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DUAL MAPS OF JORDAN HOMOMORPHISMS AND
*-HOMOMORPHISMS BETWEEN C*-ALGEBRAS

FREDERIC W. SHULTZ

A geometric characterization of the dual maps of Jordan
homomorphisms and ^-homomorphisms between C*-algebras is
given.

Introduction* In [2] the authors gave a geometric character-
ization of state spaces of (unital) C*-algebras among compact convex
sets. They defined the notion of an orientation of the state space,
and showed that the state space as a compact convex set with
orientation completely determines the C*-algebra up to ^isomorphism.
Our purpose here is to show that this correspondence is categorical
by giving a geometric description of the dual maps on the state
space induced by unital *-homomorphisms. Along the way we will
also characterize dual maps of unital Jordan homomorphisms between
C*-algebras, and in fact in the larger category of JjB-algebras: the
normed Jordan algebras introduced in [3]. Finally we remark that
the first result on this topic was Kadison's [6]: the dual maps of
Jordan isomorphisms are precisely the affine homeomorphisms of the
state spaces.

Characterization of Jordan homomorphisms. Throughout this
paper A will be a C*-algebra with state space K. (All C*-algebras
mentioned are assumed to be unital.) Assume that AQB(H) is given
in its universal representation, and thus its weak closure can be
identified with its bidual A**, and K can be identified with normal
state space of A** [4, §12].

We will view elements of A and A** as affine functions on K.
In fact, the self-ad joint parts of A and A** are respectively isome-
trically order isomorphic to the spaces A(K) and Ah{K) of w*-
continuous (respectively, bounded) affine functions on K [6]. If B
is also a C*-algebra and φ: A -» B is a unital positive map then the
dual map 0* is an affine map from the state space KB of B into K —
KA, and is weak *-continuous; φ—>φ* is a 1—1 correspondence of
unital positive maps and w*-continuous affine maps. Our purpose in
this section is to characterize those affine maps from KB into KA

which correspond to Jordan homomorphisms of A into B. (In the
case that the C*-subalgebra generated by φ(A) is all of B, another
characterization of the dual map has been given by St0rmer [10].)

Recall that a convex subset F of K is a face of K if Xσ +
(1 — λ)τ6F for σ,τeK and λe(0,1) implies σ and τ are in F. If

435



436 FREDERIC W. SHULTZ

α e i * * is positive, then a~\0) is a face of K; such faces are said to
be (noγm)-exposed. In [5] and [7] it is shown that every norm closed
face of K is exposed.

Exposed faces of K are in 1 — 1 correspondence with projections
in A**, with the face corresponding to a projection p being p~\l).
Given an exposed face F, the corresponding projection p can be
recovered as the affine function.

(1) p = mt{aeA\K)\O^a^l, α = l on F} .

We will write F* for the face corresponding to 1 — p, i.e., F* =
(1 — p)~\l) = P~\0). The face F* is called the quasίcomplement of
ί7 and will play a key role in characterizing dual maps. (For details
on other geometric properties of these faces, which lead to the notion
of a "projective face", see [1, §§1-3].) Note that when we give A
its universal representation all states are vector states; the states
in F and F* are then the vector states wζ with ξ e pH (respectively
ξe(l-p)H).

The key to the role played by F and F* is their relationship to
orthogonality. Recall that each a — a* e A** admits a units a unique
orthogonal decomposition, a = a+ — a~ with 0 ̂  a+, 0 ̂  α~ and a+a~ =
0. To express this in geometric terms, note that α, 6e(A**)+, are
orthogonal (i.e., ab = 0) iff the kernel of a contains (range b)~ —
(kernel 6)1. In terms of the state space:

(2) α, 6, e(A**)+ are orthogonal iff there exists an exposed face F
with a = 0 on F, b = 0 on FK

We are now ready for our first result. The natural context is
the category of JJ5-algebras: the normed Jordan algebras investigated
in [3] which include self-ad joint parts of C* -algebras as a special case.

