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SUPERCUSPIDAL COMPONENTS OF THE QUATERNION
WEIL REPRESENTATION OF SL(f)

C. ASMUTH AND J. REPKA

Let f be a p-adic field of odd residual characteristic.
It is known that all but one summand of the quaternion
Weil representation are supercuspidal. These summands
are precisely identified in terms of corresponding summands
of quadratic extension Weil representations.

1. Let f be a p-adic field of odd residual characteristic. From
[6] we know that all supercuspidal representations of G = SL.(f)
occur as summands of various Weil representations associated with
quadratic extensions of f. It is also known that the Weil repre-
sentation associated to the unique quaternion division algebra over
f decomposes into a direct sum of irreducible representations, all
but one of which are supercuspidal. The object of this paper is to
show just how these representations correspend to summands of
quadratic extension Weil representations. The methods depend
heavily on [3]. The primary motivation for this paper was the
problem of decomposing tensor products of certain supercuspidal
representations of G. The authors have been told that some similar
computations have been worked out by J. Shalika and W. Casselman.

2. In this paper, the ring of integers in f and its prime ideal
are denoted respectively by o and p. We choose a generator = of
p and a non square unit ¢ in o. The order of the residue class
field will be denoted by q.

For fe{xn, ¢, ex}, we let o, and p, denote the ring of integers
in £(/0) and its prime ideal respectively. Trace and norm of £(1/0)
over I are written 7, and v, respectively.

The quaternion division algebra over f will be denoted by D.
Its integers will be denoted by A and the prime ideal of A will
be P. The reduced norm and trace of D over f are written respec-
tively v, and z,. The set {1, 14, j, k} is a basis of D over f where
i?=c¢, 7" =m, and 1 = —ji = k. There are convenient imbeddings
of t1¢) and f(v 7) in D where f(1¢) = {a + bi:a, bect} and
tV ) =1{a +bj:a, bet). Let S be a complete set of residues of
o./p. (and thus of A/P) consisting of zero and roots of unity. Then
for any ze€ D we may write z = >\7_y a,7" where each «a, ¢ S.

Since 7 can be chosen to be any element in t that generates p,
we will generally consider only the cases § = ¢ and 6 = =.

3., From [3], we recall some information on the representations
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of I'={yeD:y,(v)=1}). Let C’={zet(1V 0):v,(2) =1}. Given U
in I", there is a natural way of choosing a character qpeCA'f' for
some #. We then say that U is of type 6 and that U corresponds
to 4. Let U and, consequently ¢ and +, be fixed. Let m be the
smallest integer such that U is trivial on I',, =I' N1 + P™). If m
is even, U is of type er or w. If m is odd, U is of type e. It
happens that under this correspondence, no Ue I’ matches a square
trivial character of C* or C*.

We will describe U as an induced representation from a sub-
group B(U). The inducing representation will have a character %,
whose degree is either 1 or ¢q. B(U) will always be of the form
C’H where H is a subgroup of I' depending on m. Let M be the
smallest odd integer not less than m. We shall deseribe H by
giving its elements modulo I',.

First let 6 = zn. Then m is even. If U corresponds to q/feé”,
then the conductor of « is CF =C*N (A + p:) where s = m. Then
H is given by the set of elements v,(v)""*y where =1+

st a,j*. Each a,€8 and also a,e SNt if n is odd. Thus we
may write (modulo ')

H= {1 +bi 4 }; b,g* = (—1)"E b b, b e S 0 f} :
n=s[2-4+1

(When —1¢ (£%)%, the choice of U may force 5 and k& to be inter-
changed; this has no effect on the results.) Let 6 = ahe B(U)
where ae€C* and he H. Then X,(0) = v(a) and X, is a character
of degree one.

Now let § =¢. Then m is odd. If U corresponds to + eC,
then the conductor of + is C; = C*N (1 + p;) where 25 — 1=m = M.
Let H be given by those elements v,(v)""*y where y=1+323 a,j*
and «, €S is zero when n is even.

Assume first that s is odd. Then y,(v)"* =1 (modulo I'y) so
that v in the form above is in H. Here X, is of degree one and
for a e C¢, we have X,(ah) = (a).

