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SUPERCUSPIDAL COMPONENTS OF THE QUATERNION
WEIL REPRESENTATION OF SL2(f)

C. ASMUTH AND J. REPKA

Let f be a p-adic field of odd residual characteristic.
It is known that all but one summand of the quaternion
Weil representation are supercuspidal. These summands
are precisely identified in terms of corresponding summands
of Quadratic extension Weil representations.

l Let f be a p-adic field of odd residual characteristic. From
[6] we know that all supercuspidal representations of G = SL2(Ϊ)
occur as summands of various Weil representations associated with
quadratic extensions of ϊ. It is also known that the Weil repre-
sentation associated to the unique quaternion division algebra over
f decomposes into a direct sum of irreducible representations, all
but one of which are supercuspidal. The object of this paper is to
show just how these representations correspond to summands of
quadratic extension Weil representations. The methods depend
heavily on [3]. The primary motivation for this paper was the
problem of decomposing tensor products of certain supercuspidal
representations of G. The authors have been told that some similar
computations have been worked out by J. Shalika and W. Casselman.

2* In this paper, the ring of integers in f and its prime ideal
are denoted respectively by o and p. We choose a generator π of
p and a non square unit ε in o. The order of the residue class
field will be denoted by q.

For θ e {π, ε, επ), we let o0 and pθ denote the ring of integers
in ϊ(ι/0 ) and its prime ideal respectively. Trace and norm of l(V θ )
over ϊ are written τθ and vQ respectively.

The quaternion division algebra over ϊ will be denoted by D.
Its integers will be denoted by A and the prime ideal of A will
be P. The reduced norm and trace of D over ϊ are written respec-
tively vD and τD. The set {1, i, j9 k) is a basis of D over ϊ where
i2 = sf j2 == 7r, and ij = —jί = k. There are convenient imbeddings
of Ϊ(l/T) and ϊ(τ/~7r") in D where ϊ(ι/"ε) = {a + bi: a, b e f} and
t(λ/π) = {a + bj:a, bet}. Let S be a complete set of residues of
oe/pε (and thus of A/P) consisting of zero and roots of unity. Then
for any z e D we may write z — Σ^Uv oίnj

n where each an e S.
Since π can be chosen to be any element in f that generates p,

we will generally consider only the cases θ = ε and θ = π.

3. From [3], we recall some information on the representations
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of Γ - { γ e D : vD{y) = 1}. Let Cθ = {ze l (vT): vθ{z) = 1}. Given U
in Γ, there is a natural way of choosing a character ψeCθ for
some #. We then say that U is of type θ and that U corresponds
to ψ. Let U and, consequently 0 and ψ, be fixed. Let m be the
smallest integer such that U is trivial on Γm = Γ fΊ (1 + Pm). If m
is even, U is of type επ or π. If m is odd, Z7 is of type ε. It
happens that under this correspondence, no UeΓ matches a square
trivial character of Cπ or Cεjr.

We will describe U as an induced representation from a sub-
group B(U). The inducing representation will have a character Xπ

whose degree is either 1 or q. B(U) will always be of the form
CΘH where H is a subgroup of Γ depending on m. Let M be the
smallest odd integer not less than m. We shall describe H by
giving its elements modulo ΓM.

First let θ = π. Then m is even. If U corresponds to ψ e Cπ,
then the conductor of ψ is C? = Cπ Π (1 + pi) where s = m. Then
jff is given by the set of elements vI)(7)~1/27 where 7 = 1 +
Σitβ/2α«JΛ. Each α w e S and also α w 6 S Π ϊΐ if w is odd. Thus we
may write (modulo ΓM)

H=\l + bijs/2 + i Σ 6»i" ~ ( - l ) s / 2 — δ V / 2 : b,bneS f)t\ .
I »=β/2+l 2 J

(When — l ί ( f x ) 2 , the choice of U may force j and A; to be inter-
changed; this has no effect on the results.) Let 8 — aheB{U)
where aeCπ and heH. Then XΠ(δ) = -f(α) and Xσ is a character
of degree one.

