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REDUCING THE ORDER OF A LAGRANGIAN

RICHARD ARENS

Consider a Lagrangian density L defined on R™ for a
system with configuration space ). Let the order of the
highest order derivatives in L be N. Then the Euler equa-
tions are generally of order 2N. We present ways of re-
placing L by other Lagrangian densities L’ on R™ which
are of order 1 and in fact linear in the derivatives. This
is done by introducing roughly » times

m-+N—1 m—+ N
( N~l>+< N )"2

additional variables, where 7 is the dimension of Q.

One of these L’ (denoted by L") is such that its Euler
equations have a canonical form reducing to that of Hamil-
ton for N=m=1.

2. Notation. A Lagrangian density L is a function F of
several variables, first the cartesian coordinates

B e, tm
in R™, and then the coordinates
R i
in some manifold @, and also
(2.1) L, Wi, Tl st

where roman indices range from 1 to m and greek indices from 1
ton. Here i< j, 1< j=k. The greatest number of subseripts
on any letter ocecurring in L is the order of L. L is used to define
a functional 4 on the class of suitable differentiable maps f from
R™ to Q. In L = F(t, x, ---) one replaces each z* by the component
f* = a*f, and replaces x! by of*/ot’, xi; by o*f*/ot'ot? ect., and de-
fines A(f) by

SILondt‘ dim

The notation LoDf is supposed to show that the values of f
and its derivatives have been inserted into L.

We are going to meet variables with suffixes of their own, and
indeed varying from 1 to m, so this notation will have to be amend-
ed. If y, is some variable occurring in L, let w = y,, then one
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might also have w,, in the sense of (2.1). It would be confusing to
write y,,.,. We will therefore use parentheses to indicate those vari-
ables which are intended to be replaced by derivatives when A(f)
is formed. More precisely, those variables whose description follows
(2.1) will be denoted by

(22) (xz)v. ) (xz)ij y " °°
When m = 1, then (2%), is the familiar 4* ([1, p. 178]) and (a%),

is &

In the sequel, we will abbreviate an expression like
F(tly Tty tmy xly Ty xn, (xl)ly (x1)27 Tty (x%)m’ (xl)lly o ')
by
(23) F(tly xly (xz)z’ (xl)ijy o ) .

3. Exploding a Lagrangian density. Let L = F(t", 2% (29,
(%).;, ---) be a Lagrangian density. Then its exploded form is

3 i A 2
L* = F(&, o, xi, ©i;, - )

(3.1) , . .

+ i), — ] + p¥[@); —al]l + -+ .
Here the
(3'2) x: ) méiy R pﬁ ’ p}j 3 pﬁjk PR

are new variables. The multiple indices ij, ijk are subject to the
restrictions 1 <7157 m, 121255 E<Em, ete. We use the
summation convention for each pair of (possibly multiple) indices,
one high and the other low, summing over all possibilities subject
to the restrictions.

Let L have order N. Then the expansion in 3.1 is intended to
stop after the terms involving #f,,...., have been written down, but
it does not hurt the formalism to go beyond this limit.

The new variables will have to be identified as coordinates in
some new manifold <z, We will take this up later.

It is evident that
(3.3) the exploded Lagrangian density is of order 1.

In the next section we prove the following.

THEOREM 3.4. There 1s a 1:1 correspondence between the ex-
tremals for L and those of L*.

Here is the correspondence. Let f be an extremal for L, that
is, a solution of the relevant Euler equations. These are (cf. [2, p.
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568])

oL 0 oL 0 oL

oL _ o ’_ 4= 0.
ot o a@d), | ottt @,

(3.5)

Here A, =1, ---, m and we are using the same summation convention
as before. Thus 1 =<1 < 7 < m, ete.

We now make a new function D,f, mapping R™ into <& (where
the t, the x* and the (3.2) are coordinates). The image D, f(z%, ---, T™)
of (¢!, ---,7™) € R™ under D,f shall be the point where &' = ¢,
at = fic, e, T,
o= 0 Of

i =

I R P T

all evaluated at (¢, ---,7™). Moreover, at D, f(z}, ---, t™) the p’s
shall have the values pj = 0L/6(x*);, p¥ = 0L/0(%");;, -+ . These lat-
ter partial derivatives are evaluated at the ¢, x*, !, ete. just
specified.

Now (3.4) asserts that D,f is an extremal for L* and that every
extremal for L* has this form.

