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CONTINUOUS SELECTIONS AND REALCOMPACTNESS

I. BLUM AND S. SWAMINATHAN

The class of basically fixed, lowersemicontinuous carriers
is defined, and the existence of continuous selections for
members of this class is investigated. It is shown that,
barring the existence of measurable cardinals, a completely
regular Hausdorff space is realcompact iff every basically
fixed, lowersemicontinuous carrier of infinite character from
the space to the convex subsets of a locally convex space
admits a selection. One application of this result is the
proof that the union of a locally finite collection of real-
compact cozero sets is realcompact, provided the union is
of nonmeasurable cardinal.

l Introduction* The well-known selection theorem of Michael
[6, 3.2"] says that a ϊ\-space X is paracompact iff every lowersemi-
continuous (l.s.c.) carrier from X to the family of closed convex
subsets of a Banach space Y admits a selection. In this paper we
examine the analogous question for realcompact completely regular
Hausdorff spaces. We define the class of basically fixed carriers,
and find conditions under which every basically fixed carrier on a
realcompact space admits a selection. The main result is a charac-
terization of realcompactness by a property of basically fixed carriers
as well as by a selection property similar to MichaeΓs [6, 3.2" (b)].
Our results can easily be generalized to topologically complete spaces.
As an application of the characterization of realcompactness we prove
a sum theorem for realcompactness and examine its relation to known
theory.

2* Preliminaries* In general, the terminology of Gillman-Jerison
[5] is used. All spaces are assumed to be completely regular ϊ\-
spaces. C{X) denotes the ring of real valued continuous functions
on X. A maximal ideal M of C(X) is free (fixed) if the z-ultrafilter
Z(M) of X, consisting of zero sets of members of M, has empty
(nonempty) intersection. M is real if Z{M) has the countable inter-
section property; otherwise M is hyper real.

An open cover of X is a cozero cover if its members are cozero
sets. An open (cozero) cover *%s is maximal, if, for every open
(cozero) set Vί %S, the cover <%s U {V} has a finite subcover.

For the definitions of carrier, lower semicontinuity and selection,
refer to [6]. As in [6], ^~(Y) denotes the collection of all closed,
convex subsets of a linear topological space Y, and ^Γ(Y) the
collection of all convex subsets of Y.
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A partition of unity on a space X is a subset P of C(X) such
that (i) / ^ 0 for every / e P and (ii) Σ / e P f(x) = 1 for every xe X.
A partition of unity P is called locally finite if the collection of
cozero sets of functions in P form a locally finite cover of X. P is
said to be subordinate to a cover ^ of X if the family of cozero
sets of members of P refines ^ .

A cardinal number m is called measurable if the discrete space
of cardinal m admits a nontrivial {0, l}-valued (countably additive)
measure. Measurable cardinals, if any exist, are strongly inaccessible
[5, 125]. The following theorem of DeMarco-Wilson [3] is a motivating
factor for our work:

THEOREM DMW. The following are equivalent for the maximal
ideal M of C(X): (a) M is hyperreal. (b) M contains a {locally
finite) partition of unity of nonmeasurdble cardinal.

3* Fixed carriers* Let X and Y be topological spaces and let
Sf a given family of subsets of X. A carrier φ:X—>2Y is called
Sf-fixed if, for every S e ^ n {φ(x):xeS} Φ 0.

The following simple properties of ^-fixed carriers are easily
verified. Let φ:X-*2γ denote an ^-fixed carrier:

(a) If the carrier ψ: X —> 2Y satisfies ψ(x) 2 φ(x) for every xeX,
then ψ is ^-fixed.

(b) If J7~ is a collection of subsets of X such that J7~ a <9*,
then φ is ^^fixed.

In the sequel, we shall be considering ,5 -̂fixed carriers for the
following families S^\

*$sf = { A c I : A is a cozero set in X, A is compact, and X — A
is not compact};

& = {BczX: B is a realcompact cozero set in X and X — B is
not compact};

^ = { C c I : C is a topologically complete cozero set in X and
X — C is not compact}.