Now let θ — ε. Then m is odd. If U corresponds to ψ e C%
then the conductor of ψ is Cs

£ = Cε Π (1 + K) where 2s - l = m = M.
Let JT be given by those elements vD(Ί)~mΊ where 7 = 1 + Σls=?-i ccnj

n

and ane S is zero when n is even.
Assume first that s is odd. Then vD(y)~m = 1 (modulo ΓM) so

that 7 in the form above is in H. Here Z^ is of degree one and
for a e C% we have Xσ(ah) = ̂ (α).

Now let s be even. Then heH is in the form μ(β)h0 where
μ(β) = 1 + ^sj-1 + ( I ^ V . ^ T Γ - 1 , /3 6 S, and fe0 e IT n (1 + P s) For

6 e S n ϊ, we define ωMφ) e Cε/Cε Π ΓM by ωMφ) = 1 + π-'δi, modulo
1 + P*. Let α e C 6 be written α — aoat where αo6C£ΠiS and α xe
Cί. Then we have

, if α o ^ ±

α i ) f i f ^ = 0 a n d aQ = ± 1

0, if α0 = ± 1 and /5 Φ 0 .
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Here a0 — r + ti. lv is a character of degree q.

4* In this section we give definitions for the Weil representa-
tions using formulae from [5]. We fix once and for all a character
Φ of ϊ+ with conductor o. For λef, let Φλ(x) = Φ(Xx). Haar
measures on the additive groups of ϊ(i/~0~) and D are normalized so
that in each case the ring of integers has unit measure.

We let

(1, for θ = ε
PK J (ζ, for θ - π

where C = Σ..o,,Φfr-V).
The quadratic extension Weil representations of G will be

denoted T(θ, λ). They act on L^(ί(τ/T)). We will define T(θ, λ) on
generators of G. Let / e L\t{VT)). Then

(z) = c(θ, X)p(θ)sgnθ( — X) \ f(w)Φλ(τθzw)dw

where c(^, λ) > 0 is a constant chosen so as to make the second
operator unitary.

The quaternion Weil representation is denoted T(D, λ) (although
all choices of λ give equivalent representations). Let feL\D).
Then

T(D, λ)

T(D,

Again c{D, λ) > 0 is chosen so that the second operator is unitary.
We have the well known decomposition (see [2] or [7])

T(fl9 λ) = -^X-T(β9 λ, ψ)
ψeCθ

where the representation space of H(θ, λ, ψ) of T(θ, λ, ψ) is given
by

{/ e L\l{VT)): vz e l(VT), Vα e C°, f(za) - f(z)ψ(a)} .

Similarly
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T(D, λ) - —-LΓ(Z>, λ, U) .
UeΓ

Let θjj be the character of Z7. Then the representation space of
T(D9 λ, C/) is

For U Φ It H(U) consists of supercuspidal summands. We can
write the vector space sum

H{U) = H\U) 0 H\U) 0 H\U) 0 H*π(U) .

Here Hδ{U) = {/ e £Γ(C7): f(x) Φθ=>v D(x) e 5(1x)2}. Now suppose £/
is of type # for some θ e {ε, TΓ, εττ} Let {θ\ θ") = {ε, TΓ, εTΓ} — {/9}.
From Proposition 1.5 of [4], we may conclude that H\U)@H\U)
and Hθ\U)ζ&Hθ"{U) are both G-invariant. (See also Lemma 4.1
of [3].)

5* From [5] and [7], we know that all supercuspidal repre-
sentations of G are induced from some compact open subgroup. For
suitable λ, we may assume that T(θ9 λ, ψ) is induced from iΓ=SL2(o).
Let the inducing representation be denoted by S(θ, λ, ψ). The
object of this section is to give explicit formulae for matrix coeffi-
cients of S(θ, λ, ψ) at generators of K. To do this we must pick
out an orthonormal basis of the representation space of S(θ, λ, n/r).

Let ψ have conductor C/ = Cθ Π (1 + pi). We will exclude the
cases where ψeCπ (or Cεπ) and ψ2 = 1. Then choose λ to be of
order n (i.e., λ = uπn where ueo x ) where

if θ = ε

n =

From [2] or [7] we see that this is the "suitable choice" of λ. Now
set

?, if θ = ε

ί + 1, if θ = π .