PROPOSITION 1. Let Ax and A2 be JB-algebras with state spaces
Kλ and K2. A w*-continuous affine map ψ: K2 -» Kx is the dual of
a unital Jordan homomorphism from Ax into A2 iff ψ~x preserves
quasicomplements, i.e., ψ-\F*) = ψ~\Ff for every exposed face F
of Kx.

Proof. We will prove the proposition for the case when Aλ and
A2 are the self-adjoint part of C*-algebras and then indicate the
changes needed for JJ5-algebras.

Assume first that φ: Ax —> A2 is a unital Jordan homomorphism
such that φ* = ψ, and let F be an exposed face in Ku say F =
p-\l) for p2 = peAf*. Then
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while

ΨΛF*) = f-\p-\0)) = (φ**(p))~X0) .

Since #**: Aί* —> A** is a Jordan homomorphism, then 0**(p) is an
idempotent, so we have shown that ψ~x preserves quasicomplements.

Conversely, suppose ψ*1 preserves quasicomplements. We first
show that ψ'1 sends exposed faces to exposed faces. If p2 = pe Af*
and F = p-\0), then

Since poψ(A?*)+, then ψ~\F) is a norm exposed face of K2.
Next we show that ψ preserves orthogonality of elements of

Aί". Suppose a, be At and αJLδ. Let F be a norm exposed face
of Kx such that a = 0 on F and 6 = 0 on JF#. NOW φ(a) and 0(6) are
positive elements of A2 which are zero on ψ~\F) and ψ-\F*) = ψ~\Ff
respectively, and so 0(α)JL0(&).

Now suppose α is any element of A19 with orthogonal decomposi-
tion a = α+ — α~. By virtue of uniqueness of the orthogonal decom-
position we conclude that φ(a+) — φ{a~) is the orthogonal decomposition
of φ(a) in A2; in particular ^(α+) = Φ(a)+.

Since ^ is positive and unital, then \\φ\\ ^ 1. Now the set of
all / 6 C(σ(a)) such that φ(f(a)) = f(φ(a)) is seen to be a norm closed
vector sublattice of C(σ{a))\ by the Stone-Weierstrass theorem it
equals C(σ(a)). In particular φ will preserve squares and then also
Jordan products. Thus φ is a Jordan homomorphism. Finally, we
consider the more general Ji?-algebra context. We can define ortho-
gonality by the property in (2). The proof above then applies without
change; the necessary background on the bidual, functional calculus,
facial structure and orthogonal decomposition can be found in [8],
[3, §2], and [1, §12]. •

As an illustration, let A1 be the 2 x 2 real symmetric matrices
and A2 the 2 x 2 hermitian matrices. The corresponding state spaces
are affinely isomorphic to the unit balls of R2 and R3 respectively.
(See the last section of this paper.) In each case the nontrivial
pairs of quasicomplementary faces are just the pairs of antipodal
boundary points.

Now suppose φ: Ax —> A2 is a unital order isomorphism of Aλ into
A2, i.e., a ^ 0 iff φ{a) ̂  0. Now φ*: K2-^ Kλ will be surjective, and
one readily verifies that (0*)"1 must preserve quasicomplements. It
follows that every unital order isomorphism from A1 into A2 is a
Jordan isomorphism. (This is not true in general.)

Characterization of *-homomorphisms. We first recall the notion
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of orientation defined in [2]. Let B be a 3-ball (i.e., a convex set
affinely isomorphic to the closed unit ball of E3 of R3). If ψλ and ψ2

are aίϊine maps of E3 onto B, we say that ψx and ψ2 are equivalent
if the orthogonal transformation ψϊι°ψ2 has determinant + 1. An
orientation of B is then an equivalence class of affine maps from E3

onto B.
Recall that the state space S(M2(C)) of the 2x2 complex matrices

is a 3-ball; in fact if we identify S(M2(C)) with the positive matrices
of unit trace, then an affine isomorphism τ: E3 —> S(M2(C)) is given by

/i a) i-(δ + ic)\

(3) τ(a,b,c) =

We will refer to the associated orientation as the standard
orientation for S(M2(C)).