Clearly J ^ c ^ c ^ . ^-fixed carriers will be referred to as basically
fixed carriers because of their basic relationship to realcompact spaces.

The classes of ^-fixed carriers for &* e {Jϊζ ^ ^} are nonempty
since the trivial carrier θ(x) = Y (xeX), belongs to each class. For
this carrier, as well as for any carrier θ which satisfies Π {θ(x): xeX}Φ
0 , the selection problem is trivially solved by a constant function.

Even the discrete space N of positive integers admits a nontrivial
basically fixed carrier.

EXAMPLE. A lowersemicontinuous, ^-fixed (hence ^ - and
fixed) carrier to the closed convex subsets of a Banach space need
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not admit a constant selection.

Proof. Let p satisfy 1 ̂  p ^ oo; and let Y = /P(R). Let θ: N-+
^"{Y) be defined as follows: For neN, θ(ri) = {x = (#,.) e*ς: ^ =.1,
#M+1 = 2a?., xteR if i ^ 1, n + 1}. 0(τ&) is evidently closed and convex
for each neN, and if some xe f]{0(n): neN}, then x is a strictly
increasing sequence and thus cannot belong to 4. Thus no constant
function can be a selection for θ. To see that θ is ^-fixed, note that
if Ϊ7 is any proper subset of N, and JceN ~U, the sequence #*
defined by &, = 2i~1(i = 1, ••-,&) and sc< = 0(ΐ > fc) is an element of
0(w) for each n Φ k. Since N is discrete, lowersemicontinuity is
obvious.

While this carrier admits nonconstant selections, results below
show that this need not always be true. Theorem 1 shows that in
one sense the above example is the best possible: No nontrivial
jy-fixed (hence &-, or ί^-fixed) carriers exist from a discrete space
of uncountable cardinal to the closed convex subsets of a separable
Banach space.

Note further that the carrier θ above is actually ^-fixed for
the family of all proper subsets of N, By modifying the definition
of θ(x) to include only strictly positive sequences, we obtain a carrier
to the convex subsets of Y which is J^-fixed, but not j^'-fixed for
any family J ^ ' which contains a subset with compact complement.

4* Realcompact spaces* Recall that a topological space X is
realcompact if every free maximal ideal of C(X) is hyperreal. We
wish to find conditions which ensure selection theorems for basically
fixed carriers defined on realcompact spaces. The following theorem
is a simple result concerning constant selections for such carriers on
a class of realcompact spaces.

THEOREM 1. Let X be a realcompact space in which every coun-
table subset is disjoint from some noncompact closed subset of X,
and let B be a separable Banach space. Then any basically fixed
carrier θ to the closed subsets of B has a constant selection.

Proof. Let T = {θ{x):xeX}. Γ is a family of zero sets of B.
To see that Γ has the finite intersection property, let {xn}t=1 be any
finite subset of X. By hypothesis, there is a closed, noncompact
subset F of X disjoint from {xn}ϊ=19 and by [5; 3D1], a zero set Z
disjoint from {xJLi containing F. It follows that X — Z is a
realcompact cozero subset of X with noncompact complement, and
because θ is basically fixed we have
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Π {θ(xn): n^k}^ Π {θ(x)\ xeX - Z) Φ 0 .

Let T' be the z-filter generated by Γ. It suffices to show that V
is fixed, since in that case Y is a fortiori fixed, and for any p e f i Γ ,
the constant function f{x) = p (x e X) is a selection for θ. Since
separable metric spaces are Lindelof, by [5; 8H5] it suffices to show
that the ^-filter 2" on B has the countable intersection property. To
this end, let {ZX=1 be any countable subfamily of Yf. Since Y' is
generated by Γ, for each neN, there is a finite subset {xitn}ϊ£ of
X such that

^ 2 Π {θ(xit%): 1 £ i ^ k(n)} .

