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NEW CONDITIONS FOR SUBNORMALITY

TAVAN T. TRENT

The purpose of this paper is to establish some new
characterizations of subnormality. One of these characteri-
zations is interesting, in that the conditions are applied to
"one vector at a time". This type of criterion is applied to
show that verifying subnormality can be reduced to con-
sidering the restrictions of the operator to its cyclic invari-
ant subspaces.

Denote the bounded linear operators on a separable Hubert space
H by B(H). An operator A e B(H) is called subnormal if there exists
an operator NeB(H@H) so that N is a normal operator, If 0 0 is
invariant for N and the restriction of N to H 0 0 equals A [8].
Some previous intrinsic characterizations of subnormality can be
found in [2], [7], [8]. Also a summary of these results appears in
[5].

An operator TeB(H) is called hyponormal if T*T - TT* ^ 0. It
is easy to see that T is hyponormal if and only if || Tx\\ ^ || JΓ*#|| for
all x in H. By a theorem of Douglas [6], this is equivalent to the
existence of an operator KeB(H) satisfying || JSΓ|| ^ 1 and T* = KT.
This fact was explicitly brought to the author's attention in [3].

Now the subnormal operators comprise a subset of the hyponor-
mal ones. Thus the question arises as to whether the contraction
operator K relating T* and T, as above, has properties which enable
one to tell whether T is not only hyponormal, but subnormal as well.
The following example shows that this is not the case. Let K, T,
and S denote Toeplitz operators with symbols z2, z + zz, and z, re-
spectively. (Here z stands for the identity function on the boundary
of the unit disc.) Then T* = KT and S* = KS, but S is subnormal
and T is not [cf. 1]. The example for T comes from [4].

However if S is subnormal then so is Sn for n = 0, 1, 2,
Hence for n = 0, 1, 2, there exist contractions Kn e B(H) with
S*n = KnS

n. Also it is known that there are hyponormal operators
T, which are not subnormal, with Tn hyponormal for n = 0, 1,
[13]. One might ask for conditions on the K% guaranteeing that if
T*n = KnT

n, n = 0, 1, , then T is subnormal. The following theo-
rem provides these conditions.

THEOREM 1. Let TeB(H). The following conditions on T are
equivalent.

(a) T is subnormal.
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(b) There exists a unitary operator U e B(H 0 H) such that for
n = 0, 1, T*n = PHUnTn, where PH is the orthogonal projection
of HφH onto # 0 0 .

(c) For n = 0, 1,

int dQ(t)\τn

e
dD

where Q is a positive operator measure (denoted by POM) defined on
the boundary of the unit disc, 3D.

(d) There exists a sequence of operators KneB(H) satisfying
T*n — KnT

n for n == 0, 1, . Moreover if we define

[Ki n<0

then for any finite set {x0, xu , xn} contained in H,

> 0.

(e) There exists a sequence of operators Kn e B(H) satisfying
= KnT

n for n = 0, 1, . Moreover if we define

K* n<0

then for each xeH and each n = 0, 1, the matrix [(Ld_kx, x}]],^
is positive definite.

Proof, (a) => (b). Let N be a normal extension of T acting on
H 0 H. Since the kernel of N reduces N we may write iV = JVΊ 0 0
acting on (ker N)1 0 ker N, where iVj is normal and one-to-one. By
normality, N± is also densely ranged, so if N± = C/JNj_\ is a polar
decomposition of N19 then U1 is unitary. Let Vx be any unitary
operator in J5(ker JV) and define U = U10 Fx. Thus iV = i7|iV| where
UeB(Hζ$H) is unitary. By normality t^ commutes with N19 thus
Z7 commutes with N. Computing

N*n = (U\N\)*« = U*n\N\n = U*2n(U\N\Y = [U*ψNn .

Projecting onto # 0 0 we see that (b) holds.

(b) =* (c). By the spectral theorem Un = I eintdE(t), n an inte-
JdD

ger, for a projection valued measure E defined on 3D. Hence for
» = 1, 2, . . .

T* PUPT
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where Q(t) = PHE(t)PH is a POM on 3D.
(c) =• (d). By hypothesis we may choose

Kn = ( eiat dQ(t) for n = 0, 1,
JdD

Then

Hence

Ln = I β int dQ(t) for all integers % .

Take any finite subset {x0, --,xM} of ί ί . Let {Δv}
n

p=1 be any partition
of 3D and choose eu? 6 Δ9.

Then for any fixed p

)xh xk) - (Q(4) Σ ^'*»y, Σ βα*^Λ ^ 0 .
i.fcS O \ i*0 jfc=θ /

Summing over p and interchanging the orders of summation, we get

The innermost sum is a Riemann sum for 1 eiU~k)td(Q(t)xj9 xk).

We may conclude that

Σ <L^hxi9 **> - Σ ( e^'ntd<q(jt)xi9 xk} ^ 0 .

(d)=>(e). For any x in J ϊ and any finite subset {t0, •• ,ί J f} of
complex numbers, denote ί̂ x by O53 and apply (d)

(e) =^ (d). By a result of Herglotz (see [9], p. 125), the hypotheses
say that {(Lnx, >̂}?=_oo is a trigonometric moment sequence for a
positive Borel measure μ% on 3D, whose total variation is (Lox, x) =
||α;||2. Thus

( 1 ) (Lnx, x) = \ β int dμjf) for n = 0, 1, - .
Jaz)

Fix x in iΓ. For each Borel set J c 3D define the positive form
by

», *> =

Extend this form to a bilinear form on H by polarization. The
bilinear form is bounded since the positive form is. So the positive
operator Q(Δ) is defined and Q{A) is in B(H).
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By polarization and (1) we have

(Lnx,y) =

for x, y in H. Thus

<T*% y) = (LnT
nx, y) = \ e^ d(Q(t)Tnx, y) .

