DUAL MAPS OF JORDAN HOMOMORPHISMS AND *-HOMOMORPHISMS BETWEEN C*-ALGEBRAS

Frederic W. Shultz

A geometric characterization of the dual maps of Jordan homomorphisms and *-homomorphisms between C^{*}-algebras is given.

Introduction. In [2] the authors gave a geometric characterization of state spaces of (unital) C^{*}-algebras among compact convex sets. They defined the notion of an orientation of the state space, and showed that the state space as a compact convex set with orientation completely determines the C^{*}-algebra up to *-isomorphism. Our purpose here is to show that this correspondence is categorical by giving a geometric description of the dual maps on the state space induced by unital *-homomorphisms. Along the way we will also characterize dual maps of unital Jordan homomorphisms between C^{*}-algebras, and in fact in the larger category of $J B$-algebras: the normed Jordan algebras introduced in [3]. Finally we remark that the first result on this topic was Kadison's [6]: the dual maps of Jordan isomorphisms are precisely the affine homeomorphisms of the state spaces.

Characterization of Jordan homomorphisms. Throughout this paper A will be a C^{*}-algebra with state space K. (All C^{*}-algebras mentioned are assumed to be unital.) Assume that $A \subseteq B(H)$ is given in its universal representation, and thus its weak closure can be identified with its bidual $A^{* *}$, and K can be identified with normal state space of $A^{* *}[4, \S 12]$.

We will view elements of A and $A^{* *}$ as affine functions on K. In fact, the self-adjoint parts of A and $A^{* *}$ are respectively isometrically order isomorphic to the spaces $A(K)$ and $A^{b}(K)$ of w^{*} continuous (respectively, bounded) affine functions on K [6]. If B is also a C^{*}-algebra and $\phi: A \rightarrow B$ is a unital positive map then the dual map ϕ^{*} is an affine map from the state space K_{B} of B into $K=$ K_{A}, and is weak *-continuous; $\phi \rightarrow \phi^{*}$ is a $1-1$ correspondence of unital positive maps and w^{*}-continuous affine maps. Our purpose in this section is to characterize those affine maps from K_{B} into K_{A} which correspond to Jordan homomorphisms of A into B. (In the case that the C^{*}-subalgebra generated by $\phi(A)$ is all of B, another characterization of the dual map has been given by Størmer [10].)

Recall that a convex subset F of K is a face of K if $\lambda \sigma+$ $(1-\lambda) \tau \in F$ for $\sigma, \tau \in K$ and $\lambda \in(0,1)$ implies σ and τ are in F. If
$a \in A^{* *}$ is positive, then $a^{-1}(0)$ is a face of K; such faces are said to be (norm)-exposed. In [5] and [7] it is shown that every norm closed face of K is exposed.

Exposed faces of K are in $1-1$ correspondence with projections in $A^{* *}$, with the face corresponding to a projection p being $p^{-1}(1)$. Given an exposed face F, the corresponding projection p can be recovered as the affine function.

$$
\begin{equation*}
p=\inf \left\{a \in A^{b}(K) \mid 0 \leqq a \leqq 1, a=1 \quad \text { on } \quad F\right\} \tag{1}
\end{equation*}
$$

We will write $F^{\#}$ for the face corresponding to $1-p$, i.e., $F^{\#}=$ $(1-p)^{-1}(1)=p^{-1}(0)$. The face $F^{\#}$ is called the quasicomplement of F and will play a key role in characterizing dual maps. (For details on other geometric properties of these faces, which lead to the notion of a "projective face", see $[1, \S \S 1-3]$.) Note that when we give A its universal representation all states are vector states; the states in F and $F^{\#}$ are then the vector states w_{ξ} with $\xi \in p H$ (respectively $\xi \in(1-p) H)$.

The key to the role played by F and F^{*} is their relationship to orthogonality. Recall that each $a=a^{*} \in A^{* *}$ admits a units a unique orthogonal decomposition, $a=a^{+}-a^{-}$with $0 \leqq a^{+}, 0 \leqq a^{-}$and $a^{+} a^{-}=$ 0 . To express this in geometric terms, note that $a, b \in\left(A^{* *}\right)^{+}$, are orthogonal (i.e., $a b=0$) iff the kernel of a contains (range $b)^{-}=$ (kernel b) ${ }^{\perp}$. In terms of the state space:
(2) $a, b, \in\left(A^{* *}\right)^{+}$are orthogonal iff there exists an exposed face F with $a=0$ on $F, b=0$ on F^{\sharp}.