By assumption, the countable set {xnti: 1 ^ i ^ ft(w), w e iV} is disjoint
from some noncompact closed set F, and, as above, we can conclude
the existence of a realcompact cozero set C with noncompact comple-
ment which contains {xnιi: 1 ^ i ^ &(w), neN}. Since 0 is basically
fixed, we have

Π {Zn: neN}^ Π {̂ (a?*fJ: 1 ^ i ^ fc(^): ^ e N} 2 Π {»(»): a? 6 C} Φ 0 .

This completes the proof.

Let X be a space, Γ" a locally convex space and V a symmetric,
convex neighborhood of 0 in Y. Let φ: X-^SΓ(Y) be an l.s.c. carrier
and, for yeY, Uy = {xeX:yeφ(x) + V}. Then the collection %f(V) =
{f/ i/eΓ} is an open cover of X. ^ is said to be of infinite character
iff there exists V such that <&(V) has no finite subcover. If φ is
not of infinite character, it is of finite character.

THEOREM 2. Let X be realcompact, Y a locally convex space and
φ: JXΓ—> 3ίΓ(Y) an l.s.c. basically fixed carrier. Then φ is of finite
character.

Proof. If X is compact, the conclusion is obvious. If X is not
compact, then it cannot be pseudocompact either. In such a case,
by [5, 1G4] there exist two disjoint zero sets in X neither of which
is compact. Let C1 and C2 denote the complementary cozero sets.
Then X = C1 (J C2. Since φ is basically fixed, and Ct is realcompact,
there exist ^ e f l {φ(x): x6CJ, i = 1, 2. For each symmetric convex
neighborhood of 0 in Y, we then have the sets {Uy.: i = 1, 2} form
a cover of X.

This condition is, however, not strong enough to guarantee the
existence of a selection for φ. The carriers defined in [6, Examples
6.2 and 6.3] are of finite character, but do not admit selections. We
do have the following result, analogous to [6, 4.1].
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THEOREM 3. Let X be realcompact, Y a locally convex space,
φ: X —> J%Γ(Y) an l.s.c, basically fixed carrier, and V a convex zero
neighborhood in Y. Then there exists a continuous function f:X—>Y
such that f{x) e φ(x) + V for each xeX.

Proof. By Theorem 2, φ is of finite character. Thus there is a
finite subset TcY such that X = U {Ut:teT}. Consider the collection
W~ — {WcX:W is a cozero set and there exists teT such that
WaUt}.

Case 1. W~ has a finite subcover. Then each Ut is a cozero set
of X. For each t e T, let ft e C(X) satisfy 0 ̂  ft ^ 1, Ut = coz/,; and
define gteC(X) by gt(x) = ft(x)/Σι{f*: *eT}. Then forίeΓ} is a
finite partition of unity on X, and for each t e Ty coz gt =Ut. Then
f:X-+Y, defined by f{x) = yΣi{tgt(x):teT) satisfies the required
properties.

Case 2. W" has no finite subcover. Let W^' be a maximal cozero
cover of X which contains W~. Then by [4, 1.4], "W"f has a countable
subcover {Wn}Z=i. For each ^eiV, let fneC(X) satisfy 0 ̂  fn ^ 1,
Trw = coz/βf and define ^ e C(X) by ^(α) - 2nfM/Σΐ=i 2" '/^). Then
{̂ }̂ =i is a partition of unity on X, and Wn == coz ̂ . By [4, l(c)]
there exists a locally finite partition of unity {#y~=1 on X such that
coz gf

% £ coz gn=Wn. We can conclude that coz gn has noncompact
complement, since otherwise Wn would have compact complement and
could not belong to a maximal cover. By the ^-fixedness of φ, we
can now find, for each neN, yneY such that yne Π {φ(x): % € coz g'n}.
Since {g'n: neN} forms a locally finite partition of unity and φ(x) is
convex for each xsX, the function f:X—>Y defined by f(x) =
Σin=ιg'n(%) yn satisfies the required properties. (If Case 2 occurs, we
can actually conclude that / is a selection for φ.)

The next result gives a sufficient condition for the existence of
a selection.

