = Fτ + 1, so σλ is aperiodic. Moreover, JV is amenable
(being an increasing union of finite subgroups), so ind π and ft both
generate the hyperfinite Πλ factor.

EXAMPLE 5.3. Let H = Z and N = Fo* (the free group on the
generators {an\neZ}), and define the automorphism σ± of Nby shift-
ing the generators:
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Then σ1 is clearly aperiodic, and N (hence K) is nonamenable, so in
this case indπ and π generate nonhyperfinite Πx factors.

We now generalize slightly in order to obtain an interesting
connection with strongly ergodic actions. Recall (Nielsen [36]) that
an action of a group on a von Neumann algebra is said to be strongly
ergodic if the only common eigenoperators are constant.

Let (H, B; K, β) be a twisted covariant system with H abelian,
((?, A; τ) the dual covariant system, and π — (V, λ) a representation
of A.

PROPOSITION 5.4. ( i ) ind π is irreducible if and only if λ is.
(ii) π is irreducible with trivial stability subgroup if and only

if the action θ = Adv of H on J%fλ' is strongly ergodic. Moreover,
in this case π is type I if and only if X is irreducible.

Proof. ( i ) We see that J^ήdπ = J^ί' in the same way as in the
discussion given for the case B = L\N).

(ii) Recall that π is irreducible if and only if H acts ergodically
on J^fλ

r. Since the translate of π by X e G is given by

X π = (XV,X)

(Lemma 3.2), π has disjoint translates if and only if for X Φ \H e G
there is no nonconstant operator xe^fλ

r such that

θh{x) - <Λ, X)x

for all heH. Thus π is irreducible with disjoint (hence inequivalent)
translates if and only if θ is strongly ergodic on J ^ ' .

The last statement of (ii) follows immediately from (i) and
Theorem 4.3. •

COROLLARY 5.5. Let (H, *Szf\ K) be a W*-covariant system with
H abelian and fc implemented, and let the associated action of H on

be strongly ergodic. Then Sfκ{H, Jάf) is type I if and only if

Proof. Letting B be a separable cr-weakly dense C*-subalgebra
of J ^ on which it is strongly continuous (Proposition 2.2) and λ the
identity representation of B, we see that ^fκ(H, >Stf) is the von
Neumann algebra generated by the representation indλ of the
covariant system {H, B; /c). Letting V be a representation of H
which implements K, we get a representation π = (V, λ) of the dual
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covariant system (G9A;τ). But indλ = π (Proposition 3.4), and π
is type I if and only if λ is irreducible (Proposition 5.4). •

COROLLARY 5.6. Every strongly ergodίc action of an abelian
group on a von Neumann algebra of dimension greater than one
gives rise to an example of the desired sort.

Proof. The "desired sort" of example consists of a twisted
covariant system (G, A τ, a) and an irreducible representation π of
A with trivial stability subgroup such that ind7r is reducible. Let
(H, ,Ssf'\ θ) be a PR-covariant system with H abelian and θ strongly
ergodic, and assume without loss of generality that θ is implemented.
Then there is an associated (implemented) system (H, Jtf; fc), and the
proof of Corollary 5.5 gives a covariant system (G, A; τ) and an
irreducible representation π of A with trivial stability subgroup such
that π is not type I (since S^/Φ J^{J%f))y and so ind π is reducible
by Theorem 4.3. •

The following corollary is a very weak form of Stormer [42,
Theorem 3.4], where different techniques are used. See also Paschke
[37, Proposition 4.2].

COROLLARY 5.7. A compact abelian group cannot act strongly
ergodically on a von Neumann algebra of dimension greater than
one.

Proof. In the notation of the above proof, if H were compact,
then G = H would be discrete, forcing ind π to be irreducible, which
is a contradiction. •

Finally, we remark that the only examples of strongly ergodic
actions we have found in the literature have been on abelian von
Neumann algebras (Nielsen [36]), whereas our Examples 5.2 and 5.3
give rise to strongly ergodic actions on nontype I von Neumann
algebras.
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