We are now ready for our first result. The natural context is the category of $J B$-algebras: the normed Jordan algebras investigated in [3] which include self-adjoint parts of C^{*}-algebras as a special case.

Proposition 1. Let A_{1} and A_{2} be JB-algebras with state spaces K_{1} and K_{2}. A w^{*}-continuous affine map $\psi: K_{2} \rightarrow K_{1}$ is the dual of a unital Jordan homomorphism from A_{1} into A_{2} iff ψ^{-1} preserves quasicomplements, i.e., $\psi^{-1}\left(F^{*}\right)=\psi^{-1}(F)^{*}$ for every exposed face F of K_{1}.

Proof. We will prove the proposition for the case when A_{1} and A_{2} are the self-adjoint part of C^{*}-algebras and then indicate the changes needed for $J B$-algebras.

Assume first that $\phi: A_{1} \rightarrow A_{2}$ is a unital Jordan homomorphism such that $\phi^{*}=\psi$, and let F be an exposed face in K_{1}, say $F=$ $p^{-1}(1)$ for $p^{2}=p \in A_{1}^{* *}$. Then

$$
\psi^{-1}(F)=\psi^{-1}\left(p^{-1}(1)\right)=\left(\phi^{* *}(p)\right)^{-1}(1)
$$

while

$$
\dot{\psi}^{-1}\left(F^{*}\right)=\dot{\psi}^{-1}\left(p^{-1}(0)\right)=\left(\phi^{* *}(p)\right)^{-1}(0) .
$$

Since $\phi^{* *}: A_{1}^{* *} \rightarrow A_{2}^{* *}$ is a Jordan homomorphism, then $\phi^{* *}(p)$ is an idempotent, so we have shown that ψ^{-1} preserves quasicomplements.

Conversely, suppose ψ^{-1} preserves quasicomplements. We first show that ψ^{-1} sends exposed faces to exposed faces. If $p^{2}=p \in A_{1}^{* *}$ and $F=p^{-1}(0)$, then

$$
\psi^{-1}(F)=\psi^{-1}\left(p^{-1}(0)\right)=(p \circ \psi)^{-1}(0) .
$$

Since $p \circ \psi\left(A_{2}^{* *}\right)^{+}$, then $\psi^{-1}(F)$ is a norm exposed face of K_{2}.
Next we show that ψ preserves orthogonality of elements of A_{1}^{+}. Suppose $a, b \in A_{1}^{+}$and $a \perp b$. Let F be a norm exposed face of K_{1} such that $a=0$ on F and $b=0$ on F^{\sharp}. Now $\phi(a)$ and $\phi(b)$ are positive elements of A_{2} which are zero on $\psi^{-1}(F)$ and $\psi^{-1}\left(F^{\#}\right)=\psi^{-1}(F)^{\#}$ respectively, and so $\phi(a) \perp \phi(b)$.

Now suppose a is any element of A_{1}, with orthogonal decomposition $a=a^{+}-a^{-}$. By virtue of uniqueness of the orthogonal decomposition we conclude that $\phi\left(\alpha^{+}\right)-\phi\left(\alpha^{-}\right)$is the orthogonal decomposition of $\phi(\alpha)$ in A_{2}; in particular $\phi\left(a^{+}\right)=\phi(\alpha)^{+}$.

Since ϕ is positive and unital, then $\|\phi\| \leqq 1$. Now the set of all $f \in C(\sigma(\alpha))$ such that $\phi(f(a))=f(\phi(a))$ is seen to be a norm closed vector sublattice of $C(\sigma(a))$; by the Stone-Weierstrass theorem it equals $C(\sigma(a))$. In particular ϕ will preserve squares and then also Jordan products. Thus ϕ is a Jordan homomorphism. Finally, we consider the more general $J B$-algebra context. We can define orthogonality by the property in (2). The proof above then applies without change; the necessary background on the bidual, functional calculus, facial structure and orthogonal decomposition can be found in [8], [3, §2], and [1, §12].

As an illustration, let A_{1} be the 2×2 real symmetric matrices and A_{2} the 2×2 hermitian matrices. The corresponding state spaces are affinely isomorphic to the unit balls of \boldsymbol{R}^{2} and \boldsymbol{R}^{3} respectively. (See the last section of this paper.) In each case the nontrivial pairs of quasicomplementary faces are just the pairs of antipodal boundary points.