Now let s be even. Then he H is in the form g(B)h, where
1B =1+ B3+ A/2w.(R)x*, BeS, and h,e HN 1 + P*). For
beSnt, we define w,(b)eC/C° NIy by wy®d) =1+ 7°'b7, modulo
14+ P¥, Let aeC*® be written o = a,a, where a,eC*N S and a, ¢
C:. Then we have

—w<aoal>«/r[wﬂ [ L 5(8) ﬂ i #1

gyr(apy), if 8 =0 and o, = +1
0, if ¢y=+1and 3 #0.

XU(aoaxﬂ (B)ho) =
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Here a, = » + t1. X, is a character of degree q.

4, In this section we give definitions for the Weil representa-
tions using formulae from [5]. We fix once and for all a character
® of t* with conductor 0. For ref, let @,(x) = O(\x). Haar
measures on the additive groups of #(1V¢) and D are normalized so
that in each case the ring of integers has unit measure.

We let

1, for 6 = ¢

) = {C, for 6 ==«

where { = > ..., O(z72%).

The quadratic extension Weil representations of G will be
denoted T(6, ). They act on L*(t(v0)). We will define T(4, \) on
generators of G. Let feL*¥(16)). Then

1b
(@, x)(o 1) ](z) = 0,(bv4(2)) £ (2)

tL

t(

01
[T(ﬁ, k)(_l O)f ](z) = (0, x)p(ﬁ)sgne(—k)g v T WPi(zZw)dw
where ¢(d, \) > 0 is a constant chosen so as to make the second

operator unitary.
The quaternion Weil representation is denoted T'(D, \) (although
all choices of )\ give equivalent representations). Let f e L*D).

Then
1b
[T (D, \) <O 1) f J(z) = @,;(bvp(2)) f(2)

01

1 0> f J(z) = —¢(D, \) Spf(w)@z(fp(éw»dw-

[T(D, ) (

Again ¢(D, A) > 0 is chosen so that the second operator is unitary.
We have the well known decomposition (see [2] or [7])

C‘ﬂ

6, ») = L1706, », )
€
where the representation space of H(4, \, 4r) of T(0, \, +r) is given
by
{fe L’V 0)):Vzct(V 0), YaeC’, f(za) = f(2)y(a)} .

Similarly
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(D, = L1, U).
Uerl'
Let 6, be the character of U. Then the representation space of
T(D,, U) is

HU) = {f e LO): | feniar = f@) -

For U=1, H(U) consists of supercuspidal summands. We can
write the vector space sum

HU) =H(U)® HU)D H(U)D H*(U) .

Here H(U) ={fe HU): f(x) # 0=y p,(x) € 6(t*)’}. Now suppose U
is of type 6 for some fe{e, x, ex}. Let {¢, 0"} = {e, «, ez} — {6}.
From Proposition 1.5 of [4], we may conclude that HY(U)@ HU)
and HY(U)® H?'(U) are both G-invariant. (See also Lemma 4.1
of [3].)

5. From [5] and [7], we know that all supercuspidal repre-
sentations of G are induced from some compact open subgroup. For
suitable n, we may assume that T4, ), ) is induced from K=SL,(0).
Let the inducing representation be denoted by S, \, 4v). The
object of this section is to give explicit formulae for matrix coeffi-
cients of S(, A, o) at generators of K. To do this we must pick
out an orthonormal basis of the representation space of S, A, ).

Let + have conductor C/ =C’N (1 + p;). We will exclude the
cases where we@“ (or Ce) and 4*=1. Then choose N to be of
order n (i.e., » = uzn"™ where % €0*) where

(—s, if 9=¢
"21—(§+1>, if0=r.

From [2] or [7] we see that this is the “suitable choice” of A. Now
set

,_{s, if 0=¢
s+ 1,if0=n1x.

Let Hy(s) be the space of all functions supported on o, and constant
on cosets of p3’. Let HO, N, 4) = Hy(s) N H@, N, ¥). Hy0, N, o) is
then the representation space of S, \, 4). The action is simply
the action of T4, \, +) restricted to K.