This is more than the following observation: D,f is an extre-
mal for L* if and only if f is an extremal for L. In fact, suppose
f is not an extremal for L, then D,f is not one for L* because

L*oD(D,f) = LoDf ,

due to the (x%); — a? (ete.) vanishing for D,f. Thus if the integral
of LoDf can be varied, so can the integral of L*D(D,f). Conver-
sely, if f is an extremal for L, then, by looking at the Euler equa-
tions for L*, given in the next section, one can see that D,f is an
extremal. (A similar remark holds for L~ to be introduced below.)

In the next section we complete the proof of (3.4) by showing
that every extremal for L* has the form D,f. (It then follows
that f is an extremal for L, of course.)

4, Proof of (8.4). We will deal with the case where L has
order not greater than 2. Thus we have
L* = F(t, «*, «i, 1)) + pi (@), — «1]
+ p¥[(ad); — «i] .
Since L* is always of the first order, we have for each variable »
in L*, an Euler equation

oL* _ & oL*
v ot ov),

(v)
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Consider the case v = p¥. Because there is no (p¥),, we get
(%) (@); —af;=0.

In the same way
(%) (@), —axt=0.

Now consider v = 2. There is no (x,);, but z% does ocecur in
the F' (as well as in the added terms). Let us denote the partial
derivative by

Fo .
(Z}
(It is the same as first calculating

oL
a(xz)ij

and then peeling the parentheses off.) In any case, we have the
Euler equations

() Fi +p/(-1) =0,
vl i 0 LY -
(@) Fo—pi— 5507 =0,
0
1 Fo—2pi=0, v=1,2--,n.
(a*) at’pz

We leave it to the reader to verify that this last set of n equa-
tions, in the presence of the preceeding ones, is the set of Euler
equations 3.5 for L. This completes the proof.

5. Restricting L* to submanifolds. In order to achieve the
conclusion of (3.4) it is usually not necessary to use L*. The result
remains true if L* is restricted to the submanifold defined by the
Buler equations of frontier type, to be defined presently. Let us
say a set of indices (\; 4, -+, 7, k) is of interior type if (x%),...;, or
some (2%),...;;..., Occurs in L. An interior set of indices such as the
one just mentioned is of fromtier type if no (x%),...;..., occurs in L.
A variable #..., or pi~* is of interior type or of fromtier type, ac-
cording to the type of its indices. The following is relatively ob-
vious.

THEOREM 5.1. The extremals for L* remain the same if the

terms involving the pi* not of interior type are omitted from (3.1.)

The Euler equations of frontier type are the Euler equations
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for the variables 22..., of frontier type. Let us denote the restric-
tion of L* to this “frontier” submanifold by L~.
It is easy to see that L~ has an expansion like (3.1) where, how-

ever, the terms involving the pi 7 of frontier type replaced by

sz- [(xfj)k - xf,k] .

iee-k

By an extremal for L we mean an f defined on R™ with values
in this frontier submanifold such that the integral of L~ is station-
ary for variations also constrained to the frontier submanifold.

We shall now consider the Hessian matrix

formed with all the frontier indices (\; %, --+, k), (¢ 7, ---,t). Let
us call its determinant 4.

THEOREM 5.2. Suppose 4 is not 0 along some extremal for L.
Then the functions expressing the x* in terms of the t’s give an
extremal for L.

Proof. Roughly speaking, most of the Euler equations for L*
will be given by those for L~. L~ does not explicitly deliver these
following Euler equations for L* (where 2%...;, is a frontier variable)

(@h2) 0=Fa_, —pi
and
(pfljk) 0= (wfj)k - xfak .

Now the first of these is provided by our extremal for L~ be-
cause the extremal lies in the frontier submanifold. We now con-
sider an Euler equation for L~, namely

(2h...s) 0= Fr. .

+ ngka%'“jkxf'“st [(%f:,)k - x?...jk] _ Fxﬁ‘l--'st .
By the non-vanishing of 4 we conclude that the «?..;, relations for
L* hold. Thus we have an extremal for L.

As already remarked, an extremal for L always gives one for
L".

In classical dynamics (N = m = 1) one regularly imposes a con-
dition of non-singularity on the very Hessian which is involved here
for N=m =1 (cf. [8, p.339]), of course for other reasons. We
give an example showing that this condition cannot be dropped
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from (5.2). Let @ = R and L = 2 + «(%)?, where we use the clas-
sical # instead of our present notation (x),. Then L* = x + a(x,)® +
@& —x), L =ux+ 2()? + 200,(% — x,) = ¢ — 2(x,)* + 2xw.d. The
Euler equations are

(x) 1 — (x) + 20,2 = C%(%x;) = 2&x, + 20, ,

() —2xx, + 208 =0 .