Let ITflCs) be the space of all functions supported on ô  and constant
on cosets of pf. Let H0(θ, λ, ψ) = iϊ^(s) n H(θ, λ, ψ). flo^, λ, f) is
then the representation space of S(θ, λ, ψ). The action is simply
the action of T(θ, λ, ψ) restricted to K.

We now construct an orthonormal basis of HQ(Θ, λ, ψ). Let
Jΰ(s) be a complete set of orbit representatives in oθlpϊ' — πoθlpf
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under multiplication by elements of C°. For each zeJθ(s), we
define

(r(s, θ)ψ(flL), for %eza(l + pf)

(0, elsewhere .

Here, r(s, θ) > 0 is chosen to make fz a unit vector. We do not
need to compute it explicitly.

For x and yeJ0{s), let mty(g) - <S(0, λ, ^)(g)fx\fy). We will

now compute mfv for generators of K = SL2(o). First let ^ = L J

where δ e o. Then

(Φi(&i;*(αO), if x = y

(0, if x Φ y .

Now let 0 = ί i Q). We write

Let vθ(n') be the measure of p%'. Then

m?y(flr) = vθ(n')c(θ,

, if 0 = ε

Since

we have

PROPOSITION 5.1. Let

φ(s) = 2

1-s, if θ = ε

Then

6. To describe the representations T(D, λ), we wish to find
their irreducible subrepresentations. Since the representations
S(θ9 λ, ψ) induce irreducibly from K, to find copies of T(θ, λ, ψ) in
a representation it suffices to look for copies of S(θ, λ, ψ) in its
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restriction to K. This we shall do by comparing matrix coefficient
functions.

We shall try, insofar as possible, to imitate for the representa-
tion T(D, λ) the construction of § 5. We shall define vectors Fz

which transform nicely under the restriction of T(D, λ) to K and
then study the corresponding coefficient functions.

Let U correspond to a character ψ of Cθ with conductor C!.
Choose λ of an order determined by s as in § 5. As in § 3, let

[s + 1, if θ = π

so that ΓM is the largest congruence subgroup of Γ contained in
the kernel of U. Let the set of C^-orbit representatives Jθ{β) be
imbedded in D in the natural way mentioned in §2. For z e Jθ(s), set

= ttυ(Ί)R{β)q-vw/\ for xezjQ. + PM)
\ 0, elsewhere .

Here R(s) > 0 is chosen to make \\FZ\\2 = 1 and PV(Z) is the smallest
power of P containing z.

It should be noted here that the JF/S do not necessarily span
a if-invariant subspace of H\U)(& H\U). The unfortunate case
is when θ = ε and s is even. We shall disregard this problem for
now and go on to compute matrix coefficients in all cases.

For geK, let Mx

u

y(g) - <T(D, X)(g)Fx\Fy). When ff = (J ί ) w e

get an easy result:

LEMMA 6.1. Let U correspond to ψeCθ and let φeCθ be any

character with the same conductor as ψ. Then MX

U

V(Q «J — m£J Q Λ

where b e o.

Proof.

6\ [Φχ(bvD(x))9 if x = y

Λo 1/ (o,
Since for x e JΘ(S), VD(X) = vΘ{x)9 the result follows. Π

Thus to distinguish the various representations, we must

evaluate the coefficient functions at g == ( .. Λ. Roughly speaking,

this element acts as a Fourier transform, so we are obliged to
compute various character sums. Recall the groups H and B(U);
H was defined in § 3 and then B(U) was defined by B(U) = CΘH.
Let ^M(U) = B(U)/(1 + PM). Then
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0 1

- 1 0
(w)Fy(w)dw

Σ
0 1

- 1 0

Now c(D, λ) = qM so

Since R{sfq~2M \ &M(17) | - 1 we have

LEMMA 6.2.