We now construect an orthonormal basis of H,6, \, +r). Let
Jy(s) be a complete set of orbit representatives in o,/pf — 7o,/pp
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under multiplication by elements of C’. For each zecJ,(s), we
define

r(s, Dr(a), for xeza(l + p;)
0, elsewhere .

f@) =

Here, 7(s, ) > 0 is chosen to make f, a unit vector. We do not
need to compute it explicitly.
For 2 and yeJ,(s), let m¥(g) = (SO, N, v)0)f.1f». We wil

now compute m}, for generators of K = SL,(0). First let g = 01
where beo. Then

mq,’/( ) = {@z(b”e(x», if = Y
9= 0, if x==y.
Now let g = (_g (1)) We write

, 01\ 7] ——
wio = 1] o - (O
Let v4(n') be the measure of p}’. Then

m(g) = va(n)ol0, Np@)sgny(—n) 3 P(@)Dy(cyFra)) .

aeCﬁi(}S
Since
stoif 0 =1x
o, \) = {q T
¢, if 6=c¢
we have

PROPOSITION 5.1. Let

2

S .
—= —1, 0=x
@'(S):{ v °
—8, of 0 =c¢.

Then

/01
m;@(_l oj = ¢*“p@)sgny(—N) 3 Y(@)Di(Ty(Ya)) .

aecﬁlcg

6. To desecribe the representations 7(D, A), we wish to find
their irreducible subrepresentations. Since the representations
S, \, r) induce irreducibly from K, to find copies of T(@, \, +) in
a representation it suffices to look for copies of S(4, N, +) in its
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restriction to K. This we shall do by comparing matrix coefficient
functions.

We shall try, insofar as possible, to imitate for the representa-
tion T(D, \) the construction of §5. We shall define vectors F,
which transform nicely under the restriction of T(D, ) to K and
then study the corresponding coefficient functions.

Let U correspond to a character 4 of C’ with conductor C?.
Choose A of an order determined by s as in §5. As in §3, let

_ {23—1, if 0=c¢
Cs+1, ifo==x
so that I',, is the largest congruence subgroup of I' contained in

the kernel of U. Let the set of C’orbit representatives Jy(s) be
imbedded in D in the natural way mentioned in §2. For z e Jy(s), set

Lo(V)R(s)qg~ "%, for xezy(l + PY)
0, elsewhere .

Fz(x) = {

Here R(s) > 0 is chosen to make || F,|; =1 and P"* is the smallest
power of P containing z.

It should be noted here that the F.’s do not necessarily span
a K-invariant subspace of HYU)@ H’(U). The unfortunate case
is when @ = ¢ and s is even. We shall disregard this problem for
now and go on to compute matrix coefficients in all cases.

For geK, let Mi(g) = (I, N@)F.IF,). When g = (5 %) we
get an easy result:

LEMMA 6.1. Let U correspond to q;re(:"’ and let $cC’ be any
character with the same conductor as +r. Then M,‘;(% l{) = miy(é I{)
where b €.

Proof.
MU<1 b) _ {Qx(bvp(x)), if e=y9
“\01 0, ifx+y.
Since for x € Jy(s), vp(x) = ve(x), the result follows. ]

Thus to distinguish the various representations, we must

evaluate the coefficient functions at g = (_(1) (1)) Roughly speaking,

this element acts as a Fourier transform, so we are obliged to
compute various character sums. Recall the groups H and B(U);
H was defined in §3 and then B(U) was defined by B(U) = C’H.
Let &Z,(U) = B(U)/(1 + P™). Then
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/01 S
M) = | F, (wF{w)dw
o \—-10

01 —
= R(s)g—(@/2vw+2n Te%((})[(_l 0>] F, J(y’)’)xz](ﬁ’) .

Now ¢(D, ») = ¢ so

M;(g) = —R(syq-omrensn 3 Xy@)@:(ogedT)is(7)

Ti6e@ (U

= —R(s)q~ P70\ 2, (U) | (deg %) ZU)XU(ﬁ)@(TDﬂxﬁ) .
de@y
Since R(s)’q~*"|Z,(U)| =1 we have

LEMMA 6.2.