THEOREM 4. Let X be normal and countably paracompact. If
X is also realcompact, then every lowersemicontinuous basically fixed
carrier φ from X to the closed convex subsets of a Banach space
admits a selection. (It will be shown below that the converse is
also true if X is a space of nonmeasurable cardinal.)

Proof. Let {F»}?=1 be a base for the convex, symmetric neigh-
borhoods of the origin in Y, such that Vn+1(Z(l/2)nVn. Since X is
realcompact, it follows from Theorem 2 that Θ is of finite character.
For each neN, there exists a finite subset TnQ Y such that the cover
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(defined above) has {Ut:teTn} as a finite subcover. Let T =
Uί=i TH. The linear subspace Y' of Y generated by T is separable.
Define the carrier ψ:X-> ^(Yf) by ψ(x) = 0(&) Π Γ'. Then f is l.s.c,
ψfa) Φ φ for each a e l , and, by [6, 3.1], α̂  will have a selection,
which will be a selection for ^ also.

An entirely analogous proof establishes the following:

THEOREM 5. Let X be a perfectly normal space. If X is real-
compact, then every l.s.c. carrier to the convex subsets of a Banach
space admits a selection. (By Theorem 9 below, the converse is also
true if X has nonmeasurable cardinal.)

5* Necessary conditions* In this section we show, that in
contrast to Theorem 2, a nonrealcompact space always admits basically
fixed carriers of infinite character.

We begin with the following useful lemmas. Lemma 6 sum-
marizes MichaePs technique of constructing an l.s.c. carrier to the
closed convex subsets of a Banach space from an open cover of X.

LEMMA 6. Let ^ be an open cover of a space X and Y =
the Banach space of all functions y: ^ —>R such that \\y\\ —
Σz/e* \v(U)\ < oo. Let C = {yeY: \\y\\ = 1 and y(U) ^ 0 for every
Ue^} and φ(x) = {yeC\y(U) = 0 for all Ue^ such that x$ U).
Then φ is l.s.c. and φ(x)e^"(Y). Further, if there is a continuous
selection for φ, then there exists a locally finite partition of unity
subordinate to %f.

For proof, we refer to [6, p. 369].

Recall that, by [5, 8.4], the free real maximal ideals of C(X)
may be indexed by the points of υX — X, where υX denotes the
Hewitt realcompactification of X.

LEMMA 7. Π {Mp: peυX — X} = {f e C(X): coz(/) is realcompact).

Proof. If coz(/) is realcompact, then coz(/) U c\βxZ(f) is real-
compact subset of βX containing X. Hence υX £ coz(/) U c\βxZ(f)
and ϋ l - l S clβxZ(f). Thus, for every p e υX - X, f e Mp.

To prove the converse let / e Π {Mp: p e υX — X}9 and assume
for a contradiction that cozx(/) is not realcompact. If fυ denotes
the continuous extension of / to υX, then cozϋX/ϋ = υ(cozxf), [1, 5.2],
Since cozx / is not realcompact, it follows that there is p e (cozϋX fυ) —
cozx/. Thus p e υX - X £ c\βΣZx(f) = c\βxZυX(fυ). (The first inclusion
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follows from the assumption, the second by [3, 8.8].) This is impos-
sible since cozυXf

υ n zoZ(f°) = 0 .

THEOREM 8. If X is not realcompact, then there exists a Banach
space Y, and a basically fixed l.s.c. carrier φ: X-*^(Y), which is
of infinite character. Furthermore, if φ admits a selection, then X
has measurable cardinal.

Proof. Suppose X is not realcompact. Let M be a free real
maximal ideal. Consider the open cover ^ " of X defined by CW~ —
{coz(/): / e M). Let Y = 4(3^~) and φ: X -» 2Y be defined as in Lemma
6. Then φ is l.s.c. We show that φ is basically fixed. Let
and A = coz(fe). Then, by Lemma 7, heMυX-χ £ If. Thus
Define y0: W -*ΈL as follows: for

(0 it WΦA

[1 if W = A .

Then τ/oe Π {̂ (»): #e^4}, i.e., φ is basically fixed.
To show that φ is of infinite character, let V = {y: \\y\\ < 1} and

assume that there exists a finite subset {yl9 y2, , 2/J of F such that
U {Un: i = 1, , &} = X. The collection ^ ' of all those WeW
for which there exists an i e 1, -, k such that yt(W) > 0 is countable.
Since M is a real ideal, we have Xφ U {W:WeW}. Let α? be an
element of X which is not in the union. Then every y e φ{x) satisfies

y(W) = 0 for every WeW. Hence \\y - yt\\ ^ \\y.\\ = 1 > 0 for
every i ^ k. It follows that x g U {£7̂ : i = 1, , k}, a contradiction.
Thus ^ is an l.s.c. basically fixed carrier of infinite character. To
prove the second statement, assume φ has a selection. Then by
Lemma 6, we have a partition of unity P subordinated to W~, i.e.,
P Q Mp. Theorem DMW yields that P must be measurable. Since
measurable cardinals are strongly inaccessible, \X\ is measurable, a
contradiction.

We can summarize the above results in the following theorem:

MAIN THEOREM 9. Let X be a completely regular space of non-
measurable cardinal. The following are equivalent'.

(a) X is realcompact.
(b) Every basically fixed l.s.c. carrier from X to the convex

subsets of a locally convex space is of finite character.
(c) Every basically fixed, l.s.c. carrier of infinite character from

X to the convex subsets of a locally convex space admits a selection.
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Proof, (a) -> (b) Theorem 2.
(b)->(c) Trivial.
(c) -> (a) Theorem 8.

REMARK. The restriction of nonmeasurable cardinal is not needed
for (a) —» (b) —> (c). However, this restriction is necessary for (c) —•
(a): Any discrete space of measurable cardinal is not realcompact
[5; 12.2], but is paracompact, and Michael's Theorem [6; 3.2"] applies.

6* Application to unions of realcompact spaces* Several
conditions which imply that a union of realcompact spaces is also
realcompact have been investigated. Some of these are given in [1]
and [2]. The example of S. Mrowka cited in [4, §4] shows that the
union of two closed realcompact subspaces need not be realcompact.
Open subsets of a realcompact space need not be realcompact, hence it
follows that an arbitrary union of realcompact cozero sets need not
be realcompact. However, using the condition of Theorem 8 we prove:

THEOREM 10. Let {Ca: aeΛ} be a locally finite collection of
realcompact cozero subspaces of X, let C — U {Ca: a e A), and assume
\C\ is a nonmeasurable cardinal. Then C is realcompact.

Proof. If any Ca has compact complement, C may be expressed
as a finite union of realcompact cozero sets, which is realcompact by
Lemma 7. Otherwise, each Ca has noncompact complement. Let
φ:C—> ^Γ(Y) be any l.s.c. basically fixed carrier from C to the
convex subsets of a locally convex space Y. By Theorem 8 it suffices
to show that φ admits a selection.

Since φ is basically fixed, and each Ca e έ%, we have, for each
ae Λ, yae Π {φ(x): xeCa}. Since {Ca: aeΛ} is locally finite, there is a
subordinate locally finite partition of unity {ga}aeΛ (Argue as in the
proof of Theorem 3.) Let f(x) = Σ{ga(x) ya: aeΛ} for each xeC.
Then / is continuous, since {ga: aeΛ} is a locally finite partition of
unity, and for every xeX, ga{x) > 0 implies xeCa and consequently
yaeφ(x). Thus f(x)eφ(x), being a convex combination of elements
of φ(x) and / is a selection for φ. This completes the proof.