—1 0

It is this formula which we must evaluate more fully. We
now consider several cases. First let Θ = π and assume that x and
7/ are units in Jπ(s). Then

)"1 Σ

*u(v)Φχ(τDyxδ)
)

0

From § 3 we see that the elements of ^ ( 17) can be identified with
pairs (α, A) where aeCπjCπ

s and he£έ?= H/(l + PM). Morever
elements of .^ 'can be expressed in the form

bijs/2 - (-l)8 / 2-iδ2π s / 2 + ί
2

where for all w, bneSf]t. Thus

_ 1 0
Σ Φχ(τDyxa(h - 1))

where C/ corresponds to ψeC". Consider the inside sum over

(*) = Σ Φχ{τDyxa{h - 1)) = q'li Σ Φ,(-

where ά = ± 1 is the image of α modulo dπ. Now let σ be the
character of order 2 on the group of units of oπ whose kernel is
the squares. Then

(*) = -σ(yx)σ(a)sgnπ(-X)p(π)qs/2 .
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Thus we have

LEMMA 6.3. Let Θ = π and assume that x,yeo* f]Jπ(s). Then
with σ as above and Uef corresponding to ψeCπ we have

MX

UJ ° ^ = σ(yx)q-lt/*)-1P(π)*gn*(-*') Σ
\ — 1 0/ αecτ/σ

LEMMA 6.4. // x and y are both elements of pπ, then

°
where U corresponds to ψ as before.

Proof. If either x or y is in pκ, the expression (*) no longer
depends on a. Thus

Σ (ψσ)(a)Φλ(τπ(yxa))
aeCπ!Cπ

s

is a common factor of mty

σ and Mξy. If both $ and y are in $>*,
then this factor is zero since Φχ(τπ(yxa)) is constant on cosets of a
subgroup of C" on which ψσ is nontrivial. •

Now let θ = ε. Thus we take Z7 6 f to be of type ε correspond-
ing to ψeCε. Let ψ have conductor Cε Π (1 + K). Then set ikΓ =
2s — 1. We consider cases according to the parity of s. First let
s be odd. Then degZ^ = 1. A simple computation gives

1 0

Now λ is chosen according to the prescription in § 5. Thus for s
odd, sgne(—λ) — —1. In this case, Φx(τDyxa(h — 1)) = 1 for all he

. Thus we have

LEMMA 6.5. Let s be odd. Then

o i

ί

The case when s is even is more involved. From § 3, we recall that
^ = q. Therefore by Lemma 6.2
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, - 1 0/

We shall simplify this sum and find

LEMMA 6.6. Let s be even. Then

sgn ε(-λ)p(ε)cr8 Σ ψ(a)Φλ(τ9yxa), if yxel
s

V ψ(a)Φx(τeyxa), if yx&tΣ

Proof. We need to find an acceptable parametrization of the
elements of &M{U). Recall that δeB(U) is of the form δ = ah
where aeCε and heH. For aeC% we have α = aopωMφ) (modulo
Cs) where aQ e S Π Cβ, |0 is a representative of Cs

ε_! in C{, and 0)^(6) 6
Cs

ε is as defined in §3. For heH we have /̂  — μ(β)hQ where μ(β) =
1 + βΓ1 + (l/2)εve(/5)ττs-1, /3 6 S, and fc0 6 H Π 1 + P 8 . As before, let
£έf = H/ΓM and also let Jg^ = [H n (1 + Ps)]/^if. c^ζ is given by
elements of the form

1 + Σ βjn

n=s+l

where βn e S. Now

Md ? Γ) = ~<Γ2s Σ Σ lϋ{ah)Φx{τDyxa)Φy{τDyxa{h - 1)) .

We choose v e o x such that ψ(ωM(b)) = Φ^π^vb). Let Z/ = Cε/Cs

ε -
70/]. Then

Φλ{τDyxa(h - 1))
(**)

- q-28 Σ Ίu(oίh)Φλ{τDyxa)Φλ(τDyxa(h - 1)) .

Let us assume for the moment that yxel. I t is easy to check
that for cue ±Cί, the expression Φx{τDyxa) Σihe^Φx(τDyxa(h — 1)) is
constant on cosets of Cs

ε_i. Hence the first sum in (**) vanishes.
Thus

MχUy[-l o) = ~Q~2S ΣεΣ^u(uh)Φλ{τDyxa)Φλ{τDyxa{h - 1)) .