01

M( >= =g AT (deg,) 3 Ko(1)0i(T,T0) -
—10 e ]

It is this formula which we must evaluate more fully. We
now consider several cases. First let 6 = =z and assume that 2 and
y are units in J.(s). Then

01

“\-10

)= —q~t 3 A(7)Di(T Y o)
degy(U)

From §3 we see that the elements of <&(U) can be identified with
pairs (a, h) where acCr/C: and hes#7Z= H/1 + P"). Morever
elements of 57 can be expressed in the form

n=8/2+1

1+ bijf*? — (—1)" %bzn.s/z +i 5 b,4"
where for all n, b, SNft. Thus

Mxlzj;< 0 1) = =" X F(0a(egea) > Oxesgrelh — 1))

—10 PR kald
where U corresponds to »€C". Consider the inside sum over 2#.

() = 3 O,(zrgxalh — 1)) = q** S, O(—yxd(—1)"*em**b?)
hesr besnt

where @& = 1 is the image of a modulo C7. Now let ¢ be the
character of order 2 on the group of units of o, whose kernel is
the squares. Then

(*) = —o@x)o(a)sgn(—N)p(m)g*” .
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Thus we have

LEMMA 6.3. Let 6 = & and assume that =, ye of N J(s). Then
with ¢ as above and Uecl corresponding to + € C* we have

01
Mf;(_l 0) = o(Fx)g~ " p(m)sgn(—n) X (yo)(a)Pi(z(Fra) .

T
aeCT(Cy

LEMMA 6.4. If x and y are both elements of p., then
, 01 01
w42 1]
-10 —-10

where U corresponds to + as before.

Proof. If either x or u is in p,, the expression (x) no longer
depends on «. Thus
2 (o) (@)Pi(z-(Fra))
aeCmiCT
is a common factor of mY’ and MJ. If both x and y are in p,,

then this factor is zero since @,(z.(yxa)) is constant on cosets of a
subgroup of C* on which o is nontrivial. O

Now let # = ¢. Thus we take Uel to be of type & correspond-
ing to «;reC". Let 4 have conductor C*N (1 + p;). Then set M=
2s — 1. We consider cases according to the parity of s. First let
s be odd. Then degX, = 1. A simple computation gives

01
Mﬁ( ) = —q " 3 Xy(0)Pi(TpYxo)
sey ()

-10
= —q 0 3 [y(@)@(rgra) D O)tjralh — 1)] .

aecelcy &
Now X is chosen according to the prescription in §5. Thus for s
odd, sgn.(—x) = —1. In this case, @,(z,yxa(h — 1)) =1 for all e
7. Thus we have
LEMMA 6.5. Let s be odd. Then
S 01 \ _
M\ o) = send=0p(E)a™ X p(@)@i(rfoa) .

The case when s is even is more involved. From §3, we recall that
deg X, = q. Therefore by Lemma 6.2
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01 B _
M, = —q > Xy(0)®y(Tpywo) .
—1 0 seggy (V)

We shall simplify this sum and find

LEMMA 6.6. Let s be even. Then
sgn.(—MpE)g— 2. )@z gra), if yret

01 aeCe|o]

—10/ l—q~s-1 S @)Dz Fra), if Guet.

aeCflCz

s

Proof. We need to find an acceptable parametrization of the
elements of .<Z,(U). Recall that 6 B(U) is of the form 6 = ah
where acC* and he H. For aec(C*, we have a = a,0w,(b) (modulo
C;) where a,€ SN C*, p is a representative of C;_, in Cy, and w,(b) €
C: is as defined in §3. For he H we have h = p(B)h, where p(B)=
1+ 87+ (1/2)ev(B)n*, BeS, and hoe HN1 + P°. As before, let
& = H|I'y and also let 55 =[HN0 + P)|/["y. 5% is given by
elements of the form

28—2

L+ 2> B.g"

n=s+1

where B3,€S. Now

M( o ;) = =™ 33 L(ah)0ue e, haat — 1)) -

acoslof e

We choose v e0* such that (@,()) = @,(x*'vb). Let Z: = C*/C: —
[£C:/C{]. Then

01
MJZ( ) = —q® 3 Qz’r(a)@(tpfljm)g}f@z(fpym(h )

aexCi 0]

— q7 3. Xy(ah)®y(trira)P;(tryealh — 1)) .