Now 2 =0 and «, =1 is evidently an extremal for L=, but
x = 0 is not an extremal for L, whose Euler equation is

. d .
1+ @ == 2% .
dat

On the other hand, there are examples from mathematical phy-
sics in which the Hessian is singular. Consider the Lagrangian
density [7, 111.1].

(5.3) L = [@)u + (@)]* — 297 .

Here m =2, n =1, N =2, and ¢ is supposed to depend only on the
t’s. I write down L*:

L* = (xy + )" — 292 + p'[(@), — @] + p7[(). — ]
+ p"[(x), — 2] + p°[(2,). — %] + %[(@5); — %] .

To define L~ we first drop the p" term and then invoke the
relations

(@) 2@y + ) — P =10
(xm) 2(9711 + xzz) - p22 =0.

Since we cannot solve these for z,, and z, the determinant 4
must be 0.

6. The Hamiltonian density. L* is the sum two functions:
one containing no derivatives, and another which is a homogeneous
linear form in derivatives. The same is true for L, and in fact

L =—H4+7
where ¥ is a sum of terms of the form
7SR (7R

Let us say we have the regular case when the Hessian 4 (see
5.2) is not 0. Then we can use the Euler equations for the frontier
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variables z?., to express (locally, of course) these variables in terms
of the frontier »i.*, and so

we can express H in terms of terms of the interior (including
frontier) pi* and the interior excluding the frontier wvariables

y

Understanding, then, that these are taken as coordinates, we
can write the Euler equations for L~ in the following canonical way:
oH 0

'_—p}]k — 0 ,

C oxk.;  otF

remembering that one must sum on %; and

_ 8H
apg...jk

(p}"k) + (xf])k - O .

These latter equations (for example p%) means

ox?

= U

A

These equations obviously deserve to be called the canonical
equations.’

In the classical case N = m = 1 these are Hamilton’s canonical
equations, of course. For m = 1 but N > 1, the possibility of writ-
ing a variational problem in this way was already shown by Whit-
taker [8, Sec. 110]. The subject was treated in a coordinate free
way by Rodrigues [6].

In the non-regular case, this system of canonical equations, i.e.,
the Euler equations for L~, must necessarily contain some strange-
looking equations such as the the p) equation below. After all, in
classical mechanics, the Hessian 4 is required to be nonzero.

We wrote them here under the assumption of the regular case.
Problems of mathematical physics may not be regular, for example
the one presented in the last section. This does not necessarily ex-
clude a Hamiltonian form. Using the equations (z,, x.,) we obtain

L™=—H + p'(x), + (%), + p[(x1)1 + (xz)zl
where p = p*(=p*) and
H = (p)’/4 + 292 + p'x, + D2, .
Euler’s equations for L~ are
op* | 0p°
X —92q = 22
@) g ot! + ot?

! There are n[(m+ N—1/N—1)] of the (x) equations and n[(m+ N/N—1)] of the (p)
equations.
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= 9D
(x1) P P
= 9D
() P P
(") —2, + (x), = 0
(»?) —2, + (®), = 0
(v) —2/2 + (), + (), =0 .

Now, what has this canonical system to do with (5.8)? We know
that an extremal for (5.8) gives a solution to the canonical system,
since it is based on L”. Elimination of the p’s, however, shows that
our system implies

o[ + (37

This is the Euler equation for (5.3). Thus the canonical system does
reduce (6.1) to a system of six first order equations.

7. Setting up a Cauchy problem. We show that having a
system of partial differential equation in canonical form often leads
to a Cauchy problem. We take only the case N =1, so that the
original Huler equations form a system of n second order equations.