Let aeZ* be given in the form aopωM(b) where a0 Φ ± 1 , peClj
CUy and ωM(b) e CsU/Cs

ε. Let a0 = r + ίϊ. This yields
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— 1 0 Σ ( Σ - ^{aφ)Φλ{πs-ιvb)Φλ(τDyxaφωM{b)))

ΣΣ Σ Φi(πgv.(/9)Wr2,y«α(Λυ.(/S)π
i5es Ae^o V 2ίε / V 2

The first factor of each term can be written

Σ Σ - f{aφ)Φx(πs-ιvb)Φλ{2πs-ιyxtsb) .
p 6

Hence if the term corresponding to a0 = r + ti is to be nonzero,
we will have — v = 2yxtε. This fixes t. The second factor then
becomes

Σ Σ Φi(-π'-1ryxvAβ))Φλ (τDyx{
βeS hej%?0 \

Σ Σ i ( y A β ) ) λ (Dy{r + U)h
βeS \

which simplifies to q\ Hence

/ 0 1\
MX

UJ = -Q~s Σ ψ(a)Φχ(τεyxa) .
\ 1 0/ a e (±r+tι)c[l Cε

s

But this is just

sgnβ(-λ)g-

since for s even, sgnε(—λ) = 1 and all terms vanish for which aί
(±r + ti)Q.

Now assume yx 0 ϊ, that is, yx = m + ni where n is a unit.
Consider the formula (**). It is no longer necessarily true that
the first sum vanishes. In any case it can be simplified to

-q-8-1 Σ ψ{a)Φλ{τDyxά) .
ae±cllCε

s

The second sum in (**) is

-Q-28 Σ Σ Xu(ah)Φλ(τDyxa)Φλ(τDyxa(h - 1))

- -2- 2 s Σ ( Σ -fia^Φάπ'-'vfyΦάτnyxa))
aQφl p,b

• ( Σ Σ Φx (π*-1 - g 1 ».<β) )φι(τByxa\v.{$))) .

Reasoning as before, we see that the first factor in each term is
zero unless 2mtε + 2nrε = — v. In that event the second factor
becomes
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Σ Σ Φι(π-ι(=£-)v.(β)) = -(T1 D
h βS \ ί / /

Σ
0 β e S

7* We now state and prove the main result. Let Uef be
chosen where U is nontrivial and of degree d. Let U correspond
to ψeCθ in the manner of §3. Choose λ e ϊ x and set

f (πX, for θ — ε

(ελ, f or θ Φ ε .

Let σ ebβ be the character of order 2 whose kernel is the squares.
Set

ψ, if θ = e or - l e ( ! x ) 2

, if 0 =£ ε and - 1 £ (ϊx)2 .

THEOREM 7.1. T(D, λ, [7) = d2[Γ(0, λ, ψ) 0 Γ(0, λ', ψ)].

LEMMA 7.2. To prove the theorem, it suffices to consider the
case where λ is determined by ψ as in § 5.

Proof. Let λ,. and λ2 in fx be given. Then there exists
an element g0 e GL2(ΐ) such that T(θ, X^gogQo1) = T(θ, X2)(g) and
T(D, XdigoQβo1) = T(D, X2)(g). (See Lemma 3.3 of [1].) •

Now let Uef be fixed with corresponding ψeCθ. Let M be
determined as in § 3. Let VM be the space of functions on D
which are supported on A and are constant on cosets of PM. With
X chosen as before, we see that VM is a finite-dimensional ISΓ-in-
variant subspace of L\D). For δe{l, ε, π, επ} set H0°(U) = H\U)Γ\
VM. Thus HHJJ) 0 Hf&U) is also K-invariant. The following
lemma can be derived from basic properties of T(D, X).

LEMMA 7.3. Assume that WaH\U)@ H\U) is isomorphic to
some H(θ, λ, p). Then

(a) H\U) 0 H\U) = d2H(θ, λ, p).
(b) H XU) 0 H'"(U) = d*H(θ, λ', p) where {θ\ 0 ' Ή U , π, e, επ}-

{1, θ).

(c) fl?(IT) 0 iϊo'( J7) = ώ2ίίo(^ λ, p).

Since we know that for U Φ 1, Γ(Z>, λ, Ϊ7) consists entirely of
supercuspidal summands, we can reduce the problem to that of
finding p.