€
aeZ

Let us assume for the moment that Zxref. It is easy to check
that for @ e £C;, the expression @,(z,7xa) Sicsr Gx(tr¥r(h — 1)) is
constant on cosets of C:,. Hence the first sum in (**) vanishes,
Thus

MJQ( ° 1> = —q X 3, L@@y gra)Pytgeath — 1)) .

‘—1 0 ani he

Let aeZ; be given in the form a,0w,(b) where a, + *+1, peC;/
C:,, and w,(b)eC:,/C:. Let a, = v + ti. This yields
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01
Mﬂ( ) = 3, Q1 — Y(a0) P vb)D (T rYr 0w, (b)))

——1 0 ag#Exl 05b

. ( > S <D1< et 2 v.(B) )@(z'pgxao% viﬁ)n‘““)) .

BeS hesry 2t€
The first factor of each term can be written

; ZD — P (A,0)Dy(* " vb) Dy (27~ ywteb) .

Hence if the term corresponding to a, = » + ¢t is to be nonzero,
we will have —v = 2yxte. This fixes ¢t. The second factor then
becomes

S, 2 O(—nryavR))9; (m?ac(r + ti)—é—%(ﬁ)ﬂ”“)

fe8 heswy

which simplifies to ¢°. Hence

01
M;;( 3 0> =—q" 2 @)Dz gaa) .

ae (ir+tz)0§/ cg

But this is just

sgn(—Ng° 3 (@)@ (tryra)

aece|o;

since for s even, sgn(—\) = 1 and all terms vanish for which a¢
(£r + t3)C:.

Now assume yx¢f, that is, yx = m + ni where n is a unit.
Consider the formula (*x). It is no longer necessarily true that
the first sum vanishes. In any case it can be simplified to

—q* X P(a)Di(tryra) .

aexCilC]
The second sum in (**) is

—q7* >, 3, Xy(ah)®i(zryxa)@;(crgralh — 1))

¢ hesr
aels

= —g" 3, (5, — a0 0B,z 17wa)

S, 03 (7 -2 v(g) )0 eoliza248) )) -

( BeS heswy

Reasoning as before, we see that the first factor in each term is
zero unless 2mte + 2nre = —wv. In that event the second factor
becomes



SUPERCUSPIDAL COMPONENTS OF THE QUATERNION 45

S 5 o7 (S )uie) = —¢ O

he .y BesS

7. We now state and prove the main result. Let U el be
chosen where U is nontrivial and of degree d. Let U correspond
to 4»€C? in the manner of §3. Choose M et and set

, (@, for 6 = ¢
"~ len, for 6 =6 .

Let o€} be the character of order 2 whose kernel is the squares.
Set

- {q,!r, if 6 =¢ or —1e(f*)?
|y, if 0~ ¢ and —1e (£9)2.

THEOREM 7.1. T(D, n, U) = &[T, \, +) D T, N, ¥)].

LEMMA 7.2. To prove the theorem, it suffices to consider the
case where N is determined by + as in §5.

Proof. Let \, and ), in f* be given. Then there exists
an element g¢,e€GL,(f) such that T, \)(g.99:") = T, \)(g) and
T(D, M)(9.99:") = T(D, \.)(9). (See Lemma 3.3 of [1].) O

Now let Uel be fixed with corresponding e C’ Let M be
determined as in §3. Let V, be the space of functions on D
which are supported on A and are constant on cosets of P¥. With
A chosen as before, we see that V, is a finite-dimensional K-in-
variant subspace of L*(D). For d€{l, e, x, en} set H(U) = H (U)N
Vi. Thus HNU)@P H{(U) is also K-invariant. The following
lemma can be derived from basic properties of T(D, \).

LEMMA 7.3. Assume that WcC H(U)@ H(U) is isomorphic to
some H(0, N, p). Then

(a) HY(U)@ HYU) = d*H (0, », o).

(b) HY(U)P H'(U) = d*H(0, N, p) where {¢', 0"}=(1, =, ¢, ex}—
{1, 6}.

(e) H)U)® H)(U) = d*Hy0, \, ).