JdD

Thus (c) holds and so (d) must.

(d) => (a). Let {x0, , xn) be any finite subset of H. By (d)

Σ <LS-kT*xif Tkxk) ^ 0 .

Now if k - j t: 0,

(Ls_hT'xi9 Tkxk) = {T%, K^T'-'T'xά

= (T*xh T*k-jTjxk)

- (T%, T>'xk) .

A similar result follows when k — j < 0, thus

0 ^ Σ <Iy-*T'xJf T"xk) = Σ <T%, T'xk) .

It follows from the Bram-Halmos criterion that T is subnormal [2].

For invertible operators, (d) is essentially Embry's condition [7].
In both cases "polar coordinates" are used. For Embry's the meas-
ures are supported on [0, 1] (radial) and in our case the relevant
support set is 3D (angular).

Condition (e) of Theorem 1 gives a criterion for subnormality
which involves looking at only one vector of if at a time. A similar
related result is due to Lambert [11]. As a consequence of this type
of criterion, we have the following corollaries.

Fix SeB(H). Denote the closed linear span of {Skx: k = 0, 1, •}
by Hm.

COROLLARY 1. S is subnormal if and only if for every x in a
dense linear manifold of H the restriction of S to Hx is subnormal.

Proof. The necessity of the condition is trivial. Let 3ϊ denote
the dense linear manifold of H given in the hypotheses and let S\Hχ

denote the restriction of S to Hx. If S\Hχ is subnormal for all x in
3f, then so is (λ — S)\B . For all large λ Hx is invariant for (λ — S)"1.
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Thus without loss of generality we assume that S is invertible and
that

Fix x in £&. Since S\Bχ is subnormal there exist contractions
Bn in B(HX) such that

PHXS*K\BX = BnS
n\Hχ for n = 0,l, .

So

Hx& & \HX — &n

By (e) of Theorem 1 applied to x and Bn we see that

[(β*ι-*Sh-'x, x}]l^o is positive definite

for n = 0, 1, . But S*% = (S*nS^n)Sn, so (e) of Theorem 1 now
shows that S is subnormal.

COROLLARY 2. iV is normal if for each x in a dense linear mani-
fold of H. We have N\Hχ is normal.

Proof Let 3f denote the dense mainifold. For x in 3f, N\Hχ

normal implies that

HiStell = \\PHN*x\\ ̂  ||iSΓ*αj|| .

But Corollary 2 says that N is subnormal, thus hyponormal. Hence
for x in @f.

\\Nx\\ -

Since N and iV* are continuous, the proof is complete.

An observation due to R. L. Moore might be of interest. Let U
be the unilateral shift of infinite multiplicity. In contrast to the
result of Corollary 2, by model theory every cyclic normal operator
of norm less than one can be obtained as the restriction of Ϊ7* to a
(cyclic) invariant subspace.

Using Corollary 1 and the fact that cyclic subnormal operators
correspond to compactly supported Borel measures [2], it might be
possible to find "functional" criteria for classes of subnormal opera-
tors. As a modest example motivated by a function used in [10],
we have the following result.

THEOREM 2. Let SeB(H) and \\S\\ <* 1. S is an isometry if
and only if for each x in H the function

Φχ(z) = (1 — |2|2)||(1 — ̂ S)"1^!!2 is harmonic in the unit disc.
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The proof follows by an easy computation.

We wish to thank R. L. Moore for his example and Warren Wogen
for his suggestion that Theorem 1 which was originally proved for
invertible operators should hold in general.

REFERENCES

1. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke
Math. J., 43 (1976), 597-604.
2. J. Bram, Subnormal operators, Duke Math. J., (1955), 75-94.
3. K. Clancey, Seminormal operators, lecture notes, University of Georgia, 1978.
4. K. Clancey and B. Morrel, On the essential spectra of some Toeplitz operators, Proc.
Amer. Math. Soc, 17 (1966), 367-379.
5. J. Conway, Lecture notes on subnormal operators, University of Indiana, 1978.
6. R. Douglas, On majotization, factorization, and range inclusion of operators on
Hilbert space, Proc. Amer. Math. Soc, 17 (1966), 413-415.
7. M. Embry, Generalization of the Halmos-Bram criterion for subnormality, Acta Scien.
Math., (Szeged) 35 (1973), 61-64.
8. P. Halmos, Normal dilations and extensions of operators, Summa Bras. Math., (1950),
125-134.
9. , A Hilbert Space Problem Book, Van Nostrand, New York, 1967.
10. T. L. Kriete and T. Trent, Growth near the boundary in H2(u) spaces, Proc. Amer.
Math. Soc, 62 (1977), 83-88.
11. A. Lambert, Subnormality and weighted shifts, J. London Math. Soc, 14 (1976),
476-480.
12. W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
13. J. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc,
117 (1965), 709-718.

Received January 2, 1980.

UNIVERSITY OF ALABAMA

UNIVERSITY, AL 35486