The method we use is to compare directly the matrices operat-
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ing on H0(θ, λ, p) with those operating on H*(U)@ Hϋ(U).
First let θ = ε and let s be odd. Then the vectors Fy span a

^invariant subspace of HQ(U) φ Ho

ε(U). This is because the matrix
given by Mx

u

y(g) is identical with the unitary matrix mΐy(g) for all
geK. This additionally shows that ψ — p and proves the theorem
in this case.

Now assume θ — π (or β7τ). It is not hard to see that the

matrices given by mΐy( -j QJ and Mξy(__* QJ are conjugate by a

diagonal unitary matrix. Since the matrices for other generators
of K are equal and diagonal, the theorem follows.

When θ — ε and s is even, we need to say more. When yx£ΐ9

M*y ( ? Λ) is smaller by a factor of q than the corresponding

mty\Λ Q) Since all representations are unitary we must conclude
that {Fx: x e Jε(s)} does not span a ϋΓ-invariant space when s is even.

Let Jε{s) = XΌY where H}(U) contains {Fx:xeX} and iJo

ε(£7)
contains {Fy: y e Y}. We can safely assume that yxet if and only
if x and y are both in X or both in Y. We need to find a set
{^: | /ey} such that {Fx: xeX} U (F,: ί /e ί } spans a Z-invariant
space. The following lemmas are derived from the constructions
of the functions Fx and fx, xeJε(s), and the formulae in [4].

LEMMA 7.4. Hξ{U) is the orthogonal direct sum of eigenspaces

Wy of UQ ? j :δeoi . The dimension of each Wy is d2. For y e Y,

Fy e Wy and Wy is spanned by the left and right translates of Fy

by elements in Γ.

LEMMA 7.5. Fix y0 e Y. Then for each y e Y there exists a
gye K such that

(a) [Γ(ε, λ, ψ)(gMfyo) = f9.
(b) [T(D, λ, U)(gy)](Fyo) = Fy.

Let W be the irreducible iΓ-space generated by {Fx: x e X).

Since s Φ 1 there exists x such that mΐyo f ^ ^ j Φ 0 and therefore

M ^ o ( _ i J) φ ° H e n c e w e m a y p i c k ^ o 6 wvo s u c h t h a t Fvoe w

and \\fyQ\\2 = 1. For y e Y, set F, - [ y ^ , λ , UXgy)](FJ. The set
{F ,̂ Fy:xeX, y e Y} is thus a basis for a ϋΓ-invariant subspace of
H}(U)(BHS(U). Let {ifirjj} be the set of matrix coefficient functions
on K with respect to this new basis.

LEMMA 7.6. There exists a constant μ Φ 0 such that Fy =
Py where Py is orthogonal to Fy.
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Proof. For each y e Y, <Fy\Fy) = (FJFyo) since T(D, λ, J7)(0,)

is a unitary transformation. If μ were zero, then all M^( ^ ^j

would be zero for x e l j e F. Then mjζ( __-, π ) would also be zero

in these cases. This contradicts the irreducibility of T(ε, λ, ψ) for
f2 Φ 1. (See [2] and [7].) •

LEMMA 7.7. There exists a K-space isomorphism a: Fy —»F^
/or eαcfe p i .

Proof. By Lemmas 7.3(c) and 7.4, we can find such a for 2/ = 2/0.
Since α commutes with action by K the lemma follows. •

LEMMA 7.8. For x and y both in X or both in Y we have

Proof. For x and i / e l it is clear. For x and /̂ in Y, use
Lemma 7.7. •

L E M M A 7 . 9 . Let xeX and y e Y. Then

P r o o / . L e t w b e t h e p r o j e c t i o n o f ϊ T(D, λ , U ) ( ^ J ) ] ^ ) o n

TF,. Then w = ̂ ( _ ? J ) F , = M^(_f ^ C ^ + PJ. Now (wIF,)^
MJy ( ĵ  Q) by definition and is equal to μM[y(^ Qj by computa-

tion. •

The fact that the functions Mx

ι

y(^ J) and mf/ J J) form
unitary matrices forces l^l^^" 1- It is now clear that these
matrices are conjugate by some diagonal unitary matrix. Theorem
7.1 follows. •
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