Now suppose $\phi: A_{1} \rightarrow A_{2}$ is a unital order isomorphism of A_{1} into A_{2}, i.e., $a \geqq 0$ iff $\phi(a) \geqq 0$. Now $\phi^{*}: K_{2} \rightarrow K_{1}$ will be surjective, and one readily verifies that $\left(\phi^{*}\right)^{-1}$ must preserve quasicomplements. It follows that every unital order isomorphism from A_{1} into A_{2} is a Jordan isomorphism. (This is not true in general.)

Characterization of *-homomorphisms. We first recall the notion
of orientation defined in [2]. Let B be a 3 -ball (i.e., a convex set affinely isomorphic to the closed unit ball of E^{3} of $\left.\boldsymbol{R}^{3}\right)$. If ψ_{1} and ψ_{2} are affine maps of E^{3} onto B, we say that ψ_{1} and ψ_{2} are equivalent if the orthogonal transformation $\psi_{1}^{-1} \circ \psi_{2}$ has determinant +1 . An orientation of B is then an equivalence class of affine maps from E^{3} onto B.

Recall that the state space $S\left(M_{2}(C)\right)$ of the 2×2 complex matrices is a 3 -ball; in fact if we identify $S\left(M_{2}(C)\right.$) with the positive matrices of unit trace, then an affine isomorphism $\tau: E^{3} \rightarrow S\left(M_{2}(C)\right)$ is given by

$$
\tau(a, b, c)=\left(\begin{array}{ll}
\frac{1}{2}(1+a) & \frac{1}{2}(b+i c) \tag{3}\\
\frac{1}{2}(b-i c) & \frac{1}{2}(1-a)
\end{array}\right)
$$

We will refer to the associated orientation as the standard orientation for $S\left(M_{2}(C)\right)$.

If B_{1} and B_{2} are 3-balls with orientations given by $\psi_{i}: E^{3} \rightarrow B_{i}$ for $i=1$, 2, we say an affine map γ of B_{1} onto B_{2} preserves orientation if $\gamma \circ \psi_{1}$ is equivalent to ψ_{2}; else we say γ reverses orientation. It is not difficult to verify that the dual map of any ${ }^{*}$-automorphism of $M_{2}(C)$ will preserve orientation, while for a ${ }^{*}$-anti-homomorphism orientation is reversed [2, Lemma 6.1].

Now let A be a C^{*}-algebra with state space K. If ρ and σ are unitarily equivalent pure states then the smallest face containing ρ and σ is a 3 -ball, which we denote $B(\rho, \sigma)$. (If ρ and σ are inequivalent, the face they generate is the line segment $[\rho, \sigma]$. See [2 , Lemma 3.4] for details.) In the future when we refer to a 3-ball of K we will mean a facial 3 -ball, i.e., one of the form $B(\rho, \sigma)$.

Let $A\left(E^{3}, K\right)$ denote the set of affine maps from E^{3} onto 3-balls of K, with the topology of pointwise convergence. We let the the orthogonal group $O(3)$ of affine automorphisms of E^{3} act on $A\left(E^{3}, K\right)$ by composition. Then $A\left(E^{3}, K\right) / S O(3) \rightarrow A\left(E^{3}, K\right) / O(3)$ is a locally trivial $Z / 2$ bundle cf. [2, Lemma 7.1]. Note that a cross section of this bundle is just a choice of one of the two possible orientations for each 3 -ball in K. We then define a (global) orientation of K to be a continuous cross section of this bundle.

The state space of every C^{*}-algebra is orientable. (Indeed, the fact that face $\{\rho, \sigma\}$ is always of dimension 1 or 3 , together with orientability, characterize state spaces of C^{*}-algebras among state space of $J B$-algebras; this is the main result of [2].) To define the standard orientation of K, we define the orientation on each 3 -ball B in K. If $p \in A^{* *}$ is the projection corresponding to B (i.e., $p^{-1}(1)=B$), then $p A^{* *} p$ is ${ }^{*}$-isomorphic to $M_{2}(C)$. If $\Phi: p A^{* *} p \rightarrow M_{2}(C)$ is a
-isomorphism, then we define the orientation of B to be that carried over from $S\left(M_{2}(C)\right)$ by ϕ^{}. More precisely, let $U_{p}: A^{* *} \rightarrow A^{* *}$ be the map $a \rightarrow p$ a p and let $\tau: E^{3} \rightarrow S\left(M_{2}(C)\right)$ be the map defined by equation (3); then the orientation of B is given by the $\operatorname{map} U_{p}^{*} \circ \phi^{*} \circ \tau: E^{3} \rightarrow B$. If this orientation is chosen for each 3-ball, then it is shown in [2, Thm. 7.3] that this cross section is continuous, i.e., is a global orientation.

If $\psi: K_{2} \rightarrow K_{1}$ is an affine map between state spaces of C^{*}-algebras, we say ψ preserves orientation if ψ preserves orientation for each 3-ball of K_{2} whose image in K_{1} is a 3 -ball of K_{1}. In general ψ will not map 3 -balls to 3 -balls, even if ψ is the dual of a *-homomorphism, but the following lemma shows this happens often enough for our purposes.

The following observation will be useful in the proof. If $\pi: A \rightarrow$ $B(H)$ is an irreducible representation, then π^{*} maps the normal state space $N\left(B(H)\right.$) bijectively onto a face of K_{1} which we will denote by F_{π}. To see that F_{π} is a face, note that $\pi^{*} N(B(H))$ is just the annihilator in K of the ideal ker $\tilde{\pi}$, where $\tilde{\pi}: A^{* *} \rightarrow B(H)$ is the σ weakly continuous extension of π. (In fact F_{π} will be a minimal split face of K_{1} containing the pure states whose GNS representations are unitarily equivalent to π, cf. [2, Prop. 2.2], but we will not need this.) Since $\tilde{\pi}$ is surjective, π^{*} will be $1-1$.

Lemma 2. Let A_{1} and A_{2} be C^{*}-algebras with state spaces K_{1} and K_{2}, and $\phi: A_{1} \rightarrow A_{2} a^{*}$-preserving unital Jordan homomorphism. Then each 3-ball of K_{1} which lies in $\phi^{*}\left(K_{2}\right)$ is the image of a 3-ball in K_{2}.

Proof. Let $B=B(\rho, \sigma) \subseteq \phi^{*}\left(K_{2}\right)$ be a 3 -ball of K_{1}. Then $\left(\phi^{*}\right)^{-1}(\rho)$ is a nonempty w^{*}-closed face of K_{2}, so contains a pure state $\tilde{\rho}$. Let (π, H, ξ) be the corresponding GNS representation of A_{2}, and let q be the projection on $\left((\pi \circ \phi)\left(A_{1}\right) \xi\right)^{-}$. Identify $q B(H) q$ and $B(q H)$; define $\gamma: A_{1} \rightarrow(B(q H))$ by

$$
\gamma(a)=p(\pi \circ \phi)(a) p
$$

Then γ is an irreducible representation of A_{1}, and so γ^{*} maps the normal state space $N(B(q H))$ bijectively onto the face F_{r} of K_{1}. Since ρ and σ belong to a 3 -ball, they are unitarily equivalent; thus $\sigma=$ $w_{\eta} \circ \gamma$ for some vector state w_{η} on $B(q H)$. It follows that $B \subseteq F_{r}$, and thus there is a 3 -ball B^{1} in $q^{-1}(1) \cong(B(q H))$ which is mapped onto B by $(\pi \circ \phi)^{*}$. Finally, π^{*} maps $N(B(H))$ bijectively onto the face F_{π} of K_{2}, and therefore $\pi^{*}\left(B^{1}\right)$ is the desired 3-ball of K_{2}.

Proposition 3. Let A_{1} and A_{2} be C^{*}-algebras with state spaces
K_{1} and $K_{2} . A^{*}$-preserving unital Jordan homomorphism $\phi: A_{1} \rightarrow A_{2}$ is a^{*}-homomorphism iff ϕ^{*} preserves orientation.

Proof. Assume ϕ is a ${ }^{*}$-homomorphism, and let B_{1} and B_{2} be 3 -balls such that $\phi^{*}\left(B_{2}\right)=B_{1}$. Let $p \in A_{1}^{* *}$ be the projection corresponding to B_{1}, i.e. $B=p^{-1}(1)$, and denote by $\phi: A_{1}^{* *} \rightarrow A_{2}^{* *}$ the σ weakly continuous extension of $\dot{\phi}$. Now since $p A_{1}^{* *} p$ and $\tilde{\phi}(p) A_{2}^{* *} \tilde{\phi}(p)$ are both isomorphic to $M_{2}(C)$, it follows that $\tilde{\phi}: p A_{1}^{* *} p \rightarrow \tilde{\phi}(p) A_{2}^{* *} \tilde{\phi}(p)$ is a *-isomorphism. From the definition of the standard orientations of K_{1} and K_{2}, it follows that $\phi^{*}: B_{2}=(\tilde{\phi}(p))^{-1}(1) \rightarrow B_{1}$ preserves orientation. (We note for use below that if ϕ were a ${ }^{*}$-anti-homomorphism, the argument above shows that $\phi^{*}: B_{2} \rightarrow B_{1}$ would reverse orientation.)

Conversely, assume now that $\phi^{*}: K_{2} \rightarrow K_{1}$ preserves orientation. Let C be the C^{*}-subalgebra of A_{2} generated by $\phi\left(A_{1}\right)$; clearly it suffices to show $\phi: A_{1} \rightarrow C$ is a ${ }^{*}$-homomorphism.

We will first show that $\phi^{*}: K_{C} \rightarrow K_{1}$ is orientation preserving (where K_{C} is the state space of C). Let B_{C} and B_{1} be 3 -balls in K_{C} and K_{1} with $\dot{\phi}^{*}\left(B_{C}\right)=B_{1}$. By Lemma 2 we can choose a 3 -ball B_{2} in K_{2} such that the restriction map sends B_{2} onto B_{C}. By the first paragraph of this proof the restriction map preserves orientation; by assumption so does $\phi^{*}: B_{2} \rightarrow B_{1}$. It follows that $\phi^{*}: B_{C} \rightarrow B_{1}$ preserve orientation.

Now let $\pi: C \rightarrow B(H)$ be any irreducible *-representation of C. Since $\phi\left(A_{1}\right)$ generates C, then $\pi \circ \phi: A_{1} \rightarrow B(H)$ will be an irreducible Jordan homomorphism. By [9, Cor. 3.4] $\pi \circ \phi$ is either a *-homomorphism or ${ }^{*}$-anti-homomorphism. Let B be any 3 -ball in K_{1} contained in the image of the state space of $B(H)$ under $(\pi \circ \phi)^{*}$. (By the remarks preceding Lemma 2 such a 3 -ball will exist unless $\operatorname{dim} H=1$.) Now by Lemma 2 there is a 3 -ball B^{1} in K with $\phi^{*}\left(B^{1}\right)=B$ and a 3 -ball B^{2} in the state space of $B(H)$ with $\pi^{*}\left(B^{2}\right)=B^{1}$. Since π^{*} and ϕ^{*} preserve orientation, then $(\pi \circ \phi)^{*}: B^{2} \rightarrow B$ does also. By the remarks in the first paragraph of this proof, this rules out the case where $\pi \circ \phi$ is an anti-homomorphism unless $\operatorname{dim} H=1$, and so in all cases $\pi \circ \phi$ is a ${ }^{*}$-homomorphism. Since π was an arbitrary irreducible representation of C, it follows that ϕ is a *-homomorphism.

Proposition 4. Let A and B be C^{*}-algebras and $\psi a w^{*}$-continuous affine map from the state space of B into the state space of A. Then ψ is the dual of a unital * homomorphism from A into B iff ψ^{-1} preserves quasicomplements and ir preserves orientation.

Proof. Immediate from Propositions 1 and 3.

References

1. E, M. Alfsen and F. Shultz, Non-commutative spectral theory for affine function spaces on convex sets, Mem. Amer. Math. Soc., 172 (1976).
2. E. M. Alfsen, H. Hanche-Olsen, and F. Shultz, State spaces of C^{*}-algebras, Acta Math., 144 (1980), 267-305.
3. E. M. Alfsen, F. Shultz, and E. Størmer, A Gelfand-Neumark theorem for Jordan algebras, Advances in Math., 28 (1978), 11-56.
4. J. Dixmier, Les C*-algébres et leurs représentations, Gauthier-Villars, Paris, 1964.
5. E. G. Effros, Order ideals in a C^{*}-algebra and its dual, Duke Math. J., 30 (1963), 391-412.
6. R. V. Kadison, Transformations of states in operator theory and dynamics, Topology, 3 (1965), 177-198.
7. R. T. Prosser, On the ideal structure of operator algebras, Mem. Amer. Math. Soc., 45 (1963).
8. F. Shultz, On normal Jordan algebras which are Banach dual spaces, J. Functional Analysis, 31 (1979), 360-376.
9. E. Størmer, On the Jordan structure of C^{*}-algebras, Trans. Amer. Math. Soc., 120 (1965), 438-447.

10.

 simplexes and C^{*}-algebras, Proc. London Math. Soc., 18 (1968), 245-265.Received December 26, 1979. Supported in part by NSF grant MCS78-02455.
Wellesley College
Wellesley, MA 02181