Since we know that for U+ 1, T(D, A, U) consists entirely of
supercuspidal summands, we can reduce the problem to that of
finding p.

The method we use is to compare directly the matrices operat-
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ing on H,4, \, p) with those operating on HXU) @ H{(U).

First let 6 = ¢ and let s be odd. Then the vectors F, span a
K-invariant subspace of H{(U) @ H{(U). This is because the matrix
given by MJ(g) is identical with the unitary matrix m(g) for all
ge K. This additionally shows that 4 = p and proves the theorem
in this case.

Now assume 6 =7 (or ex). It is not hard to see that the

matrices given by mi}(_(l) (]3> and Mg(_(l) (1)> are conjugate by a
diagonal unitary matrix. Since the matrices for other generators
of K are equal and diagonal, the theorem follows.

When 6 = ¢ and s is even, we need to say more. When #x¢f,

MY <_(1) (1)> is smaller by a factor of ¢ than the corresponding

m?, _(1) (1) . Since all representations are unitary we must conclude
that {F,: x € J.(s)} does not span a K-invariant space when s is even.

Let J.(s) = XU Y where H}(U) contains {F,:x€ X} and H{(U)
contains {F,:ye Y}. We can safely assume that yx et if and only
if x and y are both in X or both in Y. We need to find a set
{F:yeY) such that {F,,xeX}U{F,;yeY} spans a K-invariant
space. The following lemmas are derived from the constructions
of the functions F, and f,, x€J.(s), and the formulae in [4].

LEMMA 7.4. H(U) is the orthogonal direct sum of eigenspaces
W, of {(3 l{) b eo}. The dimension of each W, is d*. For yeY,
F,e W, and W, is spanned by the left and right translates of F,
by elements in I.

LEMMA 7.5. Fix y,e€¢ Y. Then for each y€ Y there exists a
g, € K such that

@) [T N, )9Sy = [

(®) [T(D, n, UXg))F,,) = F,.

Let W be the irreducible K-space generated by {F,:xz¢c X]}.

Since s = 1 there exists x such that m?, <_(1) (1)> # 0 and therefore

M};O< 9 1) # 0. Hence we may pick Fyoe W,, such that F’yoe w

-10 N -

and HNF,,OHZ =1. For yeY, set F,=[T(D,\, U)g)IF,). The set
{F,, FpoxeX, ye Y} isNthus a basis for a K-invariant subspace of
H{U)PD Hg(U). Let {MJ} be the set of matrix coefficient functions

on K with respect to this new basis.

LEMMA 7.6. There exists a constant ft + 0 such that F,=pF, +
P, where P, ts orthogonal to F,.
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Proof. For each ye Y, (F,|F,> = (F, |F,> since T(D, », U)(g,)
is a unitary transformation. If ¢ were zero, then all M,fy(~(1) (1))

would be zero for 2 X, ye Y. Then mm( 2 %> would also be zero

in these cases. This contradicts the irreducibility of T(e, \, 4) for
2 % 1. (See [2] and [7].) ]

LEMMA 7.7. There exists a K-space isomorphism «:F, v>F
for each ye'Y.

Proof. By Lemmas 7.3(c) and 7.4, we can find such a for y=y,.
Since a commutes with action by K the lemma follows. O

LEMMA 7.8. For x and y both in X or both in Y we have
o 01 01
i, (9 o) = M7 o)

Proof. For x and yeX it is clear. For x and v in Y, use
Lemma 7.7. ]

LEMMA 7.9. Let xeX and yeY. Then
. 01 /0 1)
1| ) =pMy| o)
—10 —-10

Proof. Let w be the projection of I:T(D N, U)( 1 O) ](F) on

W,. Then w = Mt( 0 1)F M;y< )(uF +P). Now ulF)=
ML( 0 1) by deﬁmtlon and is equal to "MJJ< 1 O> by computa-
tion. ]

The fact that the functions JlZG;(_(l) (1)> and m}ﬂ(_(l) (1)) form

unitary matrices forces |p¢| =g¢q'. It is now clear that these
matrices are conjugate by some diagonal unitary matrix. Theorem
7.1 follows. 0
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