THEOREM 7.1. Suppose that the Hessian

o*H > .
—)bi=L4L2 --m—-1LxNpr=1- .-
<5p§3pf, i, J m 7 n

18 not 0 at some point in t¢, pi, x* space. Then there is a system
of differential equations

a i — T
pre bz 1

(7.2) 5
2 = B

ot™

where Ai and B* are first degree polynomials in the 3/ot* of pi and
x* with k < m such that any solution of (7.2) with initial conditions
wncluding
2
ox . &

b?—le =1,---,m—1)

gives a solution of the canonical equations.
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In the proof we will consider only the case » = 1 and m = 2,
because it is very easy to generalize from this case. We will also
write s for ¢, ¢t for ¢3, p for p' and ¢ for p°

The canonical equations to be solved are

®  %_ g, %%_g, %_pg,

) - ’

08 ot 0s ’ ¢
Two of the three equations in the system (7.2) shall be

0q H op ox

_— = y Ty —— =

ot ’ os’ ot P

We need a formula for op/ot. We can obtain one by equating
d°x[osot and o*x/otds. More explicitly, we set

0 0
—H, = ~—H,.
ot " os "
This leads to
HPP% = Hqs - Hpt + quHzl - prHq =+ Hqup + 2Hpq‘g_sp' + qug—g .

Dividing by H,,, which is not 0 by hypothesis, gives an equation
which we nominate to be the third member of (7.2).

We now suppose we have a solution of (7.2) with xz(s, 0) = f(s),
p(s, 0) = g(s), a(s, 0) = h(s), and H,(s, 0, f(s), q(s), h(s)) = f'(s). We
want to know if

Z<S, t) = 371(3, t) - Hp<sy ty x(s, t)y p(sy t), q(S; t))
will continue to be 0 for ¢ near 0. Calculation shows that

%% _g.7.
ot
So Z(s, 0) = 0 implies Z(s, t) = 0, as desired.
For greater m and n we discover the extra equations for (7.2)
by equating
0 _ 0
—aﬁ—Hpﬁ and ﬁHpT .

8. The manifolds involved. Let M and @ be differentiable
manifolds, with dim M = m and dim @ = n. Let N =1 be an inte-
ger. Let f, g be maps of M into @ with continuous derivatives of
order N at least. Let P be a point of M. Say that f=g at P if
f and g have the same value, and the same partial derivatives of
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all orders up to and including the Nth, at P. Denote the collection
of equivalence classes by J"(M, @),. Denote the union for all P by
JN(M, @), following the notation of [4]. Coordinates are defined as
follows. Let ¢, ---,¢t™ and ', -, 2" be coordinate systems in M
and @ respectively and suppose the t* are defined at P and that the
2* are defined at f(P). Let C be the element of J™'(M, @), conta-
ining f. Then? #%C) shall be t*(P) and «*(C) shall be Z*(f(P)). For
1<k N

1 ¢
8.1 (@ )iln-ik(c) = W‘(“’Z e«

Let f: M— Q. Then we define
Df: M — J(M, Q)

by making (Df)(P) = C where C is the class at P to which f be-
longs. When M = R™ we can define a Lagrangian density L as a
real-valued funection on JY(R™ Q). Therefore L* (3.1) must also be
defined on some J*(R™ @) with some new choice of N, @ and pos-
sibly m.

In fact, L* is defined on JY(R™ K) where K is J*(J, R) and
J is JM(R™ @) where N here is the order of the Lagrangian L
under consideration. To bring this out, we shall repeat here the
Definition 3.1 using the meticulous notation
L* = F(Fv xzy (xz)i, ot ') + b_}[(——xl)i - (x—l):)]

(8.2) i tt)
+ p¥[((@)); — @)yl + - - .

The ¢ and «* here arose as coordinates in MX@Q so the three
bars make sense for an L* defined on a bundle three levels above
MxQ.

Here is a table, to be read from the bottom up, indicating the
bundles and the coordinates.

|
|

JO(R", K) 2. @), - LT -
K = J"(J, R) tat (537)7 CONERRY )7 R
J=JOR" Q) T (@), (@) -

RxQ ot

I <t
| &)
~~
~—
~—
8»

i

We now come to the definition of the pj 7. All that the proof
requires is that the variables in the second row of the table be in-

2 These bars will be omitted after they have served their purpose in the exposition.
Instead of the bars we could have written #len where = is the projection map onto
M x @, and x%x. If one wants to be meticulous, the # and x% in (2.3) have to have
these bars over them.
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dependent.

Let C be a point of K. Now C is a pair (4, [f]) where A is a
point of J and [f] is an equivalence class of maps of which one,
f:J o— R shall be selected (the small o indicates that f is defined
only on an open subset of J). (A itself is a pair (B, [g]) where
g:R™o— @, Be R™.)

The most useful definition of pj/(C) is to let it be some con-
stant times

af
o(x?);...; ().

These constants can be chosen so as to make 8.2 independent of
the coordinates x used.
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