A covering ^ of I is said to be normal, if there exists a
continuous pseudometric on X for which the 1-balls refine ^ . Since
a locally finite cozero covering is normal, the above result may also
be derived from the following:

THEOREM (Blair, [2, 2.1]). Let ^ be a normal cover of X of
nonmeasurable cardinal, with U Q X for each Ue^. Then oX =
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Blair and Hager show that this result implies the Katetov-
Shirota theorem that a complete, nonmeasurable uniform space is
realcompact. We now show that Theorem 10 is equivalent to a
slightly weakened form of Blair's result, which also implies the
Katetov-Shirota theorem. The following characterization is given
in [2, 2.4].

LEMMA (Blair and Hager). Let %f = {Ua: aeΛ} be a cover of
X. %f is normal if, and only if, there is a locally finite cover T* —
{Va:aeΛ} of X, consisting of cozero sets, with Va and X — Ua

completely separated for each aeΛ.

LEMMA 11. Let \oX\ be a nonmeasurable cardinal. Let Λ be an
index set nonmeasurable cardinal. A cover ^ = {Ua: a e Λ) of X is
normal if, and only if, υ^f = {υUa: aeΛ} is a normal cover ofυX.

Proof. Let ^ be a normal covering of X. By applying the
previous lemma twice it is possible to obtain cozero coverings 3Γ =
{Va:aeΛ} and <W = {Wa:aeΛ} of X such that for each aeΛ, Va

is completely separated from X — Ua and Wa is completely separated
from X-Va. Now, by [1, 5.2], υW = {υWa:aeΛ} is a family of
cozero sets of υX. To see that υ'W is locally finite, it suffices to
show that any neighborhood N in υX such that N Π X is disjoint
from Va, cannot meet υWa. To this end, let Zx and Z2 be a complete
separation of Wa and X — Va in X. Then cl ϋ Z ^ Π c\υXZ2 = 0 and since
Wa is a cozero set, υWa Q clυXZ19 while N £ clyχiV n l £ c\υXX -VaQ
clυXZ2.

By Theorem 10, it follows that \J{υWa: a e Λ} is realcompact, and
since this set obviously contains X, uW" is a locally finite cozero
cover of υX. Moreover, for each aeΛ, υWa is completely separated
from υX — υUa: Let Z1 and Z2 be a complete separation of X — Va

and Wa. Since Va is a cozero subset of Ua we have υX — υΐla £
υX — υVa = clyjrX — Va £ clϋ X^, where the first containment follows
from [1, 3.5], the second by [5, 8.8] and [1, 5.2]. Also υWa S clυXZ2,
so cl y χ ^, and clyχZ2 are a complete separation of υX — υUa and oWa.
Thus L>^ is a normal cover of υX. The converse is obvious.

THEOREM 12. Let ^ be a normal cover by sets of of non-
measurable cardinal, with \e%f\ nonmeasurable. If υUcυX for each

f then υX = V{υU:Ue

Proof. By Lemma 11, υ%f is a normal cover of υX. Thus there
is a locally finite cozero cover 3^ of yJ. Since the cardinalities
involved are nonmeasurable, υ{V\VeΎ*} is a realcompact subset of
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U {oil: Ue ^ } , and the former union contains X. Thus we have shown

Q U {υU:Ue^} Q υX

where the last inclusion follows from the hypotheses υU Si υX, and
the proof is complete.

REMARKS, (i) The extra restriction in Theorem 12 on the car-
dinality of the members of υ^f is satisfied in any space of nonmea-
surable cardinal; we may infer, using the Blair-Hager procedure
[2, 2.3], the Katetov-Shirota Theorem from Theorem 12.

(ii) Substitution of the phrases "topologically complete" for
"realcompact, and "if-fixed" for "^-fixed" (basically fixed) in the
theorems of §§3 and 4 above, will leave all the theorems valid.
Similarly it may be shown that the paracompactness of a completely
regular 2\-space X is equivalent to the property that every J^-fixed,
l.s.c. carrier from X to the closed convex subsets of a Banach space
admits a selection.

(iii) The following question remains open: If φ is a carrier of
finite character to the closed convex subsets of a Banach space Y,
must φ admit a selection in general, or even when X is realcompact?

Finally, the authors wish to thank the referee for his remarks
and suggestions.
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