If B1 and j?2 are 3-balls with orientations given by ψt: E3 —> J5έ

for i = 1, 2, we say an affine map 7 of Bt onto ί?2 preserves orientation
if 7°^i is equivalent to ψ2; else we say 7 reverses orientation. It
is not difficult to verify that the dual map of any *-automorphism
of M2(C) will preserve orientation, while for a *-anti-homomorphism
orientation is reversed [2, Lemma 6.1].

Now let A be a C*-algebra with state space K. If p and σ are
unitarily equivalent pure states then the smallest face containing p
and σ is a 3-ball, which we denote B(p, σ). (If p and σ are inequi-
valent, the face they generate is the line segment [p, σ\. See [2,
Lemma 3.4] for details.) In the future when we refer to a 3-ball
of K we will mean a facial 3-ball, i.e., one of the form B(p, σ).

Let A(E3, K) denote the set of affine maps from E3 onto 3-balls
of K, with the topology of point wise convergence. We let the
the orthogonal group 0(3) of affine automorphisms of E3 act on
A(E3, K) by composition. Then A(E3, K)/SO(S) -> A{E3, K)/0(S) is a
locally trivial Z/2 bundle cf. [2, Lemma 7.1]. Note that a cross
section of this bundle is just a choice of one of the two possible
orientations for each 3-ball in K. We then define a (global) orien-
tation of K to be a continuous cross section of this bundle.

The state space of every C*-algebra is orientable. (Indeed, the
fact that face {p, σ) is always of dimension 1 or 3, together with
orientability, characterize state spaces of C*-algebras among state
space of JU-algebras; this is the main result of [2].) To define the
standard orientation of K, we define the orientation on each 3-ball
Bin K. If p 6 A** is the projection corresponding to B (i.e., p~\l) — B)y

then pA**p is *-isomorphic to M2(C). If Φ: pA**p-^> M2(C) is a
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^isomorphism, then we define the orientation of B to be that carried
over from S(M2(C)) by φ*. More precisely, let U9: A** -> A** be the
map a-*p a, p and let τ: E* —> S(M2(C)) be the map defined by equation
(3); then the orientation of B is given by the map U$°φ*<>τ: Ez-> B.
If this orientation is chosen for each 3-ball, then it is shown in
[2, Thm. 7.3] that this cross section is continuous, i.e., is a global
orientation.

If ψ: K2 —> Kx is an affine map between state spaces of C*-algebras,
we say ψ preserves orientation if ψ preserves orientation for each
3-ball of K2 whose image in Kt is a 3-ball of Kx. In general ψ will
not map 3-balls to 3-balls, even if ψ is the dual of a *-homomorphism,
but the following lemma shows this happens often enough for our
purposes.

The following observation will be useful in the proof. If π: A->
B(H) is an irreducible representation, then π* maps the normal state
space N(B(H)) bijectively onto a face of Kx which we will denote
by Fπ. To see that Fπ is a face, note that π*N(B(H)) is just the
annihilator in K of the ideal kerπ, where π: A** —> B(H) is the σ-
weakly continuous extension of π. (In fact Fπ will be a minimal
split face of Kx containing the pure states whose GNS representations
are unitarily equivalent to π, cf. [2, Prop. 2.2], but we will not need
this.) Since π is surjective, π* will be 1 — 1.

LEMMA 2. Let A1 and A2 be C*-algebras with state spaces Kx and
K2, and φ: Ax —> A2 a *-preserving unital Jordan homomorphίsm.
Then each Z-ball of Kλ which lies in φ*(K2) is the image of a Z-ball
in K2.

Proof Let B = B{p, σ) £ φ*(K2) be a 3-ball of Kx. Then (φ*)~Xρ)
is a nonempty w*-closed face of K2, so contains a pure state p. Let
(TΓ, H, ξ) be the corresponding GNS representation of A2, and let q be
the projection on ((τro )̂(A.1)f)~. Identify qB{H)q and B(qH); define
T.Ax-*{B(qH)) by

7(α) = p(πoφ)(a)p .

Then 7 is an irreducible representation of Al9 and so 7* maps the
normal state space N(B(qH)) bijectively onto the face Fr of JEi. Since
p and σ belong to a 3-ball, they are unitarily equivalent; thus σ =
wv°y for some vector state wη on B{qH). It follows that B £ Fr,
and thus there is a 3-ball B1 in q~\l) = (B(qH)) which is mapped
onto B by (π°0)*. Finally, π* maps N(B(H)) bijectively onto the
face Fπ of K2, and therefore π*(β1) is the desired 3-ball of K2. •

PROPOSITION 3. Let Ax and A2 be C*-algebras with state spaces
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Kx and K2. A ^-preserving unital Jordan homomorphism φ: Ax —> A2

is a *-homomorphism iff φ* preserves orientation.

Proof Assume φ is a *-homomorphism, and let Bx and B2 be
3-balls such that φ*(B2) = Bx. Let peAf* be the projection corre-
sponding to Bu i.e. B ~ p~\l), and denote by φ: A?*-* A}* the σ-
weakly continuous extension of φ. Now since pAf*p and $(p)A}*φ(p)
are both isomorphic to M2(C), it follows that φ: pA?*p —> φ(p)At*φ(p)
is a isomorphism. From the definition of the standard orientations
of Kj_ and K29 it follows that φ*: B2 = (φ(p))~ι(l) -» ^ preserves orien-
tation. (We note for use below that if φ were a *-anti-homomor-
phism, the argument above shows that φ*:B2-^B1 would reverse
orientation.)

Conversely, assume now that φ*: K2—> Kx preserves orientation.
Let C be the C*-subalgebra of A2 generated by φ(Aj); clearly it suffices
to show φ: Aλ—>C is a *-homomorphism.

We will first show that ^*: iΓ̂ —> i^ is orientation preserving
(where Kc is the state space of C). Let Bc and Bγ be 3-balls in Kc

and Kx with φ*(Bc) = Bx. By Lemma 2 we can choose a 3-ball B2 in
K2 such that the restriction map sends B2 onto Bc. By the first
paragraph of this proof the restriction map preserves orientation;
by assumption so does φ*\ B2-> Bx. It follows that φ*:Bc—>B1

preserve orientation.
Now let π:C->B(H) be any irreducible ^representation of C.

Since φ(At) generates C, then πoφ: Ax -> B{H) will be an irreducible
Jordan homomorphism. By [9, Cor. 3.4] πoφ is either a ^homomor-
phism or *-anti-homomorphism. Let B be any 3-ball in Kλ contained
in the image of the state space of B(H) under (πoφ)*. (By the
remarks preceding Lemma 2 such a 3-ball will exist unless
dimJϊ=:l .) Now by Lemma 2 there is a 3-ball B1 in K with
Φ*(B') = 5 and a 3-ball B2 in the state space of B(H) with
π*(B2) = JB1. Since π* and 0* preserve orientation, then (πoφ)*: B2->B
does also. By the remarks in the first paragraph of this proof,
this rules out the case where πoφ is an anti-homomorphism unless
dim H = 1, and so in all cases πoφ is a ^-homomorphism. Since π
was an arbitrary irreducible representation of C, it follows that φ
is a *-homomorphism. •

PROPOSITION 4. Le£ A and B be C*-algebras and ψ a w*-continuous
affίne map from the state space of B into the state space of A. Then
ψ is the dual of a unital * homomorphism from A into B iff ψ~x

preserves quasicomplements and ψ preserves orientation.

Proof Immediate from Propositions 1 and 